THE q-NUMERICAL RANGE OF 3×3 TRIDIAGONAL MATRICES*

MAO-TING CHIEN ${ }^{\dagger}$ AND HIROSHI NAKAZATO ${ }^{\ddagger}$

Abstract

For $0 \leq q \leq 1$, we examine the q-numerical ranges of 3×3 tridiagonal matrices $A(b)$ that interpolate between the circular range $W_{0}(A(b))$ and the elliptical range $W_{1}(A(b))$ as q varies from 0 to 1 . We show that for $q \leq(1-b)^{2} /\left(2\left(1+b^{2}\right)\right), W_{q}(A(b))$ is a circular disc centered at the origin with radius $\left(1+b^{2}\right)^{1 / 2}$, but $W_{4 / 5}(A(2))$ is not even an elliptical disc.

Key words. Tridiagonal matrix, Davis-Wielandt shell, q-numerical range.

AMS subject classifications. 15A60.

1. Introduction. For a bounded linear operator T on a complex Hilbert space H, the q-numerical range $W_{q}(T)$ of T for $0 \leq q \leq 1$ is defined as

$$
W_{q}(T)=\{\langle T \xi, \eta\rangle: \xi, \eta \in H,\|\xi\|=\|\eta\|=1,\langle\xi, \eta\rangle=q\} .
$$

In the paper [5], the authors of this paper give a bounded normal operator T on an infinite dimensional separable Hilbert space H defined by

$$
T=\left(U+U^{*}\right) / 2+i \alpha\left(U-U^{*}\right) /(2 i),
$$

where U is a unitary operator on a Hilbert space H with $\sigma(U)=\{z \in \mathbf{C}:|z|=1\}$, and $0<\alpha<1$, and show that

$$
\operatorname{closure}\left(W_{q}(T)\right)=\left\{x+i y:(x, y) \in \mathbf{R}^{2}, x^{2}+\frac{y^{2}}{1+\alpha^{2} q^{2}-q^{2}} \leq 1\right\}
$$

is an elliptical disc which interpolates between the circular range $W_{0}(T)$ and the elliptical range $W(T):=W_{1}(T)$ as q varies from 0 to 1 .

Various conditions for a bounded operator T are known which assure that the closure of the numerical range $W(T)$ is an elliptical disc (cf. [2],[3],[7]). It seems naturally to ask whether the conditions for elliptical range of $W(T)$ guarantee that $W_{q}(T)$ is also elliptical for $0<q<1$. If T is an $n \times n$ upper triangular nilpotent matrix

[^0]associated with a tree graph, then the range $W_{q}(T)$ is circular for every $0 \leq q \leq 1$. Thus the question has a positive answer for such a special class of matrices. A special quadratic 3×3 matrix
\[

A(\gamma, a+i b)=\left($$
\begin{array}{ccc}
0 & 1+\gamma & 0 \\
1-\gamma & 0 & 0 \\
0 & 0 & a+i b
\end{array}
$$\right)
\]

is another affirmative example (cf.[6]). It is shown [6] that if $\gamma>0, a, b \in \mathbf{R}$, and $a^{2}+(b / \gamma)^{2} \leq 1$ then

$$
W_{q}(A(\gamma, a+i b))=\left\{x+i y: \frac{x^{2}}{\left(1+\gamma\left(1-q^{2}\right)^{1 / 2}\right)^{2}}+\frac{y^{2}}{\left(\gamma+\left(1-q^{2}\right)^{1 / 2}\right)^{2}} \leq 1\right\}
$$

The main purpose of this note is to deal with the behavior of the q-numerical ranges of some 3×3 tridiagonal matrices A that interpolate between the circular range $W_{0}(A)$ and elliptical range $W_{1}(A)$ for $0 \leq q \leq 1$. We also give an example of a real 3×3 tridiagonal matrix which has a non-elliptical q-numerical range.
2. 3×3 tridiagonal matrices. The shapes of the classical numerical ranges of 3×3 matrices are tested and determined in [8],[10]. For tridiagonal matrices, it is proved in [1, Theorem 4] that if A is a nonnegative tridiagonal 3×3 matrix with 0 main diagonal:

$$
A=\left(\begin{array}{ccc}
0 & a_{12} & 0 \\
a_{21} & 0 & a_{23} \\
0 & a_{32} & 0
\end{array}\right)
$$

then the numerical range $W(A)$ is an elliptical disc centered at 0 , the major axis on the real line. We show that the q-numerical range of this tridiagonal matrix is in general not an elliptical disc. Consider tridiagonal matrices of Toeplitz type

$$
\left(\begin{array}{ccc}
0 & b & 0 \\
a & 0 & b \\
0 & a & 0
\end{array}\right), a \neq b
$$

