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A LOWER BOUND FOR THE NUMBER OF DISTINCT

EIGENVALUES OF SOME REAL SYMMETRIC MATRICES∗

C.M. DA FONSECA†

Abstract. This mostly expository note surveys and recovers a lower bound for the number of

distinct eigenvalues of real symmetric matrices associated with a graph. The relation is established

with the length of some paths of the underlying graph, using an improvement of an inequality

involving the multiplicities of the eigenvalues. An interesting use of that number is observed. Some

applications of the results to particular classes of graphs are considered.
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1. Introduction. The study of the spectra of real symmetric (or Hermitian)

matrices subordinated to a certain tree, and, in particular, of the number of distinct

eigenvalues such acyclic matrices, has long been the subject of attention in diverse

areas of applied, numerical, and theoretical linear algebra.

Largely motivated by the research by Parter [20], Genin and Maybee [9], and

Wiener [22], on the location and multiplicity of eigenvalues of sign-symmetric ma-

trices whose associated graphs are trees, the interest on this subject emerged again,

one decade ago, mainly with the frequently cited papers [14, 15, 18]. On the other

hand, many of the recent results were inspired by earlier seminal results of Godsil on

matching polynomials [11, Chapter 1] and [12], sometimes overlooked by the linear

algebra community, and surveyed by the author in [8].

Another important reference is the paper [19] by Nylen, where a recursive algo-

rithm to compute minimum rank or, equivalently, the maximum multiplicity of a tree,

is provided.

Recently, Kim and Shader introduced in [17] a new approach, based on the Smith

Normal Form, to study the spectra of real symmetric matrices with a given graph.

The authors gave an inequality between the diameter of a tree T and the minimum

number of distinct eigenvalues of all real symmetric matrices whose graphs are T ,
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recovering some known results. The same technique was also applied to a particular

class of real symmetric unicycle matrices. These authors also classified the trees for

which each of the associated acyclic matrices has distinct eigenvalues whenever the

diagonal entries are distinct [16].

The thrust of this note, mainly of an expository nature, is to improve the bound

obtained in [7] and, consequently, to recover a lower bound for the number of distinct

eigenvalues of a real symmetric matrix in terms of the lengths of the paths not con-

taining any edge of the cycles of the underlying graph. This bound is established in

a very concise way and improves some known results. Several examples of families of

graphs are considered.

2. The multiplicities of the eigenvalues of a graph. For a given (weighted)

connected graph G, let A = (aij) be the real matrix whose graph G(A) is G. For

more details on the notation used here, the reader is referred to [7, 8]. We focus this

work on the set

S(G) = {A ∈ R
n×n |A is symmetric and G(A) = G} ,

i.e., the set of all n-by-n real symmetric matrices sharing a common graph G of order

n. Nevertheless, all results can easily be extended to Hermitian matrices.

For a nontrivial (weighted) path P in G, let us define w(P ) =
∏

(i,j) aij(P ), where

the product is taken over the weights of the edges (i, j) of P , assuming that i 6= j. If

the set of all paths connecting the vertex i to the vertex j is represented by Pij , the

polynomial

ϕij(G, λ) =
∑

P∈Pij

w(P )ϕ(G \ P, λ)(2.1)

can be regarded as the ij-entry of the classical adjoint of λI−A(G) [13, p. 1729], with

the convention ϕii(G, λ) = ϕ(G \ i, λ). Observe that if there is one path connecting i

and j containing no edges of any cycle of G, (2.1) can be simplified.

Lemma 2.1. If there is only one path P connecting two vertices i and j in a

graph G, then ϕij(G, λ) = w(P )ϕ(G \ P, λ).

From (2.1) we can also deduce

ϕ(G, λ)ϕ(G\i, µ) − ϕ(G,µ)ϕ(G\i, λ) = (λ − µ)
n
∑

j=1

ϕij(G, λ)ϕij(G,µ) ,(2.2)

for any i ∈ {1, . . . , n}. This identity is called the Christoffel-Darboux Identity for

graphs by analogy with the celebrated identity for orthogonal polynomials [7, 12].
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Several identities that can be derived from (2.2) are given in [7]. For example, we

may state

ϕ′(G, λ)2 − ϕ′′(G, λ)ϕ(G, λ) =
n
∑

i,j=1

ϕij(G, λ)
2.(2.3)

Let us denote the (algebraic) multiplicity of the eigenvalue θ of a symmetric matrix

A = A(G) by mA(θ). Using (2.3), motivated by the work on matching polynomials

[12], we can give a lower bound for the multiplicity of θ as a zero of each ϕij(G, λ):

Theorem 2.2 ([7]). Let P be a path in a graph G and A(G) ∈ S(G). If θ is an

eigenvalue of A(G), then the multiplicity of θ as a zero of each ϕij(G, λ) is at least

mA(G)(θ)− 1.

