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PERMANENTS OF HESSENBERG (0, 1)-MATRICES REVISITED∗

BRENT J. DESCHAMP† AND BRYAN L. SHADER‡

Abstract. This paper considers the maximum value of the permanent over the class H(m, n) of

n × n Hessenberg, (0, 1)-matrices with m 1’s, and shows that among those matrices that attain the

maximum value there exists a matrix with a special form. This special form determines the exact

value of the maximum permanent on H(m, n) for certain values of m and n.
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1. Introduction. Let A = [aij ] be an n×n (0, 1)-matrix. The permanent of A,
denoted perA, is defined as:

perA =
∑

π∈Sn

a1π(1)a2π(2) . . . anπ(n), (1.1)

where Sn denotes the set of all permutations of {1, 2, . . . , n}. A transversal of an
n×n (0, 1)-matrix is a collection of n 1’s of A with no two in the same row or column.
The permanent of A can be equivalently defined as the number of transversals of A.
See [4] for classic results concerning the permanent.

An n × n matrix is lower Hessenberg if aij = 0 for j > i + 1. Henceforth, we
abbreviate lower Hessenberg to Hessenberg. The full Hessenberg matrix of order n,
Hn, is the n× n lower Hessenberg (0, 1)-matrix with 1 in position (i, j) for all i and
j with j ≤ i+ 1. Define H(m,n) to be the class of n× n Hessenberg (0, 1)-matrices
with m 1’s, and let P (m,n) denote the maximum value of the permanent on H(m,n).
A matrix in H(m,n) with permanent P (m,n) is called a maximizer of H(m,n).

In [5], the value of P (m,n) is determined for m and n satisfying m ≥ 3(n2+3n−
2)/8 or n ≤ m ≤ 8n/3, and for other m and n it is shown that H(m,n) contains a
maximizer with a special form. This paper significantly refines the special form found
in [5], and determines P (m,n) for many new values of m and n.
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First, some notation and terminology are stated consistent with [5] and [1], which
considers the maximum permanent over the class of arbitrary (0, 1)-matrices with a
specified number of 0’s.

Let M by an m × n matrix. For integers i and j with i ≤ j we let 〈i, j〉 denote
the set {i, i+ 1, . . . , j}. For subsets α of 〈1,m〉 and β of 〈1, n〉, M [α, β] denotes the
submatrix of M whose rows, respectively columns, are indexed by the elements of
α, respectively, of β. The complementary submatrix is denoted by M(α, β). When
m = n we abbreviate M [α, α] to M [α], and M(α, α) to M(α).

The square matrix A is partly decomposable if there exist permutation matrices
P and Q such that PAQ has the form[

B O

C D

]
,

where B and D are square, nonvacuous, matrices. Equivalently, A is partly decom-
posable if and only if it contains a zero submatrix whose dimensions sum to n. If A
is not partly decomposable, then A is fully indecomposable.

If the square (0, 1)-matrix A has a transversal, then there exist permutation
matrices P and Q, and a positive integer b such that PAQ has the form:



A1 O O · · · O

A21 A2 O · · · O
...

. . .
...

Ab−1,1 Ab−1,2 Ab−1 O

Ab1 Ab2 · · · Ab,b−1 Ab


 , (1.2)

where the matrices A1, . . . , Ab are fully indecomposable. The ni × ni matrices Ai are
the fully indecomposable components of A and are unique up to permutation of rows
and columns. Note that perA =

∏b
i=1 perAi.

Let nnzA denote the number of nonzero entries of A. Note that for an n × n

Hessenberg matrix nnzA ≤ (n2 + 3n− 2)/2.

A Hessenberg (0, 1)-matrix A is staircased if whenever i ≥ j and aij = 0, then
akj = 0 for k = i+1, . . . , n and ail = 0 for l = 1, . . . , j−1. Note that if A is staircased
and aij = 0, then akl = 0 for all i ≤ k ≤ n and 1 ≤ l ≤ j.

Let Jn, In, and On denote the n × n matrix of all 1’s, the identity matrix, and
the zero matrix, respectively. Let Eij denote the matrix of size appropriate to the
context with a 1 in the (i, j)-position and 0’s elsewhere.

2. Previous Results. This section states some of the results from [5] that
concern the structure of permanent maximizers in H(m,n). The first result shows
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that each fully indecomposable component of a Hessenberg matrix is permutation-
ally equivalent to a Hessenberg matrix, and the second describes some structural
properties of fully indecomposable and staircased Hessenberg matrices and also gives
formulas for the permanent in terms of minors of Hessenberg (0, 1)-matrices.

Lemma 2.1. If A = [aij ] is an n × n Hessenberg (0, 1)-matrix with perA > 0,
then each fully indecomposable component of A is permutationally equivalent to a
Hessenberg matrix.

Lemma 2.2. The following hold for an n× n Hessenberg (0, 1)-matrix A = [aij ]:

(a) If A is fully indecomposable, then a11 = 1, ann = 1 and ai,i+1 = 1 for
i = 1, 2, . . . , n− 1.

(b) If A is fully indecomposable and staircased, then ai+1,i = 1 for i = 1, 2, . . . , n−
1, and aii = 1 for i = 1, 2, . . . , n.

(c) If each ai,i+1 = 1 for i = 1, 2, . . . , n − 1 and k and l are integers such that
1 ≤ l ≤ k ≤ n, then

perA(k, l) = perA[〈1, l − 1〉]perA[〈k + 1, n〉],

where a vacuous permanent with l = 1 or k = n is set to equal 1.

By Lemma 2.2, for j ≤ i,

perHn(i, j) =




1 if i = n and j = 1
2j−2 if i = n and j ≥ 2
2n−i−1 if n− 1 ≥ i ≥ 1 and j = 1
2n−i+j−3 if n− 1 ≥ i ≥ 1 and j ≥ 2
2n−2 if n− 1 ≥ i ≥ 1 and j = i+ 1

(2.1)

Also, note

perHn = 2n−1. (2.2)

For a Hessenberg (0, 1)-matrix A, an interchangeable column pair of A is a pair
of entries (k, l) and (k − 1, l) with k > l such that akl = 1 and ak−1,l = 0. An
interchangeable row pair of A is a pair of entries (k, l) and (k, l + 1) with k > l such
that akl = 1 and ak,l+1 = 0. Note that a Hessenberg (0, 1)-matrix is staircased if and
only if it has no interchangeable row pairs and no interchangeable column pairs.

An exchange rule for H(m,n) is an operation that takes a matrix A ∈ H(m,n)
with certain properties and rearranges the entries of A to obtain a matrix B ∈ H(m,n)
with perB ≥ perA. The following is an exchange rule, which we call the Bubbling
Exchange Rule, developed and used in [5].
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Lemma 2.3 (The Bubbling Exchange Rule). Let A be an n×n fully indecompos-
able, Hessenberg (0, 1)-matrix that has an interchangeable column pair, and let (k, l)
and (k − 1, l) be the interchangeable column pair of A with l largest. Let B be the
matrix obtained from A by interchanging the 1 in position (k, l) with the 0 in position
(k − 1, l).1 Then perB ≥ perA.

An analogous result holds for interchangeable row pairs. If A has an interchange-
able row pair, and if (k, l), (k, l + 1) is an interchangeable row pair of A with k

smallest, the matrix B obtained from A by switching the 1 in position (k, l) with the
0 in position (k, l + 1) satisfies perB ≥ perA. By the Bubbling Exchange Rule we
mean either that in Lemma 2.3 or its analog for interchangeable row pairs.

Repeated application of Lemma 2.3 yields the following theorem.

