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1. Introduction. A matrix A ∈ R
n×m is called totally nonpositive (totally ne-

gative) if all its minors are nonpositive (negative) and abbreviated as t.n.p. (t.n.). For

square t.n. matrices, spectral properties and LDU factorization are analyzed in [9],

and a characterization in terms of the parameters of the Neville elimination is obtained

in [12]. For nonsingular t.n.p. matrices, an LDU factorization and some properties

are presented in [3]. In addition, characterizations by minors for rectangular t.n.p.

and t.n. matrices are obtained in [5] taking into account their full rank factorization

in echelon form.

The t.n.p. (t.n.) matrices can be considered an extension of the partially nonpos-

itive matrices, p.n.p. (partially negative matrices, p.n.), that is, matrices such that

all its principals minors are nonpositive (negative). A p.n. matrix is called N -matrix

in economic models [2]. Also, the p.n. matrices arise in conjunction with Lemke’s

algorithm for solving linear and convex quadratic programming problems [16, 17].

On the other hand, the totally positive matrices, TP (strictly totally positive

matrices, STP), that is, matrices such that all its minors are nonnegative (positive)

have a wide variety of applications in approximation theory, numerical mathematics,

statistics, economics and others fields. Note that TP and STP matrices have been

studied extensively [1, 2, 6, 7, 8, 10, 11, 12, 13, 15], but there exist few papers on t.n.p.

and t.n. matrices [3, 5, 9]. A relation between the TP and t.n.p. matrices is given
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242 R. Cantó, B. Ricarte, and A.M. Urbano

by the following result: “the product of two t.n.p. matrices is a TP matrix”. But the

question: “Can any n×n TP matrix be written as the product of two t.n. matrices?”

is an open problem, which can be found in the initial paper for t.n. matrices [9].

To solve this open problem, we study and characterize the t.n. matrices. We

extend the well-known results on TP matrices for t.n. and t.n.p. matrices. Hence,

the main goal of this paper is to derive characterizations of rectangular t.n.p. (t.n.)

matrices by minors and in terms of their thin QR factorization.

2. Notation and definitions. Following the notation of [1], given k, n ∈ N,

1 ≤ k ≤ n, the subcollection of all such sequences that consist of consecutive integers is

denoted by Qk,n. When the natural numbers are consecutive the sequence is denoted

by Q0
k,n. If A ∈ R

n×m, α ∈ Qk,n and β ∈ Qk,m with k = 1, 2, . . . ,min{n,m}, A[α|β]

denotes the k × k submatrix of A lying in rows α and columns β. The principal

submatrix A[γ|γ] is abbreviated as A[γ], where γ ∈ Qk,min{n,m}. Therefore, A ∈

R
n×m is t.n.p. (t.n.) if detA[α|β] ≤ 0 (< 0), for all α ∈ Qk,n and β ∈ Qk,m with

k = 1, 2 . . . ,min{n,m}.

We recall that a matrix is an upper echelon matrix if it satisfies the following

conditions:

1. The first nonzero entry in each row is called leading entry for that nonzero

row.

2. Each leading entry is to the right of all first leading entry in the row above

it.

3. All zero rows are at the bottom.

If, in addition, the matrix satisfies the following condition is called upper reduced

echelon matrix

4. Each leading entry is the only nonzero entry in its column.

A matrix is a lower (reduced) echelon matrix if its transpose is an upper (reduced)

echelon matrix. Moreover, if each leading entry is equal to 1, we add the adjective

unit to these definitions.

Given a matrix A ∈ R
n×m with rank(A) = r, a decomposition A = FG is called

full rank factorization of A if F ∈ R
n×r, G ∈ R

r×m and rank(F ) = rank(G) = r. It

is known that the full rank factorization of any nonzero matrix is not unique but if

the matrix G is a unit upper reduced echelon matrix then this factorization is unique

[4].

