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1. Introduction. J. von Neumann [9] proved an inequality about the norm of

a polynomial applied to a contraction on a Hilbert space H . Let D be the unit disk

and T the unit circle in C, and for any polynomial p let ‖p‖X be the supremum of

the modulus of p on the set X . The result is that

T ∈ B(H), ‖T ‖ ≤ 1 ⇒ ‖p(T )‖ ≤ ‖p‖
D
. (1.1)

For polynomials p(z) = p(z1, z2, . . . , zn) =
∑

|α|≤N cαz
α in n variables we use

the standard multi-index notation (where α = (α1, α2, . . . , αn) has 0 ≤ αj ∈ Z for

1 ≤ j ≤ n, |α| = ∑n
j=1 αj , z

α =
∏n

j=1 z
αj

j ). There is an obvious way of applying p

to an n-tuple T = (T1, T2, . . . , Tn) of commuting operators Tj ∈ B(H) (1 ≤ j ≤ n),

namely

p(T ) = p(T1, T2, . . . , Tn) =
∑

|α|≤N

cαT
α

(with Tα =
∏n

j=1 T
αj

j and T 0
j = I).

T. Andô [2] proved an extension of von Neumann’s inequality to pairs of com-

muting contractions.

Theorem 1.1 (Andô). If T1, T2 ∈ B(H), max(‖T1‖, ‖T2‖) ≤ 1, T1T2 = T2T1

and p(z) = p(z1, z2) is a polynomial, then

‖p(T1, T2)‖ ≤ ‖p‖
D
2 .
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The purpose of this note is to look for analogues of Andô’s inequality that are

satisfied by non-commuting operators. For a polynomial p in n variables and an n-

tuple of operators T = (T1, . . . , Tn) we define psym(T ) to be a symmetrized version of

p applied to T (we make this precise in Section 2). We are looking for results of the

form:

For all n-tuples T of operators in a certain set, there is a set K1 in Cn such that

‖psym(T )‖ ≤ ‖p‖K1
. (1.2)

and

For all n-tuples T of operators in a certain set, there is a set K2 in Cn and a

constant M such that

‖psym(T )‖ ≤ M ‖p‖K2
. (1.3)

Our main result is:

Theorem 4.6 There are positive constants Mn and Rn such that, whenever

T = (T1, T2, . . . , Tn) ∈ B(H)
n
satisfies

‖
n
∑

i=1

ζiTi‖ ≤ 1 ∀ζi ∈ D,

and p is a polynomial in n variables, then

‖psym(T )‖ ≤ ‖p‖RnD
n (1.4)

‖psym(T )‖ ≤ Mn‖p‖Dn . (1.5)

Moreover, one can choose R2 = 1.85, R3 = 2.6, M2 = 4.1 and M3 = 16.6.

2. Tuples of noncommuting contractions. There are several natural ways

one might apply a polynomial p(z1, z2) in two variables to pairs T = (T1, T2) ∈ B(H)2

of operators. A simple case is for polynomials of the form p(z1, z2) = p1(z1) + p2(z2)

where we could naturally consider p(T1, T2) to mean p1(T1) + p2(T2).

A recent result of Drury [4] is that if p(z1, z2) = p1(z1) + p2(z2), T1, T2 ∈ B(H)

(no longer necessarily commuting), max(‖T1‖, ‖T2‖) ≤ 1, then

‖p(T1, T2)‖ ≤
√
2‖p‖

D
2 . (2.1)
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Moreover, Drury [4] shows that the constant
√
2 is best possible.

One way to apply a polynomial p(z1, z2) =
∑n

j,k=0 aj,kz
j
1z

k
2 to two noncommuting

operators T1 and T2 is by mapping each monomial zj1z
k
2 to the average over all possible

products of j number of T1 and k number of T2, and then extend this map by linearity

to all polynomials. We use the notation psym(T1, T2) and the formula

psym(T1, T2) =

n
∑

j,k=0

aj,k
(

j+k
j

)

∑

S∈P(j+k,j)

j+k
∏

i=1

T2−χS(i)

where P(j + k, j) denotes the subsets of {1, 2, . . . , j + k} of cardinality j. The empty

product, which arises for j = k = 0, should be taken as the identity operator. The

notation
∏j+k

i=1 T2−χS(i) is intended to mean the ordered product

T2−χS(1)T2−χS(2) · · ·T2−χS(j+k),

and χS(·) denotes the indicator function of S.