Theorem 2.4. Let m and n be positive integers with n ≤ m ≤ n2+3n−2
2 . Then

there exists a matrix A ∈ H(m,n) with permanent P (m,n) such that A has the form
(1.2), where each Ai is a fully indecomposable, staircased Hessenberg matrix.

In developing additional exchange rules, bounds will be needed on the permanent
of submatrices related to the permanent of the original matrix.

Lemma 2.5. If A = [aij ] is a fully indecomposable, staircased Hessenberg (0, 1)-
matrix of order n ≥ 2, then

1
2
perA ≤ perA(1) ≤ 2

3
perA.

Moreover, 1
2perA = perA(1) if and only if the first two columns of A are equal, and

2
3perA = perA(1) if and only if a31 = 0 and columns two and three of A disagree
only in their first entries.

Proof. We first prove the inequalities. For the case n = 2,

A =
[
1 1
1 1

]
.

Clearly,

1
2
perA = 1 = perA(1) ≤ 4

3
=

2
3
perA.

For n > 2, write A as

A =
[

1 1 0 · · · 0
b1 b2 b3 · · · bn

]
,

1That is, B is obtained from A by “bubbling” the 1 in position (k, l) up to position (k − 1, l)
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where each bi is an (n− 1)× 1 vector. Since A is staircased, 0 ≤ b1 ≤ b2 (entrywise).
Thus b1 ≤ b2 and each entry of A is nonnegative, per [b1 b3 · · · bn] ≤ per [b2 b3 · · · bn],
and (by Laplace expansion along the first row of A) we have:

perA = perA(1) + perA(1, 2)
= per [b2 b3 · · · bn] + per [b1 b3 · · · bn]
≤ 2 per [b2 b3 · · · bn]
= 2 perA(1).

(2.3)

Thus 1
2perA ≤ perA(1).

Since A is fully indecomposable and staircased,

perA =
n∑

i=1

perA(〈1, i〉) ≥ perA(1) + perA(〈1, 2〉). (2.4)

Note A(1) has order at least 2 since n > 2, and applying the previously established
inequality to A(1) yields perA(〈1, 2〉) ≥ 1

2perA(1). Thus by (2.4), perA ≥ 3
2perA(1).

We now analyze the cases of equality.

Clearly, if b1 = b2, then by (2.3), perA = 2perA(1).

Next suppose perA = 2perA(1). Then equality holds throughout (2.3). The full
indecomposability of A(1) implies that b1 = b2, since if b1 �= b2, then

per [b1 b3 · · · bn] < per [b2 b3 · · · bn].

Now suppose perA = 3
2perA(1). Then by (2.4) and the fact that perA[〈1, i〉] �= 0,

a31 = a41 = · · · = an1 = 0, and by Laplace expansion of A it follows that perA =
perA(1) + perA(1, 2). Hence 2 perA(1, 2) = perA(1). Therefore, by the previous
argument, the second and third columns of A agree except in the first entry, as
desired.

If a31 = 0 and columns two and three disagree in only their first entries, then
since A is staircased

A =
[
1 1 0 . . . 0
b b2 b3 . . . bn

]

where b is the column vector (1, 0, . . . , 0)T . Now

perA = perA(1) + perA(1, 2)
= perA(1) + 1

2perA(1)
= 3

2perA(1),
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with the second equality coming from the fact that b2 = b3.

Corollary 2.6. If A = [aij ] is a fully indecomposable, staircased Hessenberg
(0, 1)-matrix of order n ≥ 3, then for 1 ≤ s ≤ n− 1,(

1
2

)s

perA ≤ perA[〈s+ 1, n〉] ≤
(
2
3

)s

perA.

Proof. The proof is by induction on n.

Consider the case n = 3, so 1 ≤ s ≤ 2. Since A is staircased, A has the form:

A =


 1 1 0

1 1 1
a 1 1


 .

Note that 3 ≤ perA ≤ 4. If s = 1, then

1
2
perA ≤ 1

2
4 = 2 = perA[〈2, 3〉] = 2

3
3 ≤ 2

3
perA.

If s = 2, then(
1
2

)2

perA ≤ 1
4
4 = 1 = perA[〈3, 3〉] ≤ 4

3
=

4
9
3 ≤

(
2
3

)2

perA.

Thus the statement is true for n = 3.

Consider n > 3. The case s = 1 is proved in Lemma 2.5. Consider s ≥ 2.

By Lemma 2.5, 1
2 perA ≤ perA(1) ≤ 2

3 perA. Since A is fully indecomposable
and staircased, so is A(1). Thus we can apply induction, and since A[〈s + 1, n〉] =
A(1)[〈s, n− 1〉] we conclude(

1
2

)s−1

perA(1) ≤ perA[〈s+ 1, n〉] ≤
(
2
3

)s−1

perA(1).

Therefore, (
1
2

)s

perA ≤ perA[〈s+ 1, n〉] ≤
(
2
3

)s

perA.

3. Exchange Rules. This section develops new exchange rules for Hessenberg
(0, 1)-matrices. These exchange rules will be used in Section 4 to determine the
structure of a matrix in H(m,n) that attains P (m,n).
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Let A = [aij ] be an n×n Hessenberg (0, 1)-matrix, and let k be a positive integer.
The k-th stripe of A is the vector (ak,1, ak+1,2, . . . , an,n−k+1) for 1 ≤ k ≤ n. The k-th
stripe is full (respectively zero) if each entry is nonzero (respectively zero). The width
of A, denoted w(A), is the largest k such that the k-th stripe is nonzero.

The Hessenberg (0, 1)-matrix A is called striped provided its superdiagonal is full,
w(A) ≥ 2 and its k-th stripe is full for k = 1, 2, . . . ,w(A)−1. If in addition its w(A)-th
stripe is full, then A is banded.

The s-banded Hessenberg matrix, denoted Hn,s, of order n is the n × n (0, 1)-
matrix with 1’s in the positions (i, j) with 1− s ≤ j − i ≤ 1, and 0’s elsewhere. Note
that Hn,s is a banded matrix and Hn = Hn,n.

A matrix is persymmetric if the (i, j)-entry is equal to the (n−j+1, n−i+1)-entry
for all i and j. Or equivalently, the matrix is symmetric about the back diagonal.
Note Hn,s is persymmetric.

Example 3.1. Let

A =




1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 1 0 1 1
0 0 0 1 1


 .

The second stripe of A is (1, 1, 0, 1), while the third stripe is (0, 1, 0). The first
stripe is full, and the fourth stripe is zero.

Let

B =




1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 1 1 1 1
0 0 1 1 1


 and D =




1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1


 .

The matrix B is a striped, but not banded, matrix with w(B) = 3, andD is 2-banded.

A lexicographic order may be introduced on Hessenberg matrices by associating
an order to the stripes of the matrix. As above, the k-th stripe of a Hessenberg matrix
A may be associated with the vector �Ak = (ak,1, ak+1,2, . . . , an,n−k+1). In this way
the entire matrix A may be represented by concatenating the stripes in the following
order: �An, �An−1, . . . , �A2, �A1, �A0 where �A0 represents the superdiagonal. In this way
the matrix A may be represented by the vector

�A = (an,1, an−1,1, an,2, an−2,1, . . . , a2,1, a3,2, . . . , an,n−1, a1,1, . . . , an,n, a1,2, . . . , an−1,n),
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or more simply
�A = ( �An, �An−1, . . . , �A2, �A1, �A0).

In this way we can order the n×n Hessenberg (0, 1)-matrices, namely, for matrices
A and B, B ≥ A if and only if �B ≥ �A in lexicographic order. This ordering will be
used in Lemmas 3.3 and 3.6 and applied in Section 4.

A lemma is needed before proving the first exchange rule.