Recall that a characterization for square TP and STP matrices by their QR

factorization is obtained in [11]. For the rectangular case, these characterizations are
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extended in [6] by using their thin QR factorization.

From now on, we suppose that A = (aij) has not zero rows and zero columns. In

addition, as it can be proved applying [3, Proposition 3.2] and [5, Theorem 9], if A

is a t.n.p. matrix with a11 < 0 then aij < 0 for i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

except for anm ≤ 0.

3. Characterization of rectangular t.n.p. matrices by minors. The main

goal of this section is to obtain characterizations of rectangular t.n.p. matrices which

reduce the number of minors to be checked to deduce if a matrix is t.n.p.

Proposition 3.1. Let A = (aij) ∈ R
n×r be a matrix with rank(A) = r, anr ≤ 0

and the remaining entries less than zero. Consider the nonsingular matrix A1 ∈ R
r×r

formed by the first r linearly independent rows of A. Then, A is t.n.p. if and only if

for each k = 1, 2, . . . , r, the following inequalities hold

detA[α|1, 2, . . . , k] ≤ 0, for all α ∈ Qk,n(3.1)

detA1[1, 2, . . . , k|β] ≤ 0, for all β ∈ Qk,r(3.2)

detA1[1, 2, . . . , k] < 0.(3.3)

Proof. If A is t.n.p. the inequality (3.1) holds. Moreover, since A1 is a nonsingular

t.n.p. matrix, (3.2) and (3.3) follow by [3].

Conversely, by (3.1) for all α ∈ Qk,r the following inequality holds

detA1[α|1, 2, . . . , k] ≤ 0.(3.4)

Then, by (3.2), (3.3), (3.4) and [3, Theorem 4.1] we have that A1 is a nonsingular

t.n.p. matrix. As a consequence A1 admits a factorization A1 = LA1
DA1

UA1
, where

LA1
∈ R

r×r is a unit lower triangular TP matrix,DA1
= diag(−d1, d2, . . . , dr) ∈ R

r×r,

with di > 0, i = 1, 2, . . . , r, and UA1
∈ R

r×r is a unit upper triangular TP matrix.

Since A = FA1, where F ∈ R
n×r is a unit lower reduced echelon matrix we have

that

A = FA1 = F (LA1
DA1

UA1
) = (FLA1

)DA1
UA1

= LDU,

where D = DA1
, U = UA1

and L = FLA1
is a unit lower echelon matrix such that

detA[α|1, 2, . . . , k] = −

k
∏

i=1

di detL[α|1, 2, . . . , k] ≤ 0 =⇒ L[α|1, 2, . . . , k] ≥ 0.

Hence L is TP by [6, Proposition 2] and we have that A is a t.n.p. matrix by [5].
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The following proposition allows us to give a characterization by minors of rec-

tangular t.n.p. matrices without full rank.

Proposition 3.2. Let A = (aij) ∈ R
n×m be a matrix with rank(A) = r, anm ≤ 0

and the remaining entries less than zero. Consider the matrices A1 ∈ R
r×m, A2 ∈

R
n×r, F ∈ R

n×r in unit lower reduced echelon form and C ∈ R
r×m in unit upper

reduced echelon form, such that A = FA1 = A2C. Then, A is t.n.p. if and only if A1

and A2 are t.n.p.

Proof. Suppose that A is t.n.p. Since F and C are matrices in lower and upper

echelon form, respectively, we have that A1 and A2 are the submatrices of A formed

by its first r linearly independent rows or columns, respectively. Then, they are t.n.p.

matrices.

Conversely, since A1 is t.n.p. with full row rank by [5, Theorem 9], A1 = L1D1U1

is the unique full rank factorization in unit echelon form, where L1 ∈ R
r×r is a unit

lower triangular TP matrix, D1 = diag(−d11 d12 . . . d1r) ∈ R
r×r with d1i > 0

for i = 1, 2, . . . , r, U1 ∈ R
r×m is a unit upper echelon TP matrix and rank(L1) =

rank(U1) = r. Then, A admits the following full rank factorization in unit echelon

form

A = FA1 = F (L1D1U1) = (FL1)D1U1.