Remarks 2.1. The operation p 7→ psym(T1, T2) is not an algebra homomorphism

(from polynomials to operators). It is a linear operation and does not respect squares

in general.

For example, if p(z1, z2) = z21 + z22 , then

psym(T1, T2) = T 2
1 + T 2

2

but for q(z1, z2) = (p(z1, z2))
2 = z41 + z42 + 2z21z

2
2 we have

(psym(T1, T2))
2 = T 4

1 + T 4
2 + T 2

1 T
2
2 + T 2

2 T
2
1 6= qsym(T1, T2)

in general.

Similarly for p(z1, z2) = 2z1z2 and

q(z1, z2) = (p(z1, z2))
2 = 4z21z

2
2 ,

psym(T1, T2) = T1T2 + T2T1,

(psym(T1, T2))
2 = T1T2T1T2 + T1T

2
2 T1 + T2T

2
1 T2 + T2T1T2T1 6= qsym(T1, T2)

in general.

However in the very restricted situation that p(z1, z2) = α+βz1+γz2 and q = pm,

then we do have qsym(T1, T2) = (psym(T1, T2))
m.

The symmetrizing idea generalizes in the obvious way to n > 2 variables. We will

use the notation psym(T ) for n-tuples T ∈ B(H)n for n ≥ 2.
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3. Example. The analogue of Andô’s inequality for n ≥ 3 commuting Hilbert

space contractions and polynomials norms on Dn is known to fail (see Varopoulos [8],

Crabb & Davie [3], Lotto & Steger [6], Holbrook [5]).

The explicit counterexamples of Kaijser & Varopoulos [8], and Crabb & Davie

[3]) have p(T ) nilpotent (and so of spectral radius 0). While the examples of Lotto &

Steger [6] and Holbrook [5]) do not have this property, they are obtained by perturbing

examples where p(T ) is nilpotent (and so p(T ) has relatively small spectral radius).

It is not known whether there is a constant Cn so that the multi-variable inequality

‖p(T )‖ = ‖p(T1, T2, . . . , Tn)‖ ≤ Cn‖p‖Dn (3.1)

holds for all polynomials p(z) in n variables and for all n-tuples T of commuting

Hilbert space contractions. However, it is well-known that a spectral radius version

of Andô’s inequality is true — indeed, it holds in any Banach algebra.

Proposition 3.1. If p is a polynomial in n variables and T = (T1, T2, . . . , Tn) is

an n-tuple of commuting elements in a Banach algebra, each with norm at most one,

then

ρ(p(T )) = lim
m→∞

‖(p(T ))m‖1/m ≤ ‖p‖
D
n (3.2)

(for ρ(·) the spectral radius).

Proof. We consider a fixed n. It follows from the Cauchy integral formula, that

if max1≤j≤n ‖Tj‖ ≤ r < 1, then

‖p(T )‖ = ‖p(T1, T2, . . . , Tn)‖ ≤ Cr‖p‖Dn (3.3)

for a constant Cr depending on r (and n).

To see this write

p(T ) =
1

(2πi)n

∫

ζ∈Tn

n
∏

j=1

p(ζ)

n
∏

j=1

(ζj − Tj)
−1 dζ1 dζ2 . . . dζn

and estimate with the triangle inequality. This shows that Cr = (1− r)−n will work.

Applying (3.3) to powers of p and using the spectral radius formula, we get

ρ(p(T )) ≤ ‖p‖
D
n ,

(provided max1≤j≤n ‖Tj‖ ≤ r < 1). However, for the general case max1≤j≤n ‖Tj‖ =

1, we can apply this to rT to get

ρ(p(T )) = lim
r→1−

ρ(p(rT )) ≤ ‖p‖∞.
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Example 3.2.