We may assume that $a=1$ and $b \geq 0, b \neq 1$

$$
A=A(b)=\left(\begin{array}{lll}
0 & b & 0 \tag{1}\\
1 & 0 & b \\
0 & 1 & 0
\end{array}\right)
$$

First we compute the equation of the boundary of the Davis-Wielandt shell of A :

$$
W\left(A, A^{*} A\right)=\left\{\left(\xi^{*} A \xi, \xi^{*} A^{*} A \xi\right) \in \mathbf{C} \times \mathbf{R}: \xi \in \mathbf{C}^{3}, \xi^{*} \xi=1\right\}
$$

We consider the form

$$
F(t, x, y, z)=\operatorname{det}\left(t I_{3}+x \Re(A)+y \Im(A)+z A^{*} A\right),
$$

and find that

$$
\begin{align*}
& 4 F(1, x, y, z)=4-2 x^{2}-4 b x^{2}-2 b^{2} x^{2}-2 y^{2}+4 b y^{2}-2 b^{2} y^{2}+8 z \\
& \quad+8 b^{2} z-x^{2} z+2 b^{2} x^{2} z-b^{4} x^{2} z-y^{2} z+2 b^{2} y^{2} z-b^{4} y^{2} z \\
& \quad+4 z^{2}+8 b^{2} z^{2}+4 b^{4} z^{2} \tag{2}
\end{align*}
$$

The surface $F(t, x, y, z)=0$ in $\mathbf{C P}{ }^{3}$ has an ordinary double singular point at

$$
(t, x, y, z)=\left(1,0,0,-1 /\left(1+b^{2}\right)\right)
$$

Corresponding to this singular point, the boundary of the Davis-Wielandt shell $W\left(A, A^{*} A\right)$ has a flat portion on the horizontal plane

$$
\begin{equation*}
Z=1+b^{2} \tag{3}
\end{equation*}
$$

The intersection of the shell $W\left(A, A^{*} A\right)$ and the horizontal plane (3) is the elliptical disc bounded by the ellipse

$$
\begin{align*}
& 1-4 b^{2}+6 b^{4}-4 b^{6}+b^{8}-4 X^{2}+16 b X^{2}-28 b^{2} X^{2} \\
& \quad+32 b^{3} X^{2}-28 b^{4} X^{2}+16 b^{5} X^{2}-4 b^{6} X^{2}-4 Y^{2}-16 b Y^{2} \\
& \quad-28 b^{2} Y^{2}-32 b^{3} Y^{2}-28 b^{4} Y^{2}-16 b^{5} Y^{2}-4 b^{6} Y^{2}=0 \tag{4}
\end{align*}
$$

The Davis-Wielandt shell $W\left(A, A^{*} A\right)$ also provides information for $W_{q}(A)$. We define the height function

$$
\begin{equation*}
h(x+i y)=\max \left\{w \in \mathbf{R}:(x+i y, w) \in W\left(A, A^{*} A\right)\right\} \tag{5}
\end{equation*}
$$

Then Tsing's circular union formula [11] is written as

$$
\begin{equation*}
W_{q}(A)=\left\{q z+\sqrt{1-q^{2}} w \Psi(z): z \in W(A), w \in \mathbf{C},|w| \leq 1\right\} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(z)=\sqrt{h(z)-|z|^{2}} \tag{7}
\end{equation*}
$$

The formula (6) leads to the convexity of the range $W_{q}(A)$.

Theorem 2.1 Let $A=A(b), b \geq 0$, be the matrix defined by (1).
(i) If $q \leq(1-b)^{2} /\left(2\left(1+b^{2}\right)\right)$ then $W_{q}(A)$ is the circular disc $x^{2}+y^{2} \leq 1+b^{2}$.
(ii) If $(1-b)^{2} /\left(2\left(1+b^{2}\right)\right)<q<(1+b)^{2} /\left(2\left(1+b^{2}\right)\right)$ then the boundary of $W_{q}(A)$ contains circular arcs on the circle $x^{2}+y^{2}=1+b^{2}$.