Analogously, A2 is a t.n.p. matrix with full column rank which admits the unique

full rank factorization in unit echelon form A2 = L2D2U2 where L2 ∈ R
n×r is a unit

lower echelon TP matrix, D2 = diag(−d21 d22 . . . d2r) ∈ R
r×r with d2i > 0 for

i = 1, 2, . . . , r, U2 ∈ R
r×r is a unit upper triangular TP matrix and rank(L2) =

rank(U2) = r. In this case, A admits the full rank factorization in unit echelon form

A = A2C = (L2D2U2)C = L2D2(U2C).

Since the full rank factorization in unit echelon form is unique [4], we have that

A = (FL1)D1U1 = L2D2(U2C).

Then FL1 = L2, which implies that FL1 is a unit lower echelon TP matrix. Therefore,

by [5, Theorem 9] A is t.n.p. matrix.

Corollary 3.3. Let A = (aij) ∈ R
n×m be a matrix with rank(A) = r, anm ≤ 0

and the remaining entries less than zero. Suppose that A = FĀC, with F ∈ R
n×r

unit lower reduced echelon matrix, Ā ∈ R
r×r nonsingular matrix and C ∈ R

r×m unit

upper reduced echelon matrix. Then, A is t.n.p. if and only if ĀC and FĀ are t.n.p.

Proof. Consider the matrices A1 = ĀC and A2 = FĀ. Then A = FA1 with

F ∈ R
n×r unit lower reduced echelon matrix and A = A2C with C ∈ R

r×m unit

upper reduced echelon matrix. By Proposition 3.2 the result holds.
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The Propositions 3.1 and 3.2 will be used to prove the following characterization

by minors of rectangular t.n.p. matrices.

Proposition 3.4. Let A = (aij) ∈ R
n×m be a matrix with rank(A) = r, anm ≤ 0

and the remaining entries less than zero. Suppose that A1 ∈ R
r×m is the submatrix

of A formed by its first r linearly independent rows, A2 ∈ R
n×r is the submatrix of A

formed by the first r linearly independent columns and Ā ∈ R
r×r is the nonsingular

submatrix of A formed by its first r linearly independent rows and columns. Then, A

is t.n.p. if and only if for each k = 1, 2, . . . , r, the following inequalities hold

detA2[α|1, 2, . . . , k] ≤ 0 ∀α ∈ Qk,n,(3.5)

detA1[1, 2, . . . , k|β] ≤ 0 ∀β ∈ Qk,m,(3.6)

det Ā[1, 2, . . . , k] < 0.(3.7)

Proof. Suppose that A is t.n.p. Since A1 and A2 are submatrices of A, the ine-

qualities (3.5) and (3.6) hold. Moreover, note that Ā is the nonsingular submatrix

of A2 (A1) formed by the first r linearly independent rows (columns), then Ā is a

nonsingular t.n.p. matrix and by [3, Theorem 4.1] the inequality (3.7) holds.

Conversely, applying Proposition 3.1 to A2 ∈ R
n×r we know that A2 is t.n.p. if

and only if for each k = 1, 2, . . . , r the following inequalities hold

detA2[α|1, 2, . . . , k] ≤ 0 ∀α ∈ Qk,n,(3.8)

det Ā[1, 2, . . . , k|β] ≤ 0 ∀β ∈ Qk,r,(3.9)

det Ā[1, 2, . . . , k] < 0.(3.10)

Now, applying Proposition 3.1 to AT
1 ∈ R

m×r we know that A1 is t.n.p. if and only

if for each k = 1, 2, . . . , r the following inequalities hold

detA1[1, 2, . . . , k|β] ≤ 0 ∀β ∈ Qk,m,(3.11)

det Ā[α|1, 2, . . . , k] ≤ 0 ∀α ∈ Qk,r,(3.12)

det Ā[1, 2, . . . , k] < 0.(3.13)

Since the inequalities (3.8) and (3.11) implies the inequalities (3.12) and (3.9) respec-

tively, we can assure that A1 and A2 are t.n.p. matrices. Then, A is a t.n.p. matrix

by Proposition 3.2.