Lemma 3.2. Consider an n × n fully indecomposable, staircased, Hessenberg
(0, 1)-matrix C of the form

C =

[
A Ek1

D B

]

where A is of order k, with 1 ≤ k ≤ n− 1, and B is of order n− k. Then

perC ≤ 2 perA · perB.

Proof. Note that perC = perA · perB + perC(k, k + 1). Each transversal of C
containing the 1 in position (k, k + 1) contains exactly one entry from D. Thus as C
is staircased

perC = perA · perB + perC(k, k + 1)
= perA · perB +

∑k
j=1

∑n−k
i=1 dij · perA(k, j) · perB(i, 1)

≤ perA · perB +
∑k

j=1

∑n−k
i=1 akj · bi1 · perA(k, j) · perB(i, 1)

= perA · perB + perA · perB
= 2perA · perB.

Lemma 3.3. Let A = [aij ] be an n×n fully indecomposable, staircased Hessenberg
(0, 1)-matrix for which there exist integers p < n, with p ≥ 4 and n ≥ 5, and s > 2
such that w(A) = p, the (p − 1)-th stripe has ap−2+i,i = 1 for i = 1, . . . , s − 1 and
ap−2+s,s = 0 and the p-th stripe has ap,1 = 1 and ap−1+i,i = 0 for i = 2, . . . , s− 1.

Let B be the matrix obtained from A by replacing ap,1 by 0, and ap+s−2,s by 1.
Then

perB ≥ perA.

Proof. Let C be the matrix obtained from A by replacing ap,1 by 0. Since
perA = perC +perC(p, 1) and perB = perC +perC(p+ s− 2, s) it suffices to show
that perC(p+ s− 2, s) ≥ perC(p, 1).
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First consider the case that s ≤ p. Since C is staircased and cp−1,1 = 1, C[〈1, p−
1〉] = Hp−1. Thus,

perC[〈1, s− 1〉] = perHs−1 = 2s−2.

By Lemma 2.2,

perC(s + p − 2, s) =

(
per C[〈1, s − 1〉] · per C[〈s + p − 1, n〉] if s + p − 2 < n

per C[〈1, s − 1〉] if s + p − 2 = n

=

(
2s−2 perC[〈s + p − 1, n〉] if s + p − 2 < n

2s−2 if s + p − 2 = n.

(3.1)

Also by Lemma 2.2,

perC(p, 1) = perC[〈p+ 1, n〉]. (3.2)

If s+ p− 2 = n, then (since C[〈p+ 1, n〉] is (n− p)× (n− p))

perC[〈p+ 1, n〉] ≤ perHn−p = 2n−p−1 = 2s−3 < 2s−2. (3.3)

If s+ p− 2 < n, then, since C[〈p+ 1, n〉] is fully indecomposable and staircased,
the leftmost inequality in Corollary 2.6 implies

perC[〈p+1, n〉] ≤ 2s+p−1−(p+1) perC[〈s+p−1, n〉] = 2s−2 perC[〈s+p−1, n〉]. (3.4)

Hence (3.1)-(3.4) imply

perC(p, 1) ≤ perC(s+ p− 2, s),

as desired.

Now consider the case when s > p and s+ p− 2 < n. As before

perC(p, 1) = perC[〈p+ 1, n〉]
and

perC(s+ p− 2, s) = perC[〈1, s− 1〉] · perC[〈s+ p− 1, n〉].

Write C[〈p+ 1, n〉] in the form:

C[〈p+ 1, n〉] =

[
C[〈p+ 1, s+ p− 2〉] C[〈p+ 1, s+ p− 2〉, 〈s+ p− 1, n〉]

X C[〈s+ p− 1, n〉]

]

≤
[

Hs−2,p−1 − Es−2,s−p Es−2,1

X C[〈s+ p− 1, n〉]

]
,
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where C[〈p + 1, s + p − 2〉] ≤ Hs−2,p−1 − Es−2,s−p follows from the fact that C is
staircased and the structure of the stripes of C. As such, by Lemma 3.2,

perC[〈p+ 1, n〉] ≤ 2 per (Hs−2,p−1 − Es−2,s−p) · perC[〈s+ p− 1, n〉]. (3.5)

Note that

C[〈1, s− 1〉] = Hs−1,p−1 ≥ Hs−1,p−1 − Es−2,s−p,

and since the last two rows of Hs−1,p−1 − Es−2,s−p are equal, Laplace expansion of
the permanent along the last column yields

perC[〈1, s− 1〉] ≥ per (Hs−1,p−1 − Es−2,s−p) = 2 per (Hs−2,p−1 − Es−2,s−p). (3.6)

Combining (3.5) and (3.6) yields

perC(p, 1) = perC[〈p+ 1, n〉]
≤ 2 per (Hs−2,p−1 − Es−2,s−p) · perC[〈s+ p− 1, n〉]
≤ perC[〈1, s− 1〉] · perC[〈s+ p− 1, n〉]
= perC(s+ p− 2, s).

Finally, the case s > p and s + p − 2 = n is handled like the previous case by
defining the vacuous matrix C[〈s+ p− 1, n〉] to have permanent 1.

Example 3.4. Let

A =




1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1




.

Let p = 5. Then the (p − 1)-th stripe is (1, 1, 1, 0, 1, 0, 0), the p-th stripe is
(1, 0, 0, 0, 0, 0), and we may take s = 4. Then exchanging entries a51 and a74 by
defining B as A with b51 = 0 and b74 = 1, then perB ≥ perA. In fact, perB = 301
and perA = 300.
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Note that for A above s ≤ p, so in the proof of Lemma 3.3 the following matrices
appear:

per C(7, 4) = per C[〈1, 3〉]·per C[〈8, 10〉] = perH3·per

2
64 1 1 0

1 1 1

0 1 1

3
75 = 22 per

2
64 1 1 0

1 1 1

0 1 1

3
75 ,

per C(5, 1) = per C[〈6, 10〉] = per

2
666664

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

0 1 1 1 1

0 0 0 1 1

3
777775 ≤ 22 per

2
64 1 1 0

1 1 1

0 1 1

3
75 .

Example 3.5. Let

A =




1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1




.

Here n = 13, p = 5, and s = 7. In this case s > p, and the following matrices
appear:

per C(10, 7) = per C[〈1, 6〉]·per C[〈11, 13〉] = per

2
66666664

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

0 1 1 1 1 1

0 0 1 1 1 1

3
77777775
·per

2
64 1 1 0

1 1 1

0 1 1

3
75 ,
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per C(6, 13) = per

2
6666666666664

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0

0 0 1 1 1 1 0 0

0 0 0 1 1 1 1 0

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

3
7777777777775

≤ 2 per (H5,4 − E5,2) · per

2
64 1 1 0

1 1 1

0 1 1

3
75

≤ per

2
66666664

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

0 1 1 1 1 1

0 0 1 1 1 1

3
77777775
· per

2
64 1 1 0

1 1 1

0 1 1

3
75 .

.

And so perB ≥ perA. In fact, perB = 1835 and perA = 1814.

Note that in Lemma 3.3 the exchange decreases the lexicographic order, �B < �A,
as the exchange moves a 1 from the p-th stripe to the (p− 1)-th stripe.

Lemma 3.6 (The Stripe Exchange Rule). Let A = [aij ] be an n × n fully in-
decomposable, staircased Hessenberg (0, 1)-matrix for which there exist integers p, q, s

with p ≥ 4, p + s − 2 ≤ n, and s > q + 1 such that w(A) = p, the (p − 1)-th stripe
has ap−2+i,i = 1 for i = q, . . . , s − 1 and ap−2+s,s = 0 and the p-th stripe of A has
ap−1+q,q = 1 and ap−1+i,i = 0 for i = q + 1, . . . , s− 1. Let B be the matrix obtained
from A by replacing ap−1+q,q by 0 and ap+s−2,s by 1. Then

perB ≥ perA.