Proof. We prove (i) first. By (3), the function (7) restricted to the elliptical disc bounded by (4) becomes

$$
\Psi(z)=\sqrt{1+b^{2}-|z|^{2}}
$$

Consider a point $z=x+i y \in W(A)$ for which

$$
q z+r \sqrt{1-|q|^{2}} \Psi(z) \in \partial W_{q}(A)
$$

for some $r \in \mathrm{C},|r|=1$. Moreover, if $\Psi(z)$ is continuously differentiable on a neighborhood of the point $x+i y$, then by [4, Theorem 2] the point $x+i y$ satisfies the equation

$$
\begin{equation*}
\Psi_{x}(x+i y)^{2}+\Psi_{y}(x+i y)^{2}=q^{2} /\left(1-q^{2}\right) \tag{8}
\end{equation*}
$$

We compute that

$$
\begin{equation*}
\Psi_{x}(x+i y)^{2}+\Psi_{y}(x+i y)^{2}=\left(x^{2}+y^{2}\right) /\left(1+b^{2}-x^{2}-y^{2}\right) \tag{9}
\end{equation*}
$$

From (8) and (9), we obtain

$$
\begin{equation*}
\left(x^{2}+y^{2}\right) /\left(1+b^{2}-x^{2}-y^{2}\right)=q^{2} /\left(1-q^{2}\right) . \tag{10}
\end{equation*}
$$

Substitute $R=x^{2}+y^{2}$ in (10). Then we have the relation

$$
R=q^{2}+b^{2} q^{2} .
$$

Consider $X=0$ in the ellipse (4), then the semi-minor of the ellipse is $(1-b)^{2} /(2(1+$ $\left.b^{2}\right)^{1 / 2}$). Suppose

$$
\begin{equation*}
R^{1 / 2}=\left(q^{2}+b^{2} q^{2}\right)^{1 / 2} \leq(1-b)^{2} /\left(2\left(1+b^{2}\right)^{1 / 2}\right) \tag{11}
\end{equation*}
$$

Then the circle $x^{2}+y^{2}=q^{2}+b^{2} q^{2}$ is contains in the elliptical disc bounded by (4). The inequality (11) is rewritten as

$$
q \leq(1-b)^{2} /\left(2\left(1+b^{2}\right)\right)
$$

Again, by [4, Theorem 2],

$$
\begin{aligned}
& \left\{z \in W(A): q z+r \sqrt{1-q^{2}} \Psi(z) \in \partial W_{q}(A(b)) \text { for some } r \in \mathbf{C},|r|=1\right\} \\
& \subset\left\{x+i y \in W(A)^{\circ}:\left(x^{2}+y^{2}\right) /\left(1+b^{2}-x^{2}-y^{2}\right)=q^{2} /\left(1-q^{2}\right)\right\}
\end{aligned}
$$

the boundary of $W_{q}(A)$ in (6) is expressed as

$$
q \sqrt{1+b^{2}} q e^{i \theta}+\sqrt{1-q^{2}} e^{i \phi} \sqrt{1+b^{2}-\left(1+b^{2}\right) q^{2}}
$$

which is a circle centered at the origin with radius $\left(1+b^{2}\right)^{1 / 2}$. This proves (i).
A similar argument of the proof of (i) is applicable to prove $(i i)$. We consider $Y=0$ in the ellipse (4), then the semi-major of the ellipse is $(1+b)^{2} /\left(2 \sqrt{1+b^{2}}\right)$. Suppose

$$
R^{1 / 2}=\left(q^{2}+b^{2} q^{2}\right)^{1 / 2}<(1+b)^{2} /\left(2 \sqrt{1+b^{2}}\right)
$$

i.e., $q<(1+b)^{2} / 2\left(1+b^{2}\right)$. Then the intersection of the elliptical disc

$$
\left\{x+i y:(x, y) \in \mathbf{R}^{2}, \frac{x^{2}}{(1+b)^{4} /\left(4\left(1+b^{2}\right)\right)}+\frac{y^{2}}{(1-b)^{4} /\left(4\left(1+b^{2}\right)\right)} \leq 1\right\}
$$

and the set

$$
\begin{aligned}
& \left\{z \in W(A): q z+r \sqrt{1-q^{2}} \Psi(z) \in \partial W_{q}(A(b)) \text { for some } r \in \mathbf{C},|r|=1\right\} \\
& \subset\left\{x+i y \in W(A)^{\circ}:\left(x^{2}+y^{2}\right) /\left(1+b^{2}-x^{2}-y^{2}\right)=q^{2} /\left(1-q^{2}\right)\right\}
\end{aligned}
$$

containing two arcs. Corresponding to these two arcs, the boundary of $W_{q}(A)$ in (6) contains arcs on the circle $x^{2}+y^{2}=1+b^{2}$.