4. A characterization of rectangular t.n.p. matrices by their thin QR

factorization. In [11] the authors introduce the concepts of lowerly TP and γ-matrix

for nonsingular TP matrices, which allow to characterize this class of matrices by their

QR factorizations. The extension of these concepts and characterization for rectangu-

lar TP matrices are given in [6]. In this section we give an equivalent characterization
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for rectangular t.n.p. matrices by using the concepts of lowerly t.n.p. matrix and quasi

γ-matrix. From now on we denote by I(−1) the diagonal matrix diag(−1, 1, . . . , 1).

Definition 4.1. Consider A ∈ R
n×r with rank(A) = r. Then, A is lowerly t.n.p.

if and only if it can be decomposed in the form A = LDU , where L ∈ R
n×r is a unit

lower echelon matrix, D = diag(−d1, d2, . . . , dr) is a nonsingular matrix, U ∈ R
r×r is

a unit upper triangular matrix and LDI(−1) is a TP matrix.

Note that if LDI(−1) is a TP matrix then, L and DI(−1) = diag(d1, d2, . . . , dr)

are TP matrices. The following proposition presents the characterization of lowerly

t.n.p. matrices.

Proposition 4.2. Let A ∈ R
n×r be a matrix with rank(A) = r. Consider the

nonsingular matrix A1 ∈ R
r×r formed by the first r linearly independent rows of

A. Then, A is lowerly t.n.p. if and only if for each k = 1, 2, . . . , r, the following

inequalities hold

detA[α|1, 2, . . . , k] ≤ 0, for all α ∈ Qk,n(4.1)

detA1[1, 2, . . . , k] < 0.(4.2)

Proof. If A is lowerly t.n.p. it can be factorized as A = LDU , where L ∈ R
n×r is

a unit lower echelon matrix, D = diag(−d1, d2, . . . , dr) with di > 0 for i = 1, 2, . . . , r,

U ∈ R
r×r is a unit upper triangular matrix and LDI(−1) is a TP matrix. Then

detA[α|1, 2, . . . , k] = −

(

k
∏

i=1

di

)

detL[α|1, 2, . . . , k] ≤ 0.

Now, suppose that s1, s2, . . . , sr are the indices of the first r linearly independent rows

of A. Since A = LDU the submatrix A1 can be obtained as follow

A1 = L[s1, s2, . . . , sr|1, 2, . . . , r]DU

and obviously the inequality (4.2) holds.

Conversely, since A1 is the nonsingular submatrix of A formed by the first r

linearly independent rows, by (4.2) we know that A admits the factorization A =

LDU , where L ∈ R
n×r is a unit lower echelon matrix, D = diag(−d1, d2, . . . , dr) with

di > 0 for i = 1, 2, . . . , r, and U ∈ R
r×r is unit upper triangular matrix. Then, by

(4.1) we have

detA[α|1, 2, . . . , k] = −

(

k
∏

i=1

di

)

detL[α|1, 2, . . . , k] ≤ 0,
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which implies that

detL[α|1, 2, . . . , k] ≥ 0

for all α ∈ Qk,n, k = 1, 2, . . . , r. Then, L is TP by [6, Proposition 1]. As a consequence

LDI(−1) is a TP matrix because DI(−1) is also TP. Therefore, A is lowerly t.n.p.

Definition 4.3. A matrix A ∈ R
n×r with rank(A) = r is said to be a quasi

γ-matrix if it is lowerly t.n.p. and in the factorization A = LDU , (DUI(−1))
−1 is

TP.