Proof. The proof is by induction on q. The case q = 1 is handled by Lemma 3.3.
Assume q ≥ 2, and proceed by induction.

Since q ≥ 2, the first columns of A and B are identical. Let t be the largest index
such that at,1 = 1. Then

perA =
t∑

i=1

perA[〈i+ 1, n〉]
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and

perB =
t∑

i=1

perB[〈i+ 1, n〉].

Hence it suffices to show that for i ≤ t

perA[〈i+ 1, n〉] ≤ perB[〈i+ 1, n〉].

Note that if (p−1+q, q) ∈ 〈i+1, n〉×〈i+1, n〉, then (p+s−2, s) ∈ 〈i+1, n〉×〈i+
1, n〉. Hence if (p− 1+ q, q) ∈ 〈i+1, n〉× 〈i+1, n〉, then A[〈i+1, n〉] and B[〈i+1, n〉]
satisfy the induction hypothesis, and therefore perA[〈i+ 1, n〉] ≤ perB[〈i+ 1, n〉].

If (p − 1 + q, q) �∈ 〈i + 1, n〉 × 〈i + 1, n〉, then A[〈i + 1, n〉] ≤ B[〈i + 1, n〉] as
ap+s−2,s = 0 and bp+s−2,s = 1, and hence perA[〈i + 1, n〉] ≤ perB[〈i + 1, n〉]. This
completes the proof.

Example 3.7. Let

A =




1 1 0 0 0 0 0
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 1 1 1 1 0 0
0 1 1 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1



.

Let p = 4, q = 2, and s = 4. The (p − 1)-th stripe is (0, 1, 1, 0, 0), and the
p-th stripe is (0, 1, 0, 0). So we may exchange the entries ap−1+q,q = a52 = 1
and ap+s−2,s = a64 = 0 to obtain B with b52 = 0 and b64 = 1. Then perB =
perB(1) + perB(〈1, 2〉), perA = perA(1) + perB(〈1, 2〉), perA(1) ≤ perB(1), and
perB(〈1, 2〉) ≥ perA(〈1, 2〉) by Lemma 3.6.

Many of the exchange rules consider the upper-left entries of a given stripe, but
the nature of the permanent allows for similar statements about the corresponding
lower-right, persymmetric, entries of the same stripe. Note both Lemmas 3.3 and 3.6
have persymmetric analogs. By the Stripe Exchange Rule, we mean either Lemma 3.6
or its persymmetric analog. Both lemmas will be needed in Section 4.

Note that in Lemma 3.6 the lexicographic order has again been decreased, �B < �A,
as the exchange moves a 1 from the p-th stripe to the (p − 1)-th stripe. This is
also the case with Lemma 2.3. Thus each of the exchange operations decreases the
lexicographic order of the matrix. This decrease will be exploited in Section 4.
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The previous two lemmas dealt with exchanging entries within fully indecompos-
able components in order to possibly increase the permanent. The following lemma
is an exchange rule for combining two fully indecomposable components into a single
fully indecomposable matrix.

Lemma 3.8 (The Two-Large-Leg Exchange Rule). Let A and B be fully inde-
composable, staircased Hessenberg (0, 1)-matrices of orders nA and nB, respectively,
with nA, nB ≥ 6. Assume that A has k 1’s in its last row, B has l 1’s in its first
column, k < nA, and l < nB.

Set

M =

[
A+ EnA,nA−k O

O B + El+1,1

]
,

and

N =

[
A EnA,1

E1,nA B

]
,

where EnA,1 is nA × nB and E1,nA is nB × nA, and set m = min {k, l}.
If m ≥ 5, then perN > perM .

Proof. Note that by Lemma 2.2,

per (A+ EnA,nA−k) =
{

perA+ 1 if nA − k = 1
perA+ perA[〈1, nA − k − 1〉] if nA − k > 1.

First suppose k = nA − 1. Then

A ≥




1 1
1
0
... HnA−1

0


 ;

so by Laplace expansion along the first row or column

perA ≥ perHnA−1 + perHnA−2

= 2nA−2 + 2nA−3

= 3 · 2nA−3

≥ (
3
2

)nA

=
(

3
2

)k+1 for nA ≥ 4.
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Thus,

per (A+ EnA,nA−k) = perA+ 1 ≤ perA+
(
2
3

)k+1

perA ≤
(
1 +

(
2
3

)k+1
)
perA.

Next suppose nA − k > 1. Since A is fully indecomposable and staircased, the
persymmetric analog of Corollary 2.6 implies

perA[〈1, nA − k − 1〉] ≤
(
2
3

)k+1

perA,

and thus

per (A+ EnA,nA−k) ≤
(
1 +

(
2
3

)k+1
)
perA.

Similarly,

per (B + El+1,1) ≤
(
1 +

(
2
3

)l+1
)
perB.

It follows that for all k and l

perM ≤
(
1 +

(
2
3

)m+1
)2

perA · perB <
5
4
perA · perB (3.7)

since k, l ≥ m and m ≥ 5.

As A and B are fully indecomposable and staircased, then by Lemma 2.5

perN = perA · perB + perA(nA) · perB(1)
≥ perA · perB + 1

2perA · 1
2perB

= 5
4perA · perB.

(3.8)

Therefore, by (3.7) and (3.8), perN > perM , as desired.

Example 3.9. In this example A and B are both fully indecomposable, m = 4,
and perM > perN . This shows the assumption of m ≥ 5 in Lemma 3.8 is necessary.

Let

A =




1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1
0 0 1 1 1 1
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and

B =




1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1



.

Then

M =




1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1




.

Let nA = nB = 6, k = 4, and l = 4, so m = 4 < 5, M = (A + E62) ⊕ (B + E51)
and N = (A ⊕ B) + E67 + E76. Direct calculation gives perN < perM . In fact,
perN = 330 and perM = 483.

Informally, Lemma 3.8 and the use of persymmetry shows that if R is a permanent
maximizer in H(m,n), each of whose fully indecomposable components is staircased,
then at most one of its fully indecomposable components can have more than 5 nonzero
entries in its first column (or last row).2

Lemma 3.10. Suppose A and B are fully indecomposable, staircased Hessenberg
(0, 1)-matrices of order nA and nB, respectively, such that A ⊕ B is a maximizer in
H(nnz (A ⊕ B), nA + nB). Let k be the number of 1’s in the last row of A and l be
the number of 1’s in the first column of B. Then there exists a permanent maximizer
such that |l− k| ≤ 1.

2The “legs” of a component are the 1’s in its first column and the 1’s in its last row.
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Proof. To the contrary, assume l ≥ k + 2. Let

C =




A x

0 . . . 0 1 . . . 1︸ ︷︷ ︸
k

1
O

O B(1)




where x = (0, . . . , 0, 1)T . Then the last two rows of the upperleft matrix are equal,
and by Lemma 2.5

perC = 2perA · perB(1) ≥ perA · perB = P (nnz (A⊕B), nA + nB). (3.9)

Note that nnzC = nnzA + k + 2 + nnzB(1) = nnzA + k − l + 1 + nnzB <

nnzA + nnzB = nnz (A ⊕ B), since k − l + 1 < 0. Thus C has at least one fewer
entries equal to 1 than A⊕B.

If A or B(1) is not a full Hessenberg matrix, then placing another 1 in whichever
component of C is not a full Hessenberg matrix will increase the permanent of C, a
contradiction on the maximality of A⊕B.