Let p(z, w) = (z − w)2 + 2(z + w) + 1 = z2 + w2 − 2zw + 2(z + w) + 1,

T1 =

(

cos(π/3) sin(π/3)

sin(π/3) − cos(π/3)

)

=

(

1/2
√
3/2√

3/2 −1/2

)

,

T2 =

(

cos(π/3) − sin(π/3)

− sin(π/3) − cos(π/3)

)

.

Note that ‖p‖D2 ≥ p(1,−1) = 5. To show that ‖p‖D2 ≤ 5, consider the homoge-

neous polynomial

q(z1, z2, z3) = z21 + z22 + z23 − 2z1z2 − 2z1z3 − 2z2z3

and observe first that p(z, w) = q(z, w,−1). Moreover

‖p‖D2 = ‖p‖T2 = ‖q‖T3 = ‖q‖D3 ,

by homogeneity of q and the maximum principle. Holbrook [5, Proposition 2] gives a

proof that ‖q‖D3 = 5.

We have

psym(T1, T2) = (T1 − T2)
2 + 2(T1 + T2) + I

=

(

0
√
3√

3 0

)2

+ 2

(

1 0

0 −1

)

+ I

=

(

3 0

0 3

)

+

(

2 0

0 −2

)

+

(

1 0

0 1

)

=

(

6 0

0 2

)

So ‖psym(T1, T2)‖ = 6 > 5 = ‖p‖D2.

Remark 3.3. The example has hermitian T1 and T2 and a polynomial with real

coefficients and yet ρ(psym(T1, T2)) > ‖p‖D2. Thus even Proposition 3.1 does not hold

for non-commuting pairs.

The referee has provided an argument to show that for the polynomial p of Exam-

ple 3.2, one has the inequality ‖psym(T1, T2)‖ ≤ 6 for all contractions T1 and T2 (and

thus the example is optimal for that p). This inequality is a substantial improvement

over using the sum of the absolute values of the coefficients of p, so one is led to ask

how well can one bound ‖psym(T )‖ for general p?
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4. ‖∑ ζiTi‖ ≤ 1. In this section, we shall consider n-tuples T = (T1, . . . , Tn) of

operators, not assumed to be commuting, and we shall make the standing assumption:

‖
n
∑

i=1

ζiTi‖ ≤ 1 ∀ ζi ∈ D. (4.1)

This will hold, for example, if the condition

n
∑

i=1

‖Ti‖ ≤ 1 (4.2)

holds. We wish to derive bounds on ‖psym(T )‖. We start with the following lemma:

Lemma 4.1. If S ∈ B(H) and ‖S‖ < 1 then

ℜ((I + S)(I − S)−1) ≥ 0.

Proof.

2ℜ((I + S)(I − S)−1)

= (I − S∗)−1(I + S∗) + (I + S)(I − S)−1

= (I − S∗)−1
[

(I + S∗)(I − S) + (I − S∗)(I + S)
]

(I − S)−1

= 2(I − S∗)−1[I − S∗S](I − S)−1

≥ 0.

If p(z) =
∑

cαz
α, define

Γp(z) =
∑

cα
α!

|α|!z
α (4.3)

(as usual, α! means α1! · · ·αn!). We let Λ denote the inverse of Γ:

Λ
∑

dαz
α =

∑

dα
|α|!
α!

zα.

Proposition 4.2. Let T = (T1, T2, . . . , Tn) ∈ B(H)
n
satisfy (4.1) and p(z) be a

polynomial in n variables. Then

‖psym(T )‖ ≤ ‖Γp‖
D
n . (4.4)
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Proof. We first restrict to the case

ζ = (ζ1, ζ2, . . . , ζn) ∈ T
n ⇒ ‖ζ · T ‖ =

∥

∥

∥

∥

∥

∥

n
∑

j=1

ζjTj

∥

∥

∥

∥

∥

∥

< 1

and hence by Lemma 4.1 the operator

(I + ζ · T )(I − ζ · T )−1 = (I + ζ · T )
∞
∑

j=0

(ζ · T )j = I + 2

∞
∑

j=1

(ζ · T )j

has positive real part

K(ζ, T ) = ℜ
(

(I + ζ · T )(I − ζ · T )−1
)

= I +

∞
∑

j=1

(ζ · T )j +
∞
∑

j=1

(ζ̄ · T ∗)j

= 2ℜ
[

∞
∑

α1,...,αn=0

|α|!
α!