Example 4.4. The rectangular matrix

A =









−1 −5 0

−1 1 −2

−2 2 1

−3 3 −1









is a quasi γ-matrix since,

A =









1 0 0

1 1 0

2 2 1

3 3 1













−1 0 0

0 6 0

0 0 5









1 5 0

0 1 −1/3

0 0 1



 = LDU

with

LDI(−1) =









1 0 0

1 6 0

2 12 5

3 18 5









and
(

DUI(−1)

)−1
=





1 5/6 1/3

0 1/6 1/15

0 0 1/5





lower and upper triangular TP matrices, respectively.

Remark 4.5. If A ∈ R
n×2 with rank(A) = 2 is a t.n.p. matrix then it is easy to

prove that A is a quasi γ-matrix. The converse is not true in general, as we can see

with the following matrix, which is a quasi γ-matrix but not a t.n.p. matrix,

A =





−2 −2

−1 3

−2 6



 =





1 0

1/2 1

1 2





[

−2 0

0 4

] [

1 1

0 1

]

.

From the quasi γ-matrices we give a characterization of rectangular t.n.p. matrices

by their thin QR factorization.
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248 R. Cantó, B. Ricarte, and A.M. Urbano

Theorem 4.6. Let A = (aij) ∈ R
n×r be a matrix with rank(A) = r, anr ≤ 0

and the remaining entries less than zero. Then, A is t.n.p if and only if there exists a

quasi γ-matrix Q1 ∈ R
n×r with orthonormal columns, an orthogonal quasi γ-matrix

Q2 ∈ R
r×r, a nonsingular upper triangular TP matrix R1 ∈ R

r×r and an upper

echelon TP matrix R2 ∈ R
r×n such that A = Q1R1 and AT = Q2R2.

Proof. Suppose that A is t.n.p. with full column rank. By [14] A admits a unique

thin QR factorization A = Q1R1, where Q1 ∈ R
n×r has orthonormal columns and R1

is nonsingular upper triangular. Since ATA is a TP matrix such that ATA = RT
1 R1,

where R1 is its upper triangular Cholesky factor, by [6] R1 is a nonsingular upper

triangular TP matrix. If we denote by r1i > 0, i = 1, 2, . . . , r, the main diagonal

entries of R1, we have that

detA[α|1, 2, . . . , k] =

k
∏

i=1

r1i detQ1[α|1, 2, . . . , k] ≤ 0.

Then, detQ1[α|1, 2, . . . , k] ≤ 0.

Moreover, since A is t.n.p., it admits the full rank factorization in unit echelon

form A = LADAUA, where LA ∈ R
n×r is a unit lower echelon TP matrix, DA =

diag(−d1, d2, . . . , dr) with di > 0 for i = 1, 2, . . . , r, and UA ∈ R
r×r is a unit upper

triangular TP matrix. If we represent by DR1
= diag(r11 , r12 , . . . , r1r ), it follows that

A = Q1R1 = LADAUA =⇒ Q1 = LADAUAR
−1
1

= LA

(

DAD
−1
R1

) (

DR1
UAR

−1
1

)

= LQ1
DQ1

UQ1
,

where LQ1
= LA ∈ R

n×r is a unit lower echelon TP matrix, DQ1
= DAD

−1
R1

=

diag(−dq1 , dq2 , . . . , dqr ), with dqi = di/r1i > 0 for i = 1, 2, . . . , r, and UQ1
=

DR1
UAR

−1
1 ∈ R

r×r is a unit upper triangular matrix.

Since LQ1
and DQ1

I(−1) are TP, their product is also TP, which implies that Q1

is lowerly t.n.p.

On the other hand,

QT
1 = UT

Q1
DQ1

LT
Q1

=⇒
(

UT
Q1

DQ1

)−1
QT

1 = LT
Q1

=⇒
(

UT
Q1

DQ1

)−1
= LT

Q1
Q1

=⇒
(

UT
Q1

DQ1

)−1
I(−1) = LT

Q1
Q1I(−1).