Thus A and B(1) are full Hessenberg matrices. In this case, then perC =
perHnA+1 · perHnB−1 = 2nA+nB−2 = per (A ⊕ B). Again, C has at least one fewer
entries equal to 1 than A⊕B, and placing an additional 1 in C will not decrease the
permanent. If the permanent increases, then a contradiction arises. If the permanent
remains the same, then there exists a permanent maximizer with the given property.
In either case the statement holds.

Example 3.11. Note that if B(1) is a full Hessenberg matrix, then equality in
(3.9) and Lemma 2.5 show that the first and second columns of B are equal, and thus
if B(1) is a full Hessenberg matrix, then so is B. The proof of Lemma 3.10 shows that
for HnA ⊕ HnB with |nA − nB| > 1, the permanent is not decreased by considering
H�n

2 �⊕H�n
2 �, where n = nA+nB. An example in H(17, 6) is H2⊕H4 versus H3⊕H3.

Here the permanents are equal, but nnz (H2 ⊕H4) > nnz (H3 ⊕H3), and placing an
additional 1 in the latter, (H3 ⊕H3) + E4,3, yields the same permanent.

Another permanent maximizer, shown below, in H(17, 6) is fully indecompos-
able, showing that for a given H(m,n) there may exist many different permanent
maximizers that satisfy the various statements in this paper.
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1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1




Lemma 3.10 shows that if R ∈ H(m,n) with R = P (m,n), and each of R’s fully
indecomposable components, R1, R2, . . . , Rk, are staircased, then there exists such an
R such that the number of 1’s in the last row of Ri and the number of 1’s in the first
column of Rj cannot differ by more than 1 for 1 ≤ i, j ≤ k.

We now develop exchange rules for the final stripe.

Section 4 will show that there exists a permanent maximizer whose fully inde-
composable components are striped. Thus for each fully indecomposable component,
Ai, the k-th stripe of Ai is full for 2 ≤ k ≤ w(Ai)− 1. The w(Ai)-th stripe may not
be full.

We consider the case when s + 1 = w(Ai) and the (s + 1)-th stripe contains at
most two nonzero entries.

Lemma 3.12 (The Last-Stripe Exchange Rule). Let A = [aij ] be fully indecom-
posable, striped Hessenberg matrix with w(A) = s+1. Suppose the (s+1)-th stripe of
A has as+i,i = 0 for 1 ≤ i ≤ t and as+t+1,t+1 = 1 where t > 0. Let B be the matrix
obtained from A by replacing as+t+1,t+1 by 0 and as+1,1 by 1. Then perB ≥ perA.

Proof. Let C be the matrix obtained from A by replacing as+t+1,t+1 by 0.

Then

perA = perC + perC(s+ t+ 1, t+ 1) = perC + perC[〈1, t〉] · perC[〈s+ t+ 2, n〉],
and

perB = perC + perC(s+ 1, 1) = perC + perC[〈s+ 2, n〉].

Note

C[〈s+ 2, n〉] ≥ C[〈s+ 2, s+ t+ 1〉]⊕ C[〈s+ t+ 2, n〉],
and

C[〈s+ 2, s+ t+ 1〉] = Ht,s = C[〈1, t〉]
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as C is striped of width s and as+i,i = 0 for 1 ≤ i ≤ t. Thus

perC(s+ 1, 1) = perC[〈s+ 2, n〉]
≥ perC[〈s+ 2, s+ t+ 1〉] · perC[〈s+ t+ 2, n〉]
= perC[〈1, t〉] · perC[〈s+ t+ 2, n〉]
= perC(s+ t+ 1, t+ 1),

and perB ≥ perA.

A similar result holds for as+t+1,t+1 = 1 and as+i,i = 0 for t+ 2 ≤ i ≤ n− s.

Lemma 3.12 will be used to show for every m and n there exists a permanent
maximizer whose fully indecomposable components are striped and each of whose
last stripe has the form (1, 0, . . . , 0) if there is a single 1 on the last stripe, the
form (1, 0, . . . , 0, 1) if there are two 1’s on the last stripe, and for more than two
1’s on the final stripe the lemma shows that there exists a permanent maximizer with
as+1,1 = an,n−s = 1.

4. Application of Exchange Rules. Theorem 2.4 asserts that for each m and
n there exists a permanent maximizer whose fully indecomposable components are
staircased, Hessenberg matrices. By Lemma 2.2 the first and second stripes of each
fully indecomposable component are full. Combining these results with Lemmas 3.3
and 3.6 yields a further refinement on the structure of these fully indecomposable
components.

This refinement further narrows the number of matrices that need to be considered
when trying to compute P (m,n). In some cases this refinement will allow the quantity
P (m,n) to be computed exactly. Examples of this are in the following section.

Lemma 4.1. Let m and n be integers such that there exists A ∈ H(m,n) with
perA = P (m,n) with the first two stripes and superdiagonal full. Then there exists a
striped B ∈ H(m,n) with perB = P (m,n).

Proof. Among all B ∈ H(m,n) with B fully indecomposable and perB = P (m,n)
choose B with smallest lexicographic order. Note that the existence of A shows at
least one such B exists.

By Theorem 2.4 the choice of B requires B to be staircased, otherwise there
exists a top-most interchangeable row pair or a right-most interchangeable column
pair that can be switched. Applying Lemma 2.3 then decreases the lexicographic
order of B, a contradiction. Note that the exchange will not remove a 1 already in
the superdiagonal, and as such the exchange leaves B fully indecomposable with full
first and second stripes. Thus B is staircased.

Then, the matrix B is a fully indecomposable, staircased, Hessenberg matrix. Set
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p = w(B). If the k-th stripe of B is full for 3 ≤ k ≤ p−1, then B is striped. Otherwise
the (p− 1)-th stripe is not full. Thus there exist two entries meeting the hypotheses
of Lemma 3.6 or its persymmetric analog. (Note that Lemma 3.3 is a subcase of
Lemma 3.6 or its persymmetric analog.) Without loss of generality choose such a
pair of entries with s − q smallest. Applying Lemma 3.6 decreases the lexicographic
order of B, contrary to the choice of B. Thus B is striped with perB = P (m,n).

The following theorem extends the results of [5] by showing the existence of a
permanent maximizer in H(m,n) for n ≤ m ≤ nnzHn with a more refined structure
than that found in [5]. This new structure will allow P (m,n) to be directly computed
for a wide range of values of m.

Theorem 4.2. Let m and n be positive integers with n ≤ m ≤ nnzHn. Then
there exists a matrix A ∈ H(m,n) with permanent P (m,n) such that A has the form

A =




A1 O O · · · O

∗ A2 O · · · O

O ∗ . . .
...

O O
. . . Ak−1 O

O O O ∗ Ak



, (4.1)

where the ∗’s may contain a single 1 and the matrices A1, . . . , Ak satisfy one of the
following three categories: (a) k = 1 and A is fully indecomposable and striped, (b)
The matrices are fully indecomposable and striped components satisfying w(Ai) ≤ 5
for i = 1, . . . , k with |w(Ai) − w(Aj)| ≤ 1 for 1 ≤ i, j ≤ k, or (c) The matrices are
fully indecomposable and striped components satisfying w(Ai) = 5 for i = 1, . . . , k− 1
and w(Ak) = 6.

Proof. Take A ∈ H(m,n) with perA = P (m,n).

The proof is separated into six claims.

Claim 1: There exists a permanent maximizer whose fully indecomposable com-
ponents are staircased. Theorem 2.4 shows that there exists a permanent maximizer
with the form (4.1) where each fully indecomposable component is staircased. More-
over, as each component is fully indecomposable and staircased the first and second
stripes of each component are full. The 1 that may exist in the submatrices labeled
∗ is discussed in [5].