ζα(zα)sym(T )

]

− I.

We can compute that for polynomials p(z) = p(z1, z2, . . . , zn),

psym(T ) =

∫

Tn

Γp(ζ)K(ζ̄ , T ) dσ(ζ)

with dσ indicating normalised Haar measure on the torus Tn (and ζ̄ = (ζ̄1, ζ̄2, . . . , ζ̄n)).

As

K(ζ̄, T ) dσ(ζ)

is a positive operator valued measure on T
n, we then have a positive unital linear map

C(Tn) → B(H) given by f 7→
∫

Tn f(ζ)K(ζ̄ , T ) dσ(ζ). As this map is then of norm 1,

we can conclude

‖psym(T )‖ ≤ ‖Γp‖
D
n .

For the remaining case supζ∈Tn ‖ζ · T ‖ = 1, we have

‖psym(T )‖ = lim
r→1−

‖psym(rT )‖ ≤ ‖Γp‖
D
n .

Remark 4.3. The technique of the above proof is derived from methods of [7].

Now we want to estimate ‖Γp‖
D
N .
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Proposition 4.4. For each n ≥ 2 there is a constant Mn so that

‖Γp‖
D
n ≤ Mn ‖p‖Dn .

Moreover,

M2 ≤ 4.07

M3 ≤ 16.6

Proof. Define

J(η) =

∞
∑

α1=0,...,αn=0

α!

|α|!η
α. (4.5)

Then

Γp(z) =

∫

Tn

p(ζ)[J(z1ζ̄1, . . . , znζ̄n)]dσ(ζ). (4.6)

To use (4.6), we break J into two parts — the sum J0 where the minimum of the αi

is 0, and the remaining terms J1.

J1(η) =

∞
∑

α1=1,...,αn=1

α!

|α|!η
α.

Case: n = 2. Here,
∫

T2

p(ζ)J0(z1ζ̄1, z2ζ̄2)dσ(ζ) = p(z1, 0) + p(0, z2)− p(0, 0). (4.7)

So the norm of the left-hand side of (4.7) is dominated by 3‖p‖
D
2 .

For J1, we will use the estimate
∣

∣

∣

∣

∫

T2

p(ζ)J1(z1ζ̄1, z2ζ̄2)dσ(ζ)

∣

∣

∣

∣

≤ ‖p‖∞‖J1‖L1 ≤ ‖p‖∞‖J1‖L2.

We have

‖J1‖2L2 =
∞
∑

α1,α2=1

(

α1!α2!

(α1 + α2)!

)2

=
∞
∑

α1=1

1

(α1 + 1)2
+

∞
∑

α2=2

1

(α2 + 1)2
+

∞
∑

α1,α2=2

(

α1!α2!

(α1 + α2)!

)2

≤
(

π2

3
− 9

4

)

+

∞
∑

k=4

(k − 3)

(

2

k(k − 1)

)2

≤ (1.069)2.
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(In the penultimate line, we let k = α1+α2; there are k− 3 terms with this sum, and

the largest they can be is when either α1 or α2 is 2.) Adding the two estimates, we

get M2 ≤ 4.07.

Case: n = 3. Again, we estimate the contributions of J0 and J1 separately. We

have
∫

p(ζ)J0(z1ζ̄1, z2ζ̄2, z3ζ̄3)dσ(ζ)

= Γp(0, z2, z3) + [Γp(z1, 0, z3)− p(0, 0, z3)]

+ [Γp(z1, z2, 0)− p(z1, 0, 0)− p(0, z2, 0) + p(0, 0, 0)]

where we have had to subtract some terms to avoid double-counting. Thus the con-

tribution of J0 is at most 3M2 + 4.