Hence by the Binet-Cauchy identity [1],

det
(

UT
Q1

DQ1

)−1
I(−1)[α|1, 2, . . . , k] = det

(

LT
Q1

Q1I(−1)

)

[α|1, 2, . . . , k] =

= −
∑

∀γ∈Qk,r

det
(

LT
Q1

)

[α|γ] detQ1[γ|1, 2, . . . , k] ≥ 0
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Therefore by [1, Corollary 2.2], the matrix

(

UT
Q1

DQ1

)−1
I(−1) = D−T

Q1
U−T
Q1

I−T
(−1) =

(

I−1
(−1)U

−1
Q1

D−1
Q1

)T

is lower triangular TP. Consequently,
(

DQ1
UQ1

I(−1)

)−1
is an upper triangular TP

matrix, which implies that Q1 is a quasi γ-matrix.

Since AT ∈ R
r×n is also a t.n.p. matrix, as in the previous case

AT = Q2R2,

where Q2 ∈ R
r×r is an orthogonal quasi γ-matrix and R2 ∈ R

r×n is an upper echelon

TP matrix.

Conversely, since Q1 is a lowerly t.n.p. matrix, by Proposition 4.2 for all k =

1, 2, . . . , r, the following inequalities hold

detQ1[α|1, 2, . . . , k] ≤ 0, for all α ∈ Qk,n(4.3)

detQ11 [1, 2, . . . , k] < 0.(4.4)

where the columns of Q11 are the first r linearly independent rows of Q1. Then, from

(4.3) we have that

detA[α|1, 2, . . . , k] ≤ 0, for all α ∈ Qk,n, k = 1, 2, . . . , r.

On the other hand, since the submatrix of A formed by its first r linearly independent

rows can be obtained as A1 = Q11R1, it follows by (4.4) that

detA1[1, 2, . . . , k] < 0, k = 1, 2, . . . , r,

We also have that AT
1 = Q2R̃2, where R̃2 is the upper triangular submatrix of R2

formed by its first r linearly independent columns. Moreover, since Q2 is a lowerly

t.n.p. matrix

detAT
1 [β|1, 2, . . . , k] =

(

k
∏

i=1

r̃2i

)

detQ2[β|1, 2, . . . , k] ≤ 0,

where r̃2i , with i = 1, 2, . . . , r, are main diagonal of R̃2. Therefore,

detA1[1, 2, . . . , k|β] ≤ 0, for all α ∈ Qk,n, k = 1, 2, . . . , r.

Finally, A is a t.n.p. matrix by Proposition 3.1.

Next theorem gives an extension of Theorem 4.6 to rectangular matrices without

full column rank.
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Theorem 4.7. Let A = (aij) ∈ R
n×m be a matrix with rank(A) = r, anm ≤ 0

and the remaining entries less than zero. Then, A is t.n.p. if and only if there exist

two quasi γ-matrices Q1 ∈ R
n×r and Q2 ∈ R

m×r, both with orthonormal columns and

two upper echelon TP matrices R1 ∈ R
r×m and R2 ∈ R

r×n, such that A = Q1R1 and

AT = Q2R2.

Proof. Suppose that A is t.n.p. Since rank(A) = r, then A = ÃC1, where

Ã ∈ R
n×r is a t.n.p. matrix formed by the first r linearly independent columns of A

and C1 ∈ R
r×m is a unit upper reduced matrix. Applying Theorem 4.6 to Ã we have

that

Ã = Q̃1R̃1,

where Q̃1 ∈ R
n×r is a quasi γ-matrix with orthonormal columns and R̃1 ∈ R

r×r is a

nonsingular upper triangular TP matrix. In consequence,

A = ÃC1 = Q̃1R̃1C1 = Q̃1

(

R̃1C1

)

= Q1R1,

where Q1 = Q̃1 ∈ R
n×r is a quasi γ-matrix with orthonormal columns and R1 =

R̃1C1 ∈ R
r×m is an upper echelon matrix. Since RT

1 = ATQ1,

detRT
1 [α|1, 2, . . . , k] =

∑

∀γ∈Qk,r

detAT [α|γ] detQ1[γ|1, 2, . . . , k] ≥ 0

and RT
1 is a lower echelon TP matrix by [6, Proposition 1]. Therefore R1 is an upper

echelon TP matrix.