Although for $(1-b)^{2} /\left(2\left(1+b^{2}\right)\right)<q<(1+b)^{2} / 2\left(1+b^{2}\right)$, the boundary of $W_{q}(A)$ contains two arcs on the circle $x^{2}+y^{2}=1+b^{2}$, but $W_{q}(A)$ may not equal to the associated circular disc. Indeed, it may not even be an elliptical disc. We treat the case $b=2$ in the matrix (1). Then $(1-b)^{2} /\left(2\left(1+b^{2}\right)\right)=1 / 10$ and $(1+b)^{2} / 2\left(1+b^{2}\right)=9 / 10$. In the following, we show that $W_{4 / 5}(A(2))$ is not an elliptical disc. At first, we have the boundary equation of the Davis-Wielandt shell of $A(2)$.

Theorem 2.2 Let $A=A(2)$ be the matrix defined by (1) with $b=2$. Then every boundary point (X, Y, Z) of $W\left(A, A^{*} A\right)$ lies on the surface $G(X, Y, Z)=0$ of degree 10 or its multi-tangent $Z=5$ satisfying the inequality $20 X^{2}+1620 Y^{2} \leq 81$.

Proof. Let $G(X, Y, Z)=0$ be the dual surface of $F(t, x, y, z)=0$ (2). By [4], the boundary generating surface of the shell $W\left(A, A^{*} A\right)$ can be obtained by the following steps:

The dual surface $G(X, Y, Z)=0$ consists of the points (X, Y, Z) such that the plane $X x+Y y+Z z+1=0$ is a tangent of the surface $F(1, x, y, z)=0$ at some
non-singular point of this surface. Consider the polynomial

$$
f(x, y: X, Y, Z)=Z^{2} F\left(1, x, y,-\frac{1}{Z}-\frac{X x}{Z}-\frac{Y y}{Z}\right)
$$

and eliminate the variables x and y from the equations

$$
f(x, y: X, Y, Z)=0, \quad \frac{\partial f}{\partial y}(x, y: X, Y, Z)=0, \quad \frac{\partial f}{\partial x}(x, y: X, Y, Z)=0
$$

Successive eliminations of x and y provide a performable method to this process. The polynomial $G(X, Y, Z)$ is obtained as a simple factor of the successive discriminants.

Partial terms of the polynomial $G(X, Y, Z)$ computed by the proof of Theorem 2.2 are given by

$$
\begin{aligned}
& G(X, Y, Z)=\left(18432 X^{2}+165888 Y^{2}\right) Z^{8}-\left(359424 X^{2}+2571264 Y^{2}\right) Z^{7} \\
& \quad+\left(-121856 X^{4}-474624 X^{2} Y^{2}+6925824 Y^{4}+2750976 X^{2}\right. \\
& \left.\quad+14805504 Y^{2}\right) Z^{6}+\text { lower degree terms in } Z \\
& \quad+\left(2000 X^{10}+490000 X^{8} Y^{2}+40340000 X^{6} Y^{4}+1142100000 X^{4} Y^{6}\right. \\
& +2165130000 X^{2} Y^{8}+1062882000 Y^{10}-1295975 X^{8} \\
& +256936100 X^{6} Y^{2}+1698904150 X^{4} Y^{4}+2621816100 X^{2} Y^{6} \\
& +1181144025 Y^{8}+209935800 X^{6}+528751800 X^{4} Y^{2}+427696200 X^{2} Y^{4} \\
& \left.+108880200 Y^{6}+2624400 X^{4}+5248800 X^{2} Y^{2}+2624400 Y^{4}\right)
\end{aligned}
$$

The algebraic surface $G(X, Y, Z)=0$ contains the three lines

$$
\{(0,0, Z): Z \in \mathbf{C}\},\{(X, 0,(18-X) / 4): X \in \mathbf{C}\},\{(X, 0,(18+X) / 4): X \in \mathbf{C}\}
$$

on the plane $Y=0$. These lines do not lie on the boundary of the shell $W\left(A, A^{*} A\right)$. The equation $G(X, Y, Z)=0$ gives the implicit expression of the hight function $Z=$ $h(X+i Y)$ (5). The Davis-Wielandt shell $W\left(A, A^{*} A\right)$ is symmetric with respect to the real axis $Y=0$ and the imaginary axis $X=0$:

$$
G(X,-Y, Z)=G(X, Y, Z), \quad G(-X, Y, Z)=G(X, Y, Z)
$$

By this property and the formula (6), the q-numerical range $W_{q}(A), 0<q<1$, is also symmetric with respect to the real and imaginary axes. For $\theta \in \mathbf{R}$, we define

