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ELA

INFINITE PRODUCTS AND PARACONTRACTING

MATRICES �

W.-J. BEYNy AND L. ELSNERy z

Abstract. In [Linear Algebra Appl., 161:227{263, 1992] the LCP-property of a �nite set
� of square complex matrices was introduced and studied. A set � is an LCP-set if all left
in�nite products formed from matrices in � are convergent. It was shown earlier in [Linear
Algebra Appl., 130:65{82, 1990] that a set � paracontracting with respect to a �xed norm is
an LCP-set. Here a converse statement is proved: If � is an LCP-set with a continuous limit
function then there exists a norm such that all matrices in � are paracontracting with respect
to this norm. In addition the stronger property of `-paracontractivity is introduced. It is
shown that common `-paracontractivity of a set of matrices has a simple characterization.
It turns out that in the above mentioned converse statement the norm can be chosen such
that all matrices are `-paracontracting. It is shown that for � consisting of two projectors
the LCP-property is equivalent to `-paracontractivity, even without requiring continuity.

AMS(MOS) subject classi�cation. 65F10, 47H09, 15A99
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1. Introduction. In the investigation of chaotic iteration procedures for
consistent linear systems, matrices which are paracontracting with respect
to some vector norm play an important role. It was shown in [3], that if
A1; : : : ; Am are �nitely many k�k complex matrices which are paracontracting
with respect to the same norm, then for any sequence di; 1 � di � m; i =
1; 2; : : : and any x0 the sequence

xi = Adixi�1 i = 1; 2; : : :(1)

is convergent. In particular A(d) = limi!1 Adi : : :Ad1 exists for all sequences
fdig

1
i=1 = d. Hence those sets are examples of sets of matrices all in�nite

products of which converge. Such sets have been studied in [2]. Following [2],
we call them LCP{sets.

In this note we investigate the question of necessity. As our main result
we show that under the additional assumption that the mapping

d = fdig
1
i=1 ! A(d) = lim

i!1
AdiAdi�1 : : :Ad1(2)
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is continuous (which is equivalent to the set of �xed points of Ai being the same
for all 1 � i � m), an LCP{set is necessarily paracontracting with respect to
some norm. In this sense paracontractivity is equivalent to the LCP{property.
We show, in addition, that continuity implies even the stronger property of
`-paracontractiveness.

In the �nal section, we consider the case m = 2. We show that for � con-
sisting of two projectors the LCP-property is equivalent to `-paracontractivity,
even without continuity.

2. Notations and known results. Let jj jj denote a vector norm in C k .
A k � k matrix P is paracontracting with respect to jj jj, if for all x

Px 6= x, jjPxjj < jjxjj:

We denote by N (jj jj) the set of all k� k matrices paracontracting w.r.t. jj jj.
We call P `-paracontracting w.r.t. jj jj, if there exists  > 0 such that

jjPxjj � jjxjj � jjPx� xjj

holds for all x 2 C
k and denote this set of matrices by N(jj jj). Obviously

N(jj jj) � N (jj jj):(3)

The example of an orthogonal projection P; P 6= I; P 6= 0 which is paracon-
tracting w.r.t. the Euclidean vector norm but never `-paracontracting shows
that in (3) equality does not hold in general.

For a bounded set � = �1 of complex k�k - matrices de�ne �0 = fIg and
for n � 1, �n = fM1 M2 : : :Mn : Mi 2 �g; the set of all products of matrices
in � of length n. Let � = fA1; : : : ; Amg be �nite. For d = (d1; d2; : : :) 2

f1; : : : ; mgN, i.e. 1 � di � m for i 2 N de�ne A(d) = limn!1 AdnAdn�1 : : :Ad1 ;
if the limit exists. The set � is an LCP{set (left{convergent{product), if for

all d 2 f1; : : : ; mgN the limit A(d) exists. The function d ! A(d) mapping

f1; : : : ; mgN into the space of k � k - matrices is called the limit function.
We note in passing that in [2] also the right{convergent{product property

(RCP) was introduced. For convenience we restrict our considerations to the
left convergence case.

Introducing in f1; : : : ; mgN the metric

dist(d; d0) = m�r r smallest index such that dr 6= d0r;

we de�ne the concept of a continuous limit function in the standard way.
The set � is product bounded, if there exists � > 0 such that

jjAjj � � for all A 2 �n; n = 1; 2; : : :
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Here jj jj denotes any matrix norm. Obviously this concept is independent
of the norm. G. Schechtman has proved that LCP{sets are product bounded
(see [1, Theorem I]). We have the following result.