To calculate the contribution of J1, we make the following estimate on ‖J1‖L2 ,

which is valid for all n ≥ 3:

We want to bound

∞
∑

α1=1,...,αn=1

(

α!

|α|!

)2

(4.8)

Let k = |α| in (4.8). Note first that the number of terms for each k is the number of

ways of writing k as a sum of n distinct positive integers (order matters), and this is

exactly
(

k−1
n−1

)

. Moreover, as each αi is at least 1, we have

α!

|α|! ≤ 1

k(k − 1) · · · (k − n+ 2)
.

Therefore (4.8) is bounded by

∞
∑

k=n

(

k − 1

n− 1

)(

1

k(k − 1) · · · (k − n+ 2)

)2

=

∞
∑

k=n

k − n+ 1

(n− 1)!k

1

k(k − 1) · · · (k − n+ 2)
.

The terms on the right-hand side of (4.9) decay like 1/kn−1, so the series converges

for all n ≥ 3. When n = 3, the series is

∞
∑

k=3

k − 2

2k2(k − 1)
≤ (0.381)2.

Therefore M3 ≤ 3M2 + 4.381 < 16.59.
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We now proceed by induction on n. The contribution from J0 is dominated by

applying Γ to the restriction of p to the slices with one or more coordinates equal to

0, and these are bounded by the inductive hypothesis. The contribution from J1 is

bounded by (4.8).

We have proved that the polydisk is an M -spectral set for T ; we can make the

constant one by enlarging the domain.

Proposition 4.5. There is a constant Rn so that

‖Γp‖
D
n ≤ ‖p‖RnD

n . (4.9)

Moreover,

R2 ≤ 1.85

R3 ≤ 2.6

Proof. Let L(η) = 2ℜJ(η) − 1. Adding terms that are not conjugate analytic

powers of ζ inside the bracket in (4.6) will not change the value of the integral, so,

writing zζ̄ for the n-tuple (z1ζ̄1, . . . , znζ̄n), we get

Γp(z) =

∫

Tn

p(ζ)[L(zζ̄)]dσ(ζ). (4.10)

As L is real and has integral 1, if we can choose rn so that if |zi| ≤ rn for each i then

L(zζ̄) is non-negative for all ζ, then its L1 norm would equal its integral, and so we

would get from (4.10) that

|Γp(z)| ≤ ‖p‖
D
n .

Letting Rn = 1/rn gives (4.9). As the series (4.5) converges absolutely for all η ∈ Dn,

and L(0) = 1, the existence of some rn now follows by continuity.

Let us turn now to obtaining quantitative estimates.

Case: n = 2. Adding terms to J that are not analytic will not affect the integral

(4.10), so let us consider

L′(η) = ℜ
[

1 + η1
1− η1

]

· ℜ
[

1 + η2
1− η2

]

−
∞
∑

α1=1,α2=1

(1− α!

|α|! )(η
α1

1 − η̄α1

1 )(ηα2

2 − η̄α2

2 ).

Then L′ has integral 1 and (4.10) is unchanged if L is replaced by L′. So we wish to

find the largest r so that L′ is positive on rD2.

It can be checked numerically that r = 0.5406 works, so the best R2 is smaller

than the reciprocal of 0.5406, which is less than 1.85.
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Case: n = 3. As in the case n = 2, we consider the kernel

L′(η) = ℜ
[

1 + η1
1− η1

]

· ℜ
[

1 + η2
1− η2

]

· ℜ
[

1 + η3
1− η3

]

−
∞
∑

α1=1,α2=1,α3=0

(1 − α!

|α|! )(η
α1

1 − η̄α1

1 )(ηα2

2 − η̄α2

2 )(ηα3

3 + η̄α3

3 ).

(Note that there is a plus in the last factor to keep L′ real.) Again, a computer search

can find r so that L′ is positive on rD3, and r = .39 works, so R3 < 2.6.

Combining Propositions 4.2, 4.4 and 4.5, we get the main result of this section.