$$
M_{\theta}(q)=\max \left\{\Re(z \exp (-i \theta)): z \in W_{q}(A)\right\}
$$

By the symmetry property, we have that

$$
M_{-\theta}(q)=M_{\theta}(q), \quad M_{\pi-\theta}(q)=M_{\theta}(q)
$$

We denote $M_{x}=M_{0}, M_{y}=M_{\pi / 2}, M_{v}=M_{\pi / 4}$. By equation (6), we obtain

$$
\begin{align*}
M_{\theta}(q)= & \max \left\{q x+\sqrt{1-q^{2}} \Phi_{\theta}(x):\right. \\
& \left.\min _{z \in W(A)} \Re(z \exp (-i \theta)) \leq x \leq \max _{z \in W(A)} \Re(z \exp (-i \theta))\right\}, \tag{12}
\end{align*}
$$

where

$$
\Phi_{\theta}(x)=\max \left\{\sqrt{h(z)-|z|^{2}}: z \in W(A), \Re(z \exp (-i \theta))=x\right\}
$$

If $z=X+i Y$ lies on the elliptical disc

$$
\begin{equation*}
20 X^{2}+1620 Y^{2} \leq 81 \tag{13}
\end{equation*}
$$

then the function $\Psi(z)$ is given by

$$
\Psi(z)=\sqrt{5-X^{2}-Y^{2}}
$$

If $z \in W(A)$ does not belong to the disc (13), then $\Psi(z)$ satisfies

$$
G\left(\Re(z), \Im(z),|z|^{2}+\Psi(z)^{2}\right)=0 .
$$

Suppose $\Im(z)=0$. If $X=\Re(z) \in W(A)$ with $|X|>9 \sqrt{5} / 10(X \in W(A)$ implies $|X| \leq 3 \sqrt{2} / 2)$, then $W=\Phi_{0}(X)$ satisfies

$$
\begin{aligned}
& 72 W^{8}+\left(288 X^{2}-108\right) W^{6}+\left(432 X^{4}-791 X^{2}+54\right) W^{4} \\
& \quad+\left(288 X^{6}-1258 X^{4}-802 X^{2}-9\right) W^{2} \\
& +\left(72 X^{8}-575 X^{6}+1144 X^{4}+16 X^{2}\right)=0
\end{aligned}
$$

Suppose $\Re(z)=0$. If $Y=\Im(z) \in W(A)$ with $|Y|>\sqrt{5} / 10(i Y \in W(A)$ implies $|Y| \leq \sqrt{2} / 2)$, then $W=\Phi_{\pi / 2}(Y)$ satisfies

$$
\begin{align*}
& 8 W^{8}+\left(32 Y^{2}-108\right) W^{6}+\left(48 Y^{4}-71 Y^{2}+486\right) W^{4}+\left(32 Y^{6}+182 Y^{4}\right. \\
& \left.-738 Y^{2}-729\right) W^{2}+\left(8 Y^{8}+145 Y^{6}+776 Y^{4}+1296 Y^{2}\right)=0 \tag{14}
\end{align*}
$$

If $|x| \leq 9 \sqrt{205} / 410$, then the function $W=\Phi_{\pi / 4}(x)$ is given by

$$
\Phi_{\pi / 4}(x)=\sqrt{5-x^{2}} .
$$

We have $\Phi_{\pi / 4}(9 \sqrt{205} / 410)=\sqrt{4019 / 820}$. To express $W=\Phi_{\pi / 4}(x)$ for $9 \sqrt{205} / 410 \leq|x| \leq \sqrt{10} / 2$, we introduce

$$
L(x, v, W)=G\left(\frac{x-v}{\sqrt{2}}, \frac{x+v}{\sqrt{2}}, W^{2}+x^{2}+y^{2}\right)
$$

The implicit expression of $W=\Phi_{\pi / 4}(x)$ is obtained by the elimination of v from the equations

$$
L(x, v, W)=0, \quad \frac{\partial L}{\partial v}(x, v, W)=0 .
$$

It is given by

$$
\begin{aligned}
T(x, W)= & 173946175488000000 W^{28}+\left(2727476031651840000 x^{2}\right. \\
& -3168477904896000000) W^{26}+\left(20313573530429030400 x^{4}\right. \\
& \left.-39881741313245184000 x^{2}+23822488882380800000\right) W^{24} \\
& + \text { lower degree terms in } W \\
& +\left(2918332558536081408 x^{28}+3039929748475084800 x^{26}\right. \\
& -104417065668305747968 x^{24}+136940874704617472000 x^{22} \\
& +532245897669408456704 x^{20}-927952166837110702080 x^{18} \\
& -6417794816224421478 x^{16}+227595031635537428480 x^{14} \\
& -2031191223465228107776 x^{12}+3773060375254054993920 x^{10} \\
& -1201269688073344516096 x^{8}+2485062193220818042880 x^{6} \\
& \left.+126162291333389090816 x^{4}+1449961395553566720 x^{2}\right) .
\end{aligned}
$$

By using these equations, we prove the following theorem.