Analogously, since AT ∈ R
m×n is a t.n.p. matrix with rank(AT ) = r,

AT = ÃTC2,

where ÃT ∈ R
m×r is a t.n.p. matrix formed by the first r linearly independent

columns of AT and C2 ∈ R
r×n is a unit upper reduced matrix. Reasoning in the

same way we obtain that AT = Q2R2, where Q2 ∈ R
m×r is a quasi γ-matrix with

orthonormal columns and R2 ∈ R
r×n is an upper echelon TP matrix.

Conversely, suppose that A = Q1R1. Since Q1 ∈ R
n×r is a quasi γ-matrix with

rank(Q1) = r, it admits the full rank factorization

Q1 = LQ1
DQ1

UQ1
,

where LQ1
∈ R

n×r is a unit lower echelon matrix, DQ1
= diag(−dq11 , dq12 , . . . , dq1r )

with dq1i > 0 for i = 1, 2, . . . , r, UQ1
∈ R

r×r is a unit upper triangular matrix, such

that rank(LQ1
) = rank(UQ1

) = r and LQ1
DQ1

I(−1) ia a TP matrix (with LQ1
also a

TP matrix). Then,

A = (LQ1
DQ1

UQ1
)R1 = (LQ1

DQ1
) (UQ1

R1)

= (LQ1
DQ1

) (D1U1) = LQ1
(DQ1

D1)U1 = LADAUA
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is a full rank factorization of A, with LA = LQ1
∈ R

n×r a unit lower echelon TP

matrix, DA = DQ1
D1 = diag(−d11 , d12 , . . . , d1r ) with d1i > 0 for i = 1, 2, . . . , r,

UA = U1 ∈ R
r×m unit upper echelon matrix and rank(LA) = rank(UA) = r.

Analogously, AT = Q2R2 where Q2 ∈ R
m×r is a γ-matrix with rank(Q2) = r.

Then, Q2 admits the following full rank factorization

Q2 = LQ2
DQ2

UQ2
,

where LQ2
∈ R

m×r is a unit lower echelon matrix, DQ2
= diag(−dq21 , dq22 , . . . , dq2r )

with dq2i > 0 for i = 1, 2, . . . , r, UQ2
∈ R

r×r is a unit upper triangular matrix, such

that rank(LQ2
) = rank(UQ2

) = r, and LQ1
DQ1

I(−1) is a TP matrix (with LQ2
also a

TP matrix). As a consequence,

AT = (LQ2
DQ2

UQ2
)R2 = (LQ2

DQ2
) (UQ2

R2)

= (LQ2
DQ2

) (D2U2) = LQ2
(DQ2

D2)U2 = LATDATUAT

with LAT = LQ2
∈ R

m×r unit lower echelon TP matrix, UAT = U2 ∈ R
r×n unit

upper echelon matrix with rank(LAT ) = rank(UAT ) = r and DAT = DQ2
D2 =

diag(−d21 , d22 , . . . , d2r ) with d2i > 0, for i = 1, 2, . . . , r.

Therefore,

A = LADAUA = (LATDATUAT ) = UT
ATDATLT

AT ,

where UA = LT
AT ∈ R

r×m is a unit upper echelon TP matrix because the full rank

factorization in echelon form of any matrix is unique [4]. Finally, A is a t.n.p. matrix

by [5, Theorem 8].