Taking Lemma 2.1 into account, we obtain the following corollary.

Corollary 2.3. Let P be a path that does not contain any edge of any cycle in

G. Then

mA(G\P )(θ) ≥ mA(G)(θ)− 1 .(2.4)

Example 2.4. We may try to extend (2.4) to paths containing a single edge of

a cycle, if it exists, of the graph. Consider the matrix

A =























0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 1 1 0 1

0 0 0 1 1 1 0

0 0 0 0 1 1 1

0 0 0 1 0 1 1























,

whose graph G is the (4, 3)-tadpole graph
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The eigenvalue 1 of A has multiplicity 2. If we remove the path P joining the

vertices 1 and 4, the multiplicity of 1 as eigenvalue of the submatrix A(G\P ) is 1; but
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if we remove the shortest path joining the vertices 1 and 5, 1 is not an eigenvalue of the

corresponding submatrix. Therefore, (2.4) cannot be extended to paths containing a

single edge of a cycle.

Of course other examples can be given to show that (2.4) fails in general. For

example, consider the 0-1 adjacency matrix of a complete graph and remove a sin-

gle edge (including the terminal vertices). In Lemma 5.1 we identify the maximum

multiplicity of an eigenvalue of a tadpole graph.

If one considers the trivial path reduced to a single vertex, say i, the inequality

(2.4) becomes

mA(G\i)(θ) ≥ mA(G)(θ)− 1 ,(2.5)

which can also be seen as an immediate consequence of Cauchy’s Interlacing Theorem

for eigenvalues of symmetric matrices. It is a standard result that M(G) − 1 ≤

M(G − i) ≤ M(G) + 1, where M(G) denotes the maximum multiplicity of G [19,

Proposition 2.1]. But, if instead of a vertex, we remove any path from a tree, (2.4) is

a general result.

Corollary 2.5 ([7, 8]). Let P be a path in a tree T and let A(T ) ∈ S(T ). If θ

is an eigenvalue of A(T ), then

mA(T\P )(θ) ≥ mA(T )(θ) − 1 ≥ 0 .

This corollary is an extension to general acyclic matrices of a result on matching

polynomials [11, Theorem 4.5] or on 0-1 adjacency matrices of trees [10].

3. The number of distinct eigenvalues. The well-known relation between

q(T ), the minimum of the number of distinct eigenvalues of a symmetric matrix

whose graph is the tree T , and the number d(T ) of vertices in a longest path of T ,

q(T ) ≥ d(T ) ,(3.1)

has been considered using various procedures [7, 12, 17, 18].

For some special families of trees the bound (3.1) can be improved, e.g., as in

[17], where the Smith Normal Form is used to handle the case of a generalized k-whirl

(k ≥ 2) on n vertices. In this section, the inequality (3.1) is extended to graphs with

at least one edge not contained in any cycle.

From Lemma 2.1 and Corollary 2.3, if P is a path not containing edges of any

cycle in G, then the inequality (2.4) ensures that
∑

θ

(

mA(G)(θ) − 1
)

≤
∑

θ

mA(G\P )(θ) ≤ |V (G\P )| ,
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where the sums run over all distinct eigenvalues of A(G). Therefore q(T ) ≥ |V (P )|.

Theorem 3.1. If P is a longest path not containing edges of any cycle in a

connected graph G, then

q(G) ≥ |V (P )| .(3.2)

We remark that, for 0-1 adjacency matrices, Theorem 3.1 is general [5, p. 88].

We observe also that the proof of Theorem 3.1 is quite elegant, and the result implies

[18, Theorem 4].

Since a tree has no cycles, we get immediately the following corollary.

Corollary 3.2 ([7, 11, 17, 18]). The inequality (3.1) is valid for any graph that

is a tree.

The inequality (3.2) does not depend on the size of any cycle of the graph.

Kim and Shader in [17] provided a different lower bound on q(G) for an infinite

class of connected graphs G [17, Figure 4].