Claim 2: There exists a permanent maximizer whose fully indecomposable com-
ponents are striped. Applying Lemma 4.1 to each fully indecomposable component of
(4.1) shows there exists a permanent maximizer whose fully indecomposable compo-
nents are striped.
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Let nnzrAi denote the number of nonzero entries in the last row of Ai and nnzcAi

denote the number of nonzero entries in the first column of Ai.

Claim 3: If the last stripe of Ai contains at least two 1’s, then there exists a
permanent maximizer Ai that satisfies nnzcAi = nnzrAi = w(Ai), and if the last
stripe contains a single 1, then there exists a permanent maximizer that satisfies
nnzcAi = w(Ai) or nnzrAi = w(Ai). Apply Lemma 3.12. Note that in the case of a
single 1 in the last stripe either choice may be used as needed.

Claim 4: There exists a permanent maximizer whose fully indecomposable, striped
components satisfy w(Ai) ≤ 6 for all i. Assume to the contrary that Ai and Aj are
fully indecomposable, staircased Hessenberg matrices with min {w(Ai),w(Aj)} ≥ 6.
Then applying Lemma 3.8 produces a single fully indecomposable, staircased matrix,
called A′

i, with larger permanent. This is a contradiction on the maximality of A.
Thus no such components exists, and Claim 4 is satisfied.

Note that if w(Ai) = 5 and w(Aj) = 6, then Lemma 3.8 does not apply and a
single component of width 6 can exist.

Claim 5: There exists a permanent maximizer for which its fully indecomposable,
striped components satisfy |w(Ai) − w(Aj)| ≤ 1 for 1 ≤ i, j ≤ k. To the contrary,
assume two fully indecomposable, striped components with |w(Ai)−w(Aj)| ≥ 2 exist.
Lemma 3.10 immediately provides a contradiction. Thus the criterion of Claim 5 is
met.

Claim 6: There exists a permanent maximizer with one of the following three
forms: (a) The permanent maximizer is fully indecomposable and striped, (b) The
fully indecomposable, striped components satisfy w(Ai) ≤ 5 for i = 1, . . . , k with
|w(Ai) − w(Aj)| ≤ 1 for 1 ≤ i, j ≤ k, or (c) The fully indecomposable, striped
components satisfy w(Ai) = 5 for i = 1, . . . , k−1 and w(Ak) = 6. Case (a) is satisfied
if k = 1 by Claim 2. Case (b) follows from Claims 4 and 5 when no component
has width greater than 5. Case (c) follows from Claims 4 and 5 when there exists
exactly one component with width 6. Note that the possibility of having more than
one component with width 6 is ruled out by Claim 5.

Thus the theorem is proved.

As mentioned before, this shows that in the search for a permanent maximizer
and an exact value for P (m,n), one need only consider a subclass of H(m,n) whose
matrices have the form of (4.1).

Examples of Case (a) can be found in the following corollary, while an example of
Case (b) can be found in Example 3.11. Lemma 6.4, Theorem 6.5, Corollary 4.3, and
counting arguments for the number of nonzero entries in fully indecomposable versus
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partly decomposable matrices can be used to limit the number of possible matrices for
Case (c). For 10 ≤ n ≤ 30 the possibilities can be checked by hand, but no examples
of Case (c) were found.

Corollary 4.3. Let m and n be positive integers with m ≥ 7n. If A ∈ H(m,n)
with perA = P (m,n), then A is fully indecomposable.

Proof. Assume H(m,n) has a permanent maximizer A that is not fully indecom-
posable. As in the proof of Theorem 4.2, the exchange rules may be applied to A

to obtain a permanent maximizer B satisfying either case (b) or case (c). Note the
number of fully indecomposable components of B, l, is no greater than that of A.

First consider case (b) where the fully indecomposable components are striped
and w(Bi) ≤ 5 for i = 1, . . . , l with |w(Bi) − w(Bj)| ≤ 1 for 1 ≤ i, j ≤ l. Then
each row of B has at most six 1’s, though the exchanges described by Lemma 2.3 may
produce an extra 1 on the subdiagonal between two fully indecomposable components,
and hence m ≤ 6n + 1 < 7n, a contradiction on m. Thus a permanent maximizer
cannot satisfy case (b).

Now consider case (c) where the fully indecomposable components are striped
and w(Bi) = 5 for i = 1, . . . , l − 1 and w(Bl) = 6. Now m < 7n − 2 + 1 < 7n since
each row has at most seven 1’s and at least two rows (the first and last rows of B)
have at most six 1’s, along with the extra 1 mentioned in the previous paragraph.
This contradicts the fact that m ≥ 7n. Thus a permanent maximizer cannot satisfy
case (c).

Thus a permanent maximizer with m ≥ 7n is fully indecomposable.

5. Consequences. This section applies Theorem 4.2 and Corollary 4.3 to de-
termine P (m,n) exactly for certain values of n and m.

A transversal in a striped, Hessenberg matrix A through an entry (i, i− s + 1),
where s = w(A), necessarily contains the entries (i − (s − k), i − s + 1 + k) for
1 ≤ k ≤ s − 1 and s ≤ i ≤ n. As in Lemma 2.2 the number of transversals of this
type are perA[〈1, i− s〉] · perA[〈i+ 1, n〉]. Note that A[〈1, i− s〉] has order i− s and
A[〈i+1, n〉] has order n− i. If neither submatrix is to contain an entry from the s-th
stripe, then (i− s) + (n − i) < s, or s > n

2 . Thus for s > n
2 no transversal of A can

contain two entries from the s-th stripe of A.

We first show the existence of a permanent maximizer of a special form in
H(nnzHn,s−1 + k, n) in the case s > n

2 .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 20-52, January 2010

http://math.technion.ac.il/iic/ela



ELA

42 B.J. Deschamp and B.L. Shader

Lemma 5.1. If s > n
2 , then

per (Hn,s−1 +
k∑

j=1

Eij ,ij−s+1) = perHn,s−1 +
k∑

j=1

perHn,s−1(ij , ij − s+ 1)

for 1 ≤ k ≤ n− s+ 1 and s ≤ ij ≤ n.

Proof. As described above, if s > n
2 , then no transversal containing the (i, i−s+1)-

entry contains another entry of similar form. Thus the number of transversals con-
taining the (i, i− s+1)-entry is independent of the number of transversals containing
the, say, (i, i− s+ 1)-entry. The statement now follows.

Lemma 5.2. Let C = Hn,s−1 with s > n
2 . Then for s + 1 ≤ i ≤ n − 1,

perC(i, i− s+ 1) = 2n−s−2.

Proof. By Lemma 2.2

perC(i, i− s+ 1) = perC[〈1, i− s〉] · perC[〈i+ 1, n〉].

As s > n
2 , each of the submatrices is a fully indecomposable, full Hessenberg matrix.

Thus

perC(i, i− s+ 1) = perC[〈1, i− s〉] · perC[〈i+ 1, n〉]
= perHi−s · perHn−i

= 2i−s−1 · 2n−i−1

= 2n−s−2.

Lemma 5.3. Let C = Hn,s−1 with s > n
2 . Then perC(s, 1) = perC(n, n−s+1) >

perC(i, i− s+ 1) where s ≤ i < n.

Proof. The equality follows from persymmetry. By Lemma 2.2

perC(s, 1) = perC[〈s+ 1, n〉] = perHn−s = 2n−s−1

since s ≥ �n−2
2 �, and by Lemma 5.2

perC(i, j) = 2n−s−2.

Note nnzHn,s = n− 1 + s(n+ 1)− s(s+1)
2 .

By Corollary 4.3 the following theorem particularly applies when s ≥ 7.

Theorem 5.4. Consider H(nnzHn,s−1 + k, n) with s > n
2 and k ≤ n − s + 1.