Theorem 2.3 Let $A(2)$ be the 3×3 tridiagonal matrix (1) with $b=2$. Then

$$
\begin{gathered}
M_{x}=\max \left\{\Re(z): z \in W_{4 / 5}(A)\right\}=\sqrt{5} \\
M_{y}=\max \left\{\Im(z): z \in W_{4 / 5}(A)\right\}=\frac{27 \sqrt{6}}{40}
\end{gathered}
$$

and the quantity

$$
M_{v}=\max \left\{(\Re(z)+\Im(z)) / \sqrt{2}: z \in W_{4 / 5}(A)\right\}
$$

is the greatest real root of the equation

$$
\begin{equation*}
R(v)=33280000000 v^{6}-257344640000 v^{4}+547018156000 v^{2}-194025305907=0 \tag{15}
\end{equation*}
$$

and satisfying the inequality

$$
\begin{equation*}
M_{v}^{2}>3.91>\frac{M_{x}^{2}+M_{y}^{2}}{2}=\frac{6187}{1600} \tag{16}
\end{equation*}
$$

and hence the boundary of the convex set $W_{4 / 5}(A)$ is not an ellipse.

Proof. Suppose that the inequality (16) is proved. If the boundary of $W_{4 / 5}(A)$ is an ellipse, by the symmetry of $W_{4 / 5}(A)$ with respect to the real and imaginary axes, the ellipse is given by

$$
W_{4 / 5}(A)=\left\{x+i y:(x, y) \in \mathbf{R}^{2}, \frac{x^{2}}{M_{x}^{2}}+\frac{y^{2}}{M_{y}^{2}} \leq 1\right\}
$$

and its support $a x+b y+1=0$ satisfies the equation

$$
M_{x}^{2} a^{2}+M_{y}^{2} b^{2}=1
$$

We may rewrite a support line

$$
x \cos \theta+y \sin \theta-M_{\theta}=0
$$

as

$$
-\frac{\cos \theta}{M_{\theta}} x-\frac{\sin \theta}{M_{\theta}} y+1=0 .
$$

Then, we have the equation

$$
M_{x}^{2} \frac{\cos ^{2} \theta}{M_{\theta}^{2}}+M_{y}^{2} \frac{\sin ^{2} \theta}{M_{\theta}^{2}}=1
$$

and hence

$$
\begin{equation*}
M_{\theta}^{2}=M_{x}^{2} \cos ^{2} \theta+M_{y}^{2} \sin ^{2} \theta \tag{17}
\end{equation*}
$$

As a special case $\theta=\pi / 4$, we have

$$
M_{v}^{2}=\frac{M_{x}^{2}+M_{y}^{2}}{2}
$$

Thus the inequality (16) implies that the boundary is not an ellipse.
Secondly, we determine the quantities M_{x}, M_{y}. By the equation (12), the quantities $M_{x}=M_{0}(4 / 5), M_{y}=M_{\pi / 2}(4 / 5), M_{v}=M_{\pi / 4}(4 / 5)$ are respectively the maximum of the function

$$
q x+\sqrt{1-q^{2}} \Phi_{\theta}(x)=\frac{4}{5} x+\frac{3}{5} \Phi_{\theta}(x) .
$$

for $\theta=0, \pi / 2, \pi / 4$. Each maximal point x_{θ} satisfies

$$
\Phi_{\theta}^{\prime}\left(x_{\theta}\right)=-\frac{q}{\sqrt{1-q^{2}}}=-\frac{4}{3}
$$

for $\theta=0, \pi / 2, \pi / 4$. For $\theta=0, x_{\theta}$ is given by

$$
x_{\theta}=x_{0}=\frac{4 \sqrt{5}}{5}<\frac{9 \sqrt{5}}{10}
$$

for which

$$
M_{x}=\frac{4 x_{0}}{5}+\frac{3}{5} \sqrt{5-x_{0}^{2}}=\sqrt{5}
$$

For $\theta=\pi / 2, x_{\theta}$ is given by

$$
x_{\theta}=x_{\pi / 2}=\frac{9 \sqrt{6}}{40} \in\left[\frac{\sqrt{5}}{10}, \frac{\sqrt{2}}{2}\right]
$$