Lemma 2.1. For a set � of k� k - matrices the following are equivalent.
(i) The set � is product bounded.
(ii) There exists a vector norm jj jj such that jjAxjj � jjxjj for all A 2 �; x 2
C
k.

(iii) There exists a multiplicative matrix norm jj jj such that jjAjj � 1 for all
A 2 �.

Proof. As (ii) =) (iii) (the operator norm is multiplicative) and (iii) =)
(i) are obvious, only (i) =) (ii) has to be shown.
For some vector norm � de�ne the norm

jjxjj = sup
n�0
f sup
A2�n

�(Ax)g

which is �nite by (i). Then jjAxjj � jjxjj for all A 2 �.
We remark that this result could also be derived from [5]. For a given

matrix norm jj jj and bounded � let b�n = b�n(�) = maxfjjAjj; A 2 �ng and

let b� = b�(�) = limn!1 b�1=nn : The quantity b� is called the joint spectral radius
of �. It was introduced in [5] for general bounded sets in a normed algebra. In
[5] and in [2] the limit is replaced by lim sup, however, it is implicitly shown
in [2] (see there (3.12)), that the limit exists.

We give here a characterization of b�(�), which can be found essentially
in [5]. Hence the proof, which is also an easy consequence of the previous
Lemma, is omitted.

Lemma 2.2. For any bounded set � of k � k - matrices

b�(�) = inf
� operator norm

sup
A2�

�(A):(4)

The following result is just a restatement of the Theorem in [3].
Theorem 2.3. Let � � N (jj jj) for some vector norm jj jj, � �nite. Then

� has the LCP{property.
We �nish this section by pointing out that if in addition � � N(jj jj)

for some positive , then the proof of Theorem 2.3 is very simple. This is
outlined below. It is a consequence of the following characterization of `-
paracontractivity of the set �.

Let � = fAigi2I be a set of matrices, not necessarily �nite. Let d =
(d1; : : : ; dr) 2 Ir, � a vector norm. De�ne

�d(x) = �(xr) +
rX

k=1

�(xk � xk�1)(5)
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where the vectors xi are de�ned as in (1) and x = x0. Then obviously, for any
i 2 I and d0 = (i; d1; : : : ; dr)

�d(Aix) = �d0(x)� �(Aix� x):(6)

We de�ne now

��(x) = supf�d(x) : d �niteg:(7)

This is a vector norm provided that ��(x) <1 for all x.
Theorem 2.4. For a set of k � k - matrices fAigi2I the following are

equivalent.
(i) There exists a norm � and a positive  such that

Ai 2 N(�) for all i 2 I:

(ii) There exists a vector norm � such that

��(x) <1 for all x 2 C
k

(iii) For all vector norms �

��(x) <1 for all x 2 C
k

Proof. We show (i)) (iii)) (ii)) (i).
Assume that (i) holds. Then from

�(Aix� x) � �1f�(x)� �(Aix)g 8i 2 I; 8x(8)

we have, using the notation in (5), and assuming (w.l.o.g.) that  � 1,

�d(x) � �(xr) + �1
rX

k=1

(�(xk�1)� �(xk))

= �(xr) + �1f�(x)� �(xr)g � �1�(x):(9)

If � is a �xed vector norm, then due to the compatibility of any two norms
we have a constant � such that �(x) � ��(x) and hence also �d(x) � ��d(x).
The inequality (9) gives that ��(x) exists, hence we have (iii).
Obviously (iii) implies (ii).
Now we assume (ii). From (6) we have

��(Aix) � ��(x)� �(Aix� x) � ��(x)� ��(Aix� x)(10)

where we have chosen  such that �(�) � ��(�) for all �. Hence (i) holds
with � = ��.

We indicate now the easy proof of the fact that a �nite set � =
fA1; : : : ; Amg � N(�) has the LCP-property. It su�ces to show that for

any x0 and any d = (d1; d2; : : :) 2 f1; :::; mgN the sequence fxig1i=1 de�ned by
(1) is convergent. By Theorem 2.4 we have ��(x0) < 1, hence the sequenceP1

i=1 �(xi � xi�1) is convergent. This implies that the sequence of the x0is is
a Cauchy sequence.
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3. Main result. It is tempting to conjecture that the converse statement
of Theorem 2.3 also holds, namely that if � is an LCP-set, then there exists
a vector norm jj jj such that � � N (jj jj). We were unable to decide this
question in general. However, the converse is true if � is an LCP-set with a
continuous limit function. More precisely, the following theorem holds.