Theorem 4.6. There are positive constants Mn and Rn such that whenever

T = (T1, T2, . . . , Tn) ∈ B(H)
n
satisfies (4.1) and p(z) is a polynomial in n variables,

then

‖psym(T )‖ ≤ ‖p‖RnD
n (4.11)

‖psym(T )‖ ≤ Mn‖p‖Dn . (4.12)

Moreover, one can choose R2 = 1.85, R3 = 2.6, M2 = 4.1 and M3 = 16.6.

Remark 4.7. Another way to estimate ‖psym(T )‖, under the assumption (4.2),

would be to crash through with absolute values. Let ∆n = {z ∈ Cn :
∑n

j=1 |zj| ≤ 1}
and let rn denote the Bohr radius of ∆n, i.e. the largest r such that whenever

p(z) =
∑

cαz
α has modulus less than or equal to one on ∆n, then q(z) =

∑ |cα|zα
has modulus bounded by one on r∆n. One then has the estimate that, under the

hypothesis (4.2), and writing Cn = 1/rn,

‖psym(T )‖ ≤ ‖q‖∆n
≤ ‖p‖Cn ∆n

. (4.13)

It was shown by L. Aizenberg [1, Thm. 9] that

1

3e1/3
< rn ≤ 1

3
.

So the estimate in (4.11) for pairs satisfying (4.2) does not follow from (4.13).

5. n-tuples of contractions. In an attempt to use the above technique for

tuples T ∈ B(H)n such that max1≤j≤n ‖Tj‖ ≤ 1, we consider restricting ζ to belong

to ∆n, and we replace σ by some probability measure µ supported on ∆n.

Suppose we can find some function q such that

Λµ(q)(z) :=

∫

∆n

q(ζ)ℜ1 + ζ̄ · z
1 − ζ̄ · z dµ(ζ) (5.1)
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equals p(z). We do not actually need q to be a polynomial; having an absolutely

convergent power series on ∆n (in ζ and ζ̄) is enough.

Lemma 5.1. With notation as above, assume Λµ(q) = p and that T ∈ B(H)n is

an n-tuple of contractions. Then

‖(p)sym(T )‖ ≤ ‖q‖suppt(µ) ≤ sup{|q(z)| : z ∈ ∆n}.

Proof. We assume first that max1≤j≤n ‖Tj‖ < 1 and use the notation K(ζ, T )

from the proof of Proposition 4.2 (which is permissible as ‖ζ · T ‖ < 1 for ζ ∈ ∆n).

We have

(Λµq)sym(T ) =

∫

∆n

q(ζ)K(ζ̄ , T ) dσ(ζ)

and hence the inequality ‖(p)sym(T )‖ ≤ ‖q‖suppt(µ) follows as in the previous proof.

If max1≤j≤n ‖Tj‖ = 1, we deduce the result from ‖(p)sym(rT )‖ ≤ ‖q‖∆n
for

0 < r < 1.

Remark 5.2. For an arbitrary measure µ, there might be no q such that Λµ(q) =

p. If µ is chosen to be circularly symmetric, though, one gets

Λµ(z
α) =

[ |α|!
α1! . . . αn!

∫

|ζα|2dµ(ζ)
]

zα. (5.2)

As long as none of the moments on the right of (5.2) vanish, inverting Λµ is now

straightforward.

To make use of the lemma to bound psym(T ) we need to find a way to choose

another polynomial q and a µ on ∆n so that p = Λµq and ‖q‖∆n
is small. We do not

know a good way to do this.

Question 1. What is the smallest constant Rn such that, for every n-tuple T of

contractions and every polynomial p, one has

‖psym(T )‖ ≤ ‖p‖RnD
n? (5.3)

We do not know if one can choose Rn smaller than the reciprocal of the Bohr radius

of the polydisk, even when n = 2.

Question 2. Is there a constant Mn such that, for every n-tuple T of contrac-

tions and every polynomial p, one has

‖psym(T )‖ ≤ Mn ‖p‖Dn? (5.4)
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