Theorem 3.3 ([17]). Let G be a connected graph on n vertices that consists of a

connected subgraph H on m vertices containing vertices v1, v2, v3 such that for all r,

s, and t with {r, s, t} = {1, 2, 3}, there exists a unique shortest path from vs to vt that

does not contain vr, and 6 legs L1, . . . , L6 on ℓ vertices such that the end vertices of

L1, L2 (resp. L3, L4 and L5, L6) are adjacent to vertex v1 (resp. v2 and v3). Then

q(G) ≥
9ℓ

4
− 2m+

15

2
.(3.3)

What happens in Theorem 3.3 if we omit the hypothesis of unicity of the shortest

path from vs to vt that does not contain vr, and the common size of the legs? If we

assume instead that the longest path containing Li and Li+1, for i = 1, 3, 5, has 2ℓ+1

vertices, then we get, from (3.2),

q(G) ≥ 2ℓ+ 1 .(3.4)

Of course, under the conditions of Theorem 3.3, for small values of m, the bound

(3.3) is better than (3.4). For example, for m = 3 and ℓ = 5, inequality (3.3) provides

q(G) ≥ 13 and from (3.4) one gets q(G) ≥ 11. But for a larger value of m, the same

cannot be said. For example, for m = 6, (3.3) provides q(G) ≥ 7.
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4. New frontiers for the number of distinct eigenvalues. Interestingly,

research on the number of distinct eigenvalues of a matrix has moved far beyond ma-

trix theory, to surprisingly unrelated new areas, such as quantum information science.

For example, assuming that all entries of A(G), the weights of G, are nonnegative,

a continuous-time quantum random walk on G is dictated by a time-varying unitary

matrix using the Schrödinger equation with A as the Hamiltonian [4]. The evolution

of the quantum walk is given by the equation

|ψ (t)〉 = e−itA |ψ (0)〉 ,

where |ψ (t)〉 is the time-dependent amplitude vector on the vertices of G, and |ψ(0)〉

is the initial amplitude unit vector. The average probability of vertex j is defined as

p̄j = lim
T→∞

1

T

∫ T

0

|〈j | ψ (t)〉|
2
dt .

It was recently proved [4] that in a quantum walk on a weighted connected graph

G starting at an arbitrary vertex, say j, the average probability of the start vertex

satisfies

p̄j ≥
1

τ (G)
,

where τ(G) denotes the number of distinct eigenvalues of the adjacency matrix A(G).

The notion of quantum random walks, one of the many surprising aspects of quan-

tum information, was introduced in 1992, by Aharonov, Davidovich, and Zagury in

[1], as the counterpart of classical random walks for particles that cannot be precisely

localized due to quantum uncertainties.

5. Back to the multiplicities of eigenvalues. One of the consequences of

Corollary 2.3 is the eminent result stating that all eigenvalues of any path or, equiva-

lently, of any (irreducible) tridiagonal matrix, are simple, since q(P ) = d(P ) = |V (P )|.

The same fact can be derived from Corollary 2.5, or from the fact that all the eigenval-

ues of an unreduced upper Hessenberg matrix are simple. Therefore, the multiplicity

of any eigenvalue of the cycle on n vertices, Cn, is at most 2 [6, 19, 21]. In fact, Cn\i

is a path, for any vertex i, and for any eigenvalue θ of A(Cn), from (2.5), we get

1 ≥ mA(Cn\i)(θ) ≥ mA(Cn)(θ)− 1 ≥ 0 .(5.1)

The same argument can be used for other classes of graphs, such as the tadpole

graphs or any generalized kite graph, as in the following example:
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If one considers the vertex 5 (or 7) we get the following:

Lemma 5.1. The maximum possible multiplicity of an eigenvalue of a tadpole

graph or a generalized kite graph is 2.

But, for other classes of similar graphs, the inequality (5.1) does not provide the

best bound. For example, let us consider the following generalized dart graph, say D:
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In this case, Theorem 3.1 guarantees that for the path P joining vertices 1 and

4, since D\P is a path,

1 ≥ mA(D\P )(θ) ≥ mA(D)(θ) − 1 ≥ 0 .

A similar strategy can be applied to the parapluie graph [3]:
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Lemma 5.2. The maximum possible multiplicity of an eigenvalue of a generalized

dart graph or of the parapluie graph is 2.

We conclude this note with a new application of Corollary 2.3. In 2004, Barioli

et al. [2] determined the maximum possible multiplicity of an eigenvalue of the n-sun

graph, i.e., the graph on 2n vertices obtained by appending a leaf on each vertex of

an n-cycle.1 Recently Sinkovic [21] discussed analogous properties of a larger family

of graphs.

For the case of a 3-sunlet graph, also known as a net graph, Barioli et al. proved

that the maximum eigenvalue multiplicity of such graphs is 2. If one deletes one of

the appending edges (including the terminal vertices), the resulting graph is a path.

From (2.4), we conclude that the maximum eigenvalue multiplicity of a 3-sunlet graph

is at most 2. This maximum is attained by the 0-1 adjacency matrix of the 3-sunlet

graph.

The same procedure can be used to prove that 2 is the maximum eigenvalue

multiplicity of a generalized 3-sunlet graph, i.e., the graph on kn vertices obtained by

appending a path on k vertices on each vertex of an n-cycle.

Acknowledgment. The author thanks the referee for helpful comments con-

cerning the paper.
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