If there exists a fully indecomposable permanent maximizer, then each matrix of the
form Hn,s−1 + Es,1 +En,n−s+1 +K where K has k − 2 nonzero entries (i, i− s+ 1)
with s < i < n is a permanent maximizer.
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Proof. By the hypothesis there exists a fully indecomposable permanent maxi-
mizer. Applying Lemma 4.1 such a maximizer may be taken to be striped. It then
suffices to consider the s-th stripe and the final k 1’s. By Lemma 5.1 each 1 may be
considered separately.

By Lemmas 5.2 and 5.3 the (s, 1) and (n, n − s + 1) yield a larger contribution
to the permanent, and the remaining k− 2 entries may be placed arbitrarily amongst
the remaining entries of the s-th stripe.

Thus there exists a permanent maximizer of the given form.

Section 4 and Theorem 5.4 provide enough structure for a special permanent
maximizer that for certainm and n, P (m,n) can be computed directly. The remainder
of this section provides specific values for P (m,n) for certain m and n, and thereby
extends the results in [5].

Corollary 5.5.

(a) If m ≥ 7n, then

P (nnzHn,s, n) = perHn,s.

(b) If m ≥ 7n, then

P (nnzHn,s + 1, n) = perHn,s + perHn−s,s.

(c) If m ≥ 7n, then

P (nnzHn,s + 2, n) = perHn,s + 2perHn−s,s + perHn−2s,s.

(d) If m ≥ 7n, s > n
2 , and k < n− s+ 2, then

P (nnzHn,s + k, n) = perHn,s + (k − 2) 2n−s−2 + 2n−s.

Proof. Items (a), (b) and (c) follow from Corollary 4.3 and Lemma 3.12. For (b),

P (nnzHn,s + 1, n) = perHn,s + perHn,s(s+ 1, 1)
= perHn,s + perHn−s,s.

For (c),

P (nnzHn,s + 2, n) = perHn,s + perHn,s(s+ 1, 1)
+perHn,s(n− s, n) + perHn,s[〈s+ 1, n− s− 1〉]

= perHn,s + 2perHn−s,s + perHn−2s,s.

Item (d) follows from Corollary 4.3, Lemma 3.12 and Theorem 5.4, yielding
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P (nnzHn,s + k, n) = perHn,s +
∑k−1

i=1 perHn,s(s+ i, i) + perHn,s(n− s, n)
= perHn,s + 2n−s−1 + (k − 2) 2n−s−2 + 2n−s−1

= perHn,s + (k − 2) 2n−s−2 + 2n−s.

6. Further Results. Section 4 showed for each m and n there is a permanent
maximizer ofH(m,n) each of whose fully indecomposable components is striped. This
section provides bounds on perHn,s for large and small s. The second bound relies
on a connection with the s-Generalized Fibonacci Numbers. These bounds show how
P (m,n) grows as a function of m. We first consider the case where s is large relative
to n, and a lower bound on perHn,s is developed.

A directed graph, or digraph, D consists of a set V of vertices, a set E of edges,
and a mapping associating to each edge e ∈ E an ordered pair (x, y) of vertices called
the endpoints of e. The vertex x in the ordered pair (x, y) is called the tail of e while
y is called the head of e.

A cycle in a digraph D is a collection of edges

(x0, x1), (x1, x2), . . . , (xn−1, xn), (xn, x0),

where the xi’s are distinct. A loop is a cycle of the form (x0, x0). Two cycles,

x = {(x0, x1), (x1, x2), . . . , (xn−1, xn), (xn, x0)}

and

y = {(y0, y1), (y1, y2), . . . , (ym−1, ym), (ym, y0)},

are disjoint if xi �= yj for 0 ≤ i ≤ n and 0 ≤ j ≤ m. A disjoint cycle union, or DCU,
of a digraph D is a collection of mutually disjoint cycles such that every vertex of D
is contained in exactly one cycle.

The weight of an edge e is described by the function wt : E → N. The weight of
a cycle, x, is defined as

wt(x) =
∏
e∈x

wt(e).

The weight of a DCU, τ , of D is defined as

wt(τ) = (−1)|V |−k
∏
x∈τ

wt(x)

where k is the number of cycles in τ and |V | is the number of vertices in each cycle.
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If V = {1, 2, . . . , n} we may associate with D an n× n (0, 1)-matrix C = [cij ]. If
(i, j) is an edge of D, then cij = wt(e), and if (i, j) is not an edge of D, then cij = 0.

Lemma 6.1.

detC =
∑

τ∈DCU

wt(τ). (6.1)

where DCU is the set of disjoint cycle unions of the digraph of C.

Proof.

detC =
∑

τ∈Sn

sgn(τ)a1τ(1)a2τ(2) . . . anτ(n),

but only those τ corresponding to a DCU of the digraph of C will have nonzero
contribution, and in those cases wt (τ) = sgn(τ)a1τ(1)a2τ(2) . . . anτ(n). Therefore,

detC =
∑

τ∈DCU

wt(τ).

Before stating the first result of this section an identity concerning the computa-
tion of the permanent for Hessenberg matrices is needed (see [2]).

Lemma 6.2. Let A be an n × n (n ≥ 2) Hessenberg matrix, and let B be the
matrix obtained from A by replacing the (i, i + 1) entries by their negatives. Then
detB = perA.

Proof. Proof by induction on n. The statement holds for n = 2 since:

per
[

a11 a12

a21 a22

]
= a11a22 + a12a21 = det

[
a11 −a12

a21 a22

]
.

Assume n ≥ 3, and proceed by induction. Let A and B be such a pair of
n × n matrices. By Laplace expansion of B along row 1, detB = a11 detB(1) −
(−a12) detB(1, 2) = a11 detB(1) + a12 detB(1, 2). By the induction hypothesis

detB(1) = perA(1) and detB(1, 2) = perA(1, 2).

By the above and the Laplace expansion of perA along the first row, detB =
a11perA(1) + a12perA(1, 2) = perA.

Lemma 6.3.

perHn,s > 2n−2

whenever s ≥ log2 n.
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Proof. Assume 2s ≥ n, and let A = Hn,s. Let B be the matrix obtained from A

by negating each entry of its superdiagonal. By Lemma 6.2, detB = perA.

Let M be the n× n (0, 1)-matrix with mii = 1 and mij = −1 for j = i − 1 and
zero entries elsewhere. Set C = MB, then C has the form:

c11 = 1
cii = 2 for 2 ≤ i ≤ n

cij = −1 for j = i+ 1, 1 ≤ i ≤ n− 1
cij = −1 for j = i− s, s+ 1 ≤ i ≤ n

cij = 0 otherwise.

meaning that the superdiagonal and the (s+ 1)-th stripe have all −1 entries.
We now compute the determinant of C via its digraph. Let D be the digraph of

C, and let DCU be the set of disjoint cycle unions of D. By Lemma 6.1

detC =
∑

τ∈DCU

wt(τ).

Observe that the only cycles of D are the loops (which have weight 2, except the
loop at 1, which has weight 1) and the cycles of the form:

for 1 ≤ i ≤ n− s, which have weight (−1)s+1(−1)s = −1.
Thus each DCU consists of loops and (s + 1)-cycles. For τ ∈ DCU , let κ(τ) be

the number of (s+ 1)-cycles in τ , and let

δτ,1 =
{

1 if the loop of weight 1 is in τ

0 if it is not

Then it is easy to verify that

wt(τ) = (−1)κ(τ) 2n−δτ,1−κ(τ)(s+1).
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Let

αj =
∑

τ∈DCU
κ(τ)=j

wt(τ) = (−1)j
∑

τ∈DCU
κ(τ)=j

2n−δτ,1−κ(τ)(s+1).