at which the function

$$
\frac{4}{5} x+\frac{3}{5} \Phi_{\pi / 2}(x)
$$

attains the maximum $M_{y}=27 \sqrt{6} / 40$, where $\Phi_{\pi / 2}(Y)$ is given by (14).
Thirdly, an implicit expression (15) of M_{v} can be obtained by the elimination of x from the equation

$$
\tilde{T}(x, \tilde{W})=\tilde{T}\left(x, \frac{4}{5} x+\frac{3}{5} W\right)=T(x, W)=0, \frac{\partial}{\partial x} \tilde{T}(x, \tilde{W})=0
$$

and M_{v} is the greatest real root of the polynomial $R(v)$. Finding a numerical solution of the equation $R(v)=0$, we obtain the inequality (16).

The boundary points $x+i y$ of $W_{4 / 5}(A)$ are classified into the two classes. One class consists of points satisfying

$$
x+i y=\frac{4}{5}(u+i v)+w \sqrt{5-u^{2}-v^{2}}
$$

for some point $u+i v$ on the elliptical disc (13), and some $|w|=1$. This class of points lies on the circle $x^{2}+y^{2}=5$. Another class corresponds to points $u+i v$ satisfying $G\left(u, v, u^{2}+v^{2}+\Psi(u+i v)^{2}\right)=0$, and lies on an algebraic curve $S(x, y)=0$, where $S(x, y)$ is a polynomial in x and y of degree 16 which is decomposed as the product of a polynomial $S_{1}(x, y)$ of degree 6 and a polynomial $S_{2}(x, y)$ of degree 10 . We perform the computation of $S(x, y)$. The curve $S_{1}(x, y)=0$ is displayed in Figure 1. At the right-end corner of Figure 1, there is an intersection of two curves which is displayed in Figure 2. The convexity is connected by an arc of the circle $x^{2}+y^{2}=5$ as shown in Figure 3. The curve $S_{2}(x, y)=0$ is display in Figure 4, and the final boundary generating curve of $W_{4 / 5}(A)$ is displayed in Figure 5.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

We have determined $W_{q}(A(b))$ in Theorem 2.1 for $q<(1+b)^{2} / 2\left(1+b^{2}\right)$, and demonstrated in Theorem 2.3 that $W_{q}(A(2))$ is not an elliptical disc if $q=4 / 5$. A similar method can be applied to show that for $q=12 / 13>(1+b)^{2} /\left.2\left(1+b^{2}\right)\right|_{b=2}$, $W_{12 / 13}(A(2))$ is also not an elliptical disc. Indeed, the boundary of $W_{12 / 13}(A(2))$ lies on a polynomial curve of degree 16 .
3. The functions Φ_{θ}. By a duality theorem in [9], the function Ψ on $W(A)$ is reflected to the elliptical range property of the family of $\left\{W_{q}(A): 0 \leq q \leq 1\right\}$. Can we find another criterion for the elliptical range of $\left\{W_{q}(A): 0 \leq q \leq 1\right\}$? The following example suggests that the functions Φ_{θ} can not play the role.

We consider an example:

$$
B=\left(\begin{array}{cc}
0 & 8 / 5 \\
2 / 5 & 0
\end{array}\right)
$$

The set $W_{q}(B)$ is an elliptical disc for $0 \leq q \leq 1$. The function $\Phi_{0}(x)$ on $[-1,1]$ is given by

$$
\Phi_{0}(x)=\frac{3+5 \sqrt{1-x^{2}}}{5}
$$

and the function $\Phi_{\pi / 2}(x)$ on $[-3 / 5,3 / 5]$ is given by

$$
\Phi_{\pi / 2}(x)=\frac{5+\sqrt{9-25 x^{2}}}{5}
$$

Moreover, the function $W=\Phi_{\pi / 4}(x)$ on $[-\sqrt{17} / 5, \sqrt{17} / 5]$ has an implicit expression

$$
\begin{align*}
T(x, W)= & 112890625 W^{8}+\left(325781250 x^{2}-341062500\right) W^{6} \\
& +\left(412890625 x^{4}-374000000 x^{2}+141280000\right) W^{4} \\
& +\left(300000000 x^{6}-340000000 x^{4}+51200000 x^{2}-20889600\right) W^{2} \\
& +\left(100000000 x^{8}-20480000 x^{4}+1048576\right)=0 \tag{18}
\end{align*}
$$