Theorem 3.1. Let � = fA1; : : : ; Amg be a �nite set of k � k - matrices
and let the subspaces Mi = N(I � Ai); i = 1; : : : ; m. Then the following are
equivalent.
(i) The set � has the LCP{property and Mi = Mj for i; j = 1; : : : ; m.
(ii) The set � has the LCP{property with continuous limit function.
(iii) There exists a vector norm jj jj in C

k and a positive  such that � �
N(jj jj) and Mi = Mj for i; j = 1; : : : ; m.
(iv) There exists a vector norm jj jj in C

k such that � � N (jj jj) and Mi = Mj

for i; j = 1; : : : ; m.
Proof. We will show (i) =) (ii) =) (iii) =) (iv) =) (i) .

To prove (i) =) (ii), we are going to show that

jjA(d) �A(d0)jj � (2 + �)jjA(r) �A(d)jj;(11)

where jj jj is a �xed operator norm, (d), (d0) 2 f1; : : : ; mgN; di = d0i for i � r,
and � is the bound in the de�nition of product boundedness. Here we use the
fact that by [1], � is product bounded. Also we use the notation

A(r) = AdrAdr�1 : : :Ad1 ; A
0
(s) = Ad0s : : :Ad0

1
:

Let M0 = N(I � Ai); i = 1; : : : ; m the common pointwise invariant subspace
of the matrices Ai. If i 2 f1; : : : ; mg occurs in�nitely often in the sequence
d1; d2; : : :, then by the usual reasoning AiA

(d) = A(d), and hence all columns of
A(d) are in M0. Hence AjA

(d) = A(d) for all Aj 2 �. This implies the relation

A0(r+s) � A(r) = (Ad0
r+s

: : :Ad0
r+1

� I)(A(r)� A(d)) s > 0

and hence jjA0(r+s) � A(r)jj � (1 + �)jjA(r)� A(d)jj. Taking s!1, we get

jjA(d0) �A(r)jj � (1 + �)jjA(r)�A(d)jj;

from which (11) follows. This implies continuity: Given � > 0, as A(r) ! A(d),
there exists r0 such that

jjA(r0) � A(d)jj � (2 + �)�1�:

Now, if (d0) is such that dist(d; d0) � m�r0�1, then di = d0i for i � r0 and
hence by (11)

jjA(d0) � A(d)jj � (2 + �)jjA(r0) � A(d)jj � �:
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We remark that although this step is not directly contained in [2], we have
used tools and ideas from that paper.
Finally, we show (ii) =) (iii). Assume that (ii) holds. By Theorem 4.2 in [2]
the subspaces Mi are the same for i = 1; : : : ; m. By a similarity transforma-
tion, i.e.

�! S�1�S = fS�1AiS : i = 1; : : : ; mg

which does not change the properties involved, we can assume that Mi is
spanned by the �rst r unit vectors e1; : : : ; er, so that for i = 1; : : : ; m,

Ai =

�
Ir Ci

0 eAi

�
:

Obviously e� = f eA1; : : : ; eAmg has the LCP{property also and its limit function

is identically zero. Otherwise if eA(d) 6= 0; for some d 2 f1; : : : ; mgN we would

have eAr
eA(d) = eA(d) for at least one r and eAr would have 1 as an eigenvalue.

This contradicts our assumptions. But then, from Theorem 4.1 in [2], it follows

that b�(e�) < 1. We select some q in (b�(e�); 1): By Lemma 2.2 we �nd a norm
jj jj on C

k�r such that

jj eAixjj � qjjxjj for all x 2 C
k�r and all i = 1; : : : ; m:(12)

Denoting by jj jj2 the Euclidean norm in C
r, we introduce for any positive �

the following vector norm in C
k:

��(x) = ��

 
x1
x2

!
= �jjx1jj2 + jjx2jj:

Then we observe that

��(Aix) = ��

 
x1 + Cix2eAix2

!
= �jjx1 + Cix2jj2 + jj eAix2jj

� �jjx1jj2 + (�jjCijj+ q)jjx2jj;(13)

where jjCijj = max
n
jjCixjj2
jjxjj ; x 2 C

k�r
o
. Choose � > 0 such that ~q =

maxi(�jjCijj + q) < 1 and let  = (1 � ~q)=(1 + ~q). Then we get after some
manipulations using (12) and (13) the inequality

��(Aix) � ��(x)� ��(Aix� x):

Hence � � N(��) and (iii) is proved.
(iii) =) (iv) is trivial, while (iv) =) (i) is Theorem 2.3.
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4. Final remarks. The conjecture at the beginning of the previous sec-
tion remains unsolved even in the case m = 2. The following related result
was proved in [6].

Theorem 4.1. For � = fA1; A2g the following are equivalent.
(i) � is an LCP-set.
(ii) (a) there exist a vector norm jj jj such that

jjAixjj � jjxjj; i = 1; 2 for all x 2 C
k ;

jjA1A2xjj = jjxjj =) A1x = A2x = x

(b) For i = 1; 2 if � is an eigenvalue of Ai, j�j = 1, then � = 1.
Notice that here we have �nitely many conditions characterizing the LCP-
property. Nevertheless (ii) seems not to imply paracontractivity of �.

In the case of two projectors Pi; i = 1; 2, not necessarily orthogonal, the
conjecture can be proved.

Theorem 4.2. Let Pi, i = 1; 2 be projectors, i.e. P 2
i = Pi, i = 1; 2. Then

the following are equivalent.
(i) fP1; P2g is an LCP-set.
(ii) There exists a vector norm jj jj and a positive  such that

fP1; P2g � N(jj jj):

The proof is given after the following auxiliary result.
Lemma 4.3. Let A;B be complex k � k -matrices such that

(i) B is convergent, i.e. the powers of B converge, and
(ii) limn!1 ABn = 0.
Then there exists � 2 (0; 1) such that for any norm jj jj

jjABnjj � C�n for all n 2 N:

with C > 0 a constant depending on the norm.
Proof. By eventually changing the basis accordingly, we have by (i) that

B is of the form

B =

�
Ir 0
0 B0

�
with � = jjB0jj < 1 for a suitable norm. Here r is the dimension of N(I �B)
and we assume r > 0. Otherwise nothing has to be proved. Partitioning
A = (A1; A2), where A1 contains the �rst r columns of A, we get ABn =
(A1; A2B

n
0 ), and we see from (ii) that A1 = 0. But then clearly

jjABnjj = jj(0; A2B
n
0 )jj � C�n

for a suitable C.
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Proof of Theorem 4.2. Obviously we need only to show the implication
(i) =) (ii).
Let jj jj denote a vector norm satisfying jjPixjj � jjxjj; i = 1; 2; x 2 C

k (See
Lemma 2.1, (ii)) and de�ne for n � 0

an(x) = jj(P1 � I)(P2P1)
nxjj

bn(x) = jj(P2 � I)P1(P2P1)
nxjj

cn(x) = jj(P2 � I)(P1P2)
nxjj

dn(x) = jj(P1 � I)P2(P1P2)
nxjj

By (i) the sequence

x0 = x; x2i+1 = P1x2i; x2i+2 = P2x2i+1; i = 0; : : :

is convergent, which gives that an(x) = jjx2n+1 � x2njj ! 0 and bn(x) =
jjx2n+2� x2n+1jj ! 0. The analogous result holds for cn and dn. Similarly we
prove that the matrices P1P2 and P2P1 are convergent. Hence by the previous
Lemma rn(x) � C�n for suitable C > 0; � 2 (0; 1) and r = a; b; c; d. This
shows that the following expression

jjxjj� = jjxjj+max

 
1X
n=0

(an(x) + bn(x));
1X
n=0

(cn(x) + dn(x))

!
is �nite, and it is easy to see that jjxjj� = 0 if and only if x = 0. Hence it is
a norm in C

k. (This is essentially the same construction as in (7), but in this
special case we can give a closed expression for the norm). By some simple
manipulations we get

jjP1xjj� � jjxjj�� a0(x) = jjxjj�� jjP1x� xjj

and the same result for P2. As there is a  > 0 satisfying jjxjj � jjxjj� we see
that fP1; P2g � N(jj jj�).
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