5. A characterization of rectangular t.n. matrices by their thin QR fac-

torization. In this section we characterize the rectangular t.n. matrices by their thin

QR factorization. In [6, Theorem 6] the authors give the following characterization

of rectangular t.n. matrices

Theorem 5.1. Consider A = (aij) ∈ R
n×m with anm < 0 and n ≤ m. A is t.n.

if and only if for each k = 1, 2, . . . , n, the following inequalities hold

detA[α|{1, 2, . . . , k}] < 0, for all α ∈ Q0
k,n(5.1)

detA[{1, 2, . . . , k}|β] < 0, for all β ∈ Q0
k,m(5.2)

In analogous way to the previous section we extend to rectangular matrices the

concept of lowerly t.n. matrix and give the characterization of this class of matrices

by minors.
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Definition 5.2. Consider A ∈ R
n×r with rank(A) = r. Then, A is lowerly t.n.

if and only if it can be decomposed in the form A = LDU , where L ∈ R
n×r is a unit

lower echelon matrix, D = diag(−d1, d2, . . . , dr) is a nonsingular matrix, U ∈ R
r×r is

a unit upper triangular matrix and LDI(−1) is a ∆STP matrix.

Note that if LDI(−1) is a ∆STP matrix then, L is a ∆STP matrix and DI(−1) =

diag(d1, d2, . . . , dr) is a TP matrix. The following proposition presents the characte-

rization of lowerly quasi STP matrices.

Proposition 5.3. A matrix A = (aij) ∈ R
n×m with rank(A) = m and anm < 0,

is lowerly t.n. if and only if for each k = 1, 2, . . . ,m the following inequalities hold

detA[α|1, 2, . . . , k] < 0 for all α ∈ Q0
k,n.(5.3)

Proof. If A is lowerly t.n. then A = LDU , with D = diag(−d1, d2, . . . , dm),

di > 0, i = 1, 2, . . . ,m. By [6, Remark 3] we have that

detA[α|1, 2, . . . , k] = det(LDU)[α|1, 2, . . . , k] = det(LD)[α|1, 2, . . . , k]

=

(

−

k
∏

i=1

di

)

detL[α|1, 2, . . . , k] < 0 ∀α ∈ Q0
k,n.

Conversely, from (5.3) we have that A admits a factorization A = LDU with no piv-

oting such that L ∈ R
n×m is a unit lower echelon matrix, D = diag(−d1, d2, . . . , dm)

with di > 0, for i = 1, 2, . . . ,m, and U ∈ R
m×m is a unit upper triangular matrix.

Since for all α ∈ Q0
k,n it is satisfied that

detA[α|1, 2, . . . , k] =

(

−

k
∏

i=1

di

)

detL[α|1, 2, . . . , k] < 0,

then L is ∆STP by [6, Remark 3], therefore LD is also ∆STP and A is lowerly t.n.

Now, the following definition extends to rectangular matrices with full column

rank the concept of quasi strict γ-matrix.

Definition 5.4. A matrix A ∈ R
n×r, with rank(A) = r, is said to be a quasi

strict γ-matrix if it is lowerly t.n. and in the factorization A = LDU , (DUI(−1))
−1

is △STP.

Next result gives a characterization of the t.n. matrices by their thin QR factor-

ization using quasi strict γ-matrices. The proof is similar to Theorem 4.6.

Theorem 5.5. Let A = (aij) ∈ R
n×m be a matrix with rank(A) = m and all

its entries less than zero. Then, A is t.n. if and only if there exist a quasi strict
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γ-matrix Q1 ∈ R
n×m with orthonormal columns and an orthogonal quasi strict γ-

matrix Q2 ∈ R
m×m, a nonsingular upper triangular ∆STP matrix R1 ∈ R

m×m and

an upper echelon ∆STP matrix R2 ∈ R
m×n, such that A = Q1R1 and AT = Q2R2.
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