For every $0<q<1$, the respective maxima $M_{0}(q), M_{\pi / 2}(q), M_{\pi / 4}(q)$ of the function

$$
q x+\sqrt{1-q^{2}} \Phi_{\theta}(x)
$$

for $\theta=0, \pi / 2, \pi / 4$ satisfy

$$
M_{\pi / 4}(q)^{2}=\frac{M_{0}(q)^{2}+M_{\pi / 2}(q)^{2}}{2}
$$

for all q. For instance, the respective maxima

$$
M_{0}\left(\frac{12}{13}\right)=\frac{16}{13}, M_{\pi / 2}\left(\frac{12}{13}\right)=\frac{64}{65}
$$

are attained at $x=12 / 13=1 \times 12 / 13$ and $x=36 / 65=3 / 5 \times 12 / 13$. By (17), we have

$$
M_{\pi / 4}\left(\frac{12}{13}\right)=\left(\left(M_{0}\left(\frac{12}{13}\right)+M_{\pi / 2}\left(\frac{12}{13}\right)\right) / 2\right)^{1 / 2}=\frac{8 \sqrt{82}}{65} .
$$

Since $\Phi_{\pi / 4}(x)$ satisfies (18)

$$
T\left(x, \Phi_{\pi / 4}(x)\right)=0
$$

The maximal point x_{0} of the function $\Phi_{\pi / 4}(x)$ is located at $\Phi_{\pi / 4}^{\prime}\left(x_{0}\right)=0$. We compute

$$
\Phi_{\pi / 4}^{\prime}(x)=-\frac{\partial_{x} T(x, w)}{\partial_{w}(x, w)}
$$

for $w=\Phi_{\pi / 4}(x)$, and obtain that $x_{0}=222 \sqrt{82} / 2665$ which is different from $\sqrt{17} / 5 \times$ $12 / 13$. The maximum M_{θ} of the functions Φ_{θ} satisfies property (17):

$$
M_{\theta}^{2}=M_{x}^{2} \cos ^{2} \theta+M_{y}^{2} \sin ^{2} \theta
$$

but this property is not reflected to a simple relation among the functions $\Phi_{0}, \Phi_{\pi / 2}$ and Φ_{θ} for $0<\theta<\pi / 2$.

REFERENCES

[1] M. T. Chien. On the numerical range of tridiagonal operators. Linear Algebra and its Applications, 246:203-214, 1996.
[2] M. T. Chien. The envelope of the generalized numerical range. Linear and Multilinear Algebra, 43:363-376, 1998.
[3] M. T. Chien and B. S. Tam. Circularity of the numerical range. Linear Algebra and its Applications, 201:113-133, 1994.
[4] M. T. Chien and H. Nakazato. Davis-Wielandt shell and q-numerical range. Linear Algebra and its Applications, 340:15-31, 2002.
[5] M. T. Chien and H. Nakazato. The q-numerical ranges of normal operators. Linear and Multilinear Algebra, 53:393-416, 2005.
[6] M. T. Chien and H. Nakazato. The q-numerical range of a reducible matrix via a normal operator. Linear Algebra and its Applications, 419:440-465, 2006.
[7] H. L. Gau. Elliptic numerical ranges of 4×4 matrices. Taiwanese Journal of Mathematics, 10:117-128, 2006.
[8] D. S. Keeler, L. Rodman, and I. M. Spitkovsky. The numerical range of 3×3 matrices. Linear Algebra and its Applications, 252:115-139, 1997.
[9] C. K. Li and H. Nakazato. Some results on the q-numerical range. Linear and Multilinear Algebra, 43:385-409, 1998.
[10] L. Rodman and I.M. Spitkovsky. 3×3 matrices with a flat portion on the boundary of the numerical range. Linear Algebra and its Applications, 397:193-207, 2005.
[11] N. K. Tsing. The constrained bilinear form and C-numerical range. Linear Algebra and its Applications, 56:195-206, 1984.

[^0]: *Received by the editors July 8, 2009. Accepted for publication July 16, 2010. Handling Editor: Bit-Shun Tam.
 ${ }^{\dagger}$ Corresponding author. Department of Mathematics, Soochow University, Taipei, 11102, Taiwan (mtchien@scu.edu.tw). Supported in part by Taiwan National Science Council.
 \ddagger Department of Mathematical Sciences, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan (nakahr@cc.hirosaki-u.ac.jp).