Consider the map f : DCU\identity → DCU , defined as f(τ) is the DCU ob-
tained from τ by replacing the (s+1)-cycle containing i ∈ V with i maximal by s+1
loops. Note:

κ(f(τ)) = κ(τ) − 1,
wt(f(τ)) = −2s+1wt(τ) if κ(τ) ≥ 1,
|f−1(σ)| ≤ n ∀σ ∈ DCU.

It follows that if j ≥ 2, then

|αj | =

∣∣∣∣∣∣∣
∑

τ∈DCU
κ(τ)=j

wt(τ)

∣∣∣∣∣∣∣
=

1
2s+1

∣∣∣∣∣∣∣
∑

τ∈DCU
κ(τ)=j

wt(f(τ))

∣∣∣∣∣∣∣
≤ n

2s+1

∣∣∣∣∣∣∣
∑

σ∈DCU
κ(σ)=j−1

wt(σ)

∣∣∣∣∣∣∣
=

n

2s+1
|αj−1|

< |αj−1|

(6.2)

since 2s+1 ≥ 2s ≥ n.

As the αj ’s alternate in sign, (6.1) and (6.2) imply

detC > α0 + α1

= 2n−1 − (
2n−1−(s+1)(n− s− 2) + 2n−(s+1)

)
= 2n−2

[
2− n−s

2s

]
≥ 2n−2

[
2− n

2s

]
≥ 2n−2 [2− 1] since 2s ≥ n

= 2n−2

.

Therefore, if s ≥ log2 n, then perHn,s > 2n−2.

Lemma 6.4. If A is an n×n partly decomposable, Hessenberg (0, 1)-matrix, then
perA ≤ 2n−2.
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Proof. As A is partly decomposable there exist permutation matrices P and Q

such that PAQ has the form [
B O

C D

]
,

where B and D are square, nonvacuous, matrices. Also, perA = perB · perD. Let
B have order k and therefore D has order n− k.

Note that by (2.2) that perB ≤ 2k−1 and perD ≤ 2n−k−1. Then perA ≤
2k−1 · 2n−k−1 = 2n−2.

Theorem 6.5. If s ≥ log2 n and m ≥ nnzHn,s, then every permanent maximizer
in H(m,n) is fully indecomposable.

Proof. By Lemma 6.3

P (m,n) ≥ P (nnzHn,s, n) ≥ perHn,s > 2n−2.

Thus by Lemma 6.4 every permanent maximizer in H(m,n) must be fully indecom-
posable.

Note that Theorem 6.5 gives a lower bound on the number of nonzero entries
for which the permanent maximizer is guaranteed to be fully indecomposable, but
Corollary 4.3 provides a better lower bound.

Example 6.6. Consider H(58, 12) and a permanent maximizer A ∈ H(58, 12)
with w(A) = 5 and perA = P (58, 12). As s ≥ log2 12 = 3.58, perH12,4 > 210, and so
perA > 210 and A is fully indecomposable.

We now consider an upper bound on perHn,s found by exploiting a connection
with the s-Generalized Fibonacci Numbers (see [3]).

Let s and n be positive integers with n ≥ s, s ≥ 2, and let Hn,s be the n × n

s-banded Hessenberg (0, 1)-matrix. Let {Fn,s} be the sequence defined by

Fn,s =
{

2n−1 if n = 1, 2, . . . , s
Fn−1,s + Fn−2,s + · · ·+ Fn−s,s if n > s.

For a fixed s, F1,s, F2,s, F3,s, . . . , Fn,s, . . . is a sequence on n referred to as the s-
generalized Fibonacci numbers (see [3]). Note that for s = 2 the Fibonacci Numbers,
fn = fn−1 + fn−2, are realized.

Proposition 6.7.

perHn,s = Fn,s.
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Proof. The proof is by strong induction on n.

First consider the case when n ≤ s. Since n ≤ s, Hn,s = Hn and perHn = 2n−1.

Now consider n > s. By Laplace expansion along the first column, it can be seen
that

perHn,s = perHn,s[〈2, n〉] + · · ·+ perHn,s[〈s+ 1, n〉].

Note that

Hn,s[〈j, n〉] =
{

Hn−j+1,s if n− j + 1 ≥ s

Hn−j+1 otherwise

by the inductive hypothesis, for 2 ≤ j ≤ s+ 1. So perHn,s[〈j, n〉] = Fn−j+1,s.

Thus, by the Laplace expansion,

perHn,s = Fn−1,s + Fn−2,s + . . .+ Fn−s,s = Fn,s

by the definition of Fn,s.

Let ps(x) = xs − (xs−1 + xs−2 + · · ·+ x+ 1). Note that

ps(x) = xs − xs − 1
x− 1

=
xs+1 − 2xs + 1

x− 1
.

Let qs(x) = xs+1 − 2xs +1. Then the roots of qs(x) are the roots of ps(x) along with
the root 1.

Note that

qs

(
2− 1

2s−1

)
= −

(
2− 1

2s−1

)s (
1

2s−1

)
+ 1 = 1− 2

(
1− 1

2s

)s

< 0,

since

ln 2 + s ln
(
1− 1

2s

)
= ln 2 + s

[−1
2s

+
(1/2s)2

2
− . . .

]
> ln 2− s

2s
≥ ln 2− 1

2
> 0.

Thus

1 < eln 2+s ln (1− 1
2s ) = 2

(
1− 1

2s

)s

.

Also note that

qs

(
2− 1

2s

)
= 1−

(
2− 1

2s

)s

· 1
2s

= 1−
(
1− 1

2s+1

)s

> 0.
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Hence, by the Intermediate Value Theorem, qs(x) has a root in [2− 1
2s−1 , 2− 1

2s ].

Note that q′s(x) = (s + 1)xs − 2sxs−1 = xs−1((s + 1)x − 2s) has largest root
2s

s+1 ≤ 2 − 1
2s−1 . Thus, qs(x) has at most one root in (2 − 1

2s−1 ,∞). Therefore, the
largest real root, ωs, of qs(x) is in [2− 1

2s−1 , 2− 1
2s ]. This proves the following:

Lemma 6.8. The largest real root, ωs, of qs(x) satisfies

2− 1
2s−1

< ωs < 2− 1
2s

.

Lemma 6.9.

Fn,s ≤ 2sωn−s
s .

Proof. By strong induction on n.

If n ≤ s, then Fn,s = 2n−1 ≤ 2s ≤ 2sωn−s
s , since ωs ≥ 1.

If n > s, then

Fn,s = Fn−1,s + Fn−2,s + · · ·+ Fn−s,s

≤ 2sωn−1−s
s + · · ·+ 2sωn−s−s

s

= 2sω−s
s [wn−1 + · · ·+ ωn−s

s ]
= 2sω−s

s ωn
s (since ωs

s = ωs−1
s + · · ·+ ωs + 1)

= 2sωn−s
s .

Theorem 6.10. If n ≥ (ln 2)(2s+2 + 2) + s, then Fn,s ≤ 2n−2.

Proof. By Proposition 6.7 and Lemmas 6.8 and 6.9 it suffices to show that

2s

(
2− 1

2s

)n−s

≤ 2n−2,

or equivalently that

4 ≤
(

2
2− 1

2s

)n−s

,

or equivalently that

4 ≤
(

1
1− 1

2s+1

)n−s

,
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or equivalently that

ln 4 ≤ −(n− s) ln
(
1− 1

2s+1

)
.

Now

− ln
(
1− 1

2s+1

)
=

1
2s+1

− ( 1
2s+1 )2

2
+ . . . ,

so, as the series is alternating,

− ln
(
1− 1

2s+1

)
≥ 1

2s+1
− ( 1

2s+1 )2

2
.

Thus

−(n− s) ln
(
1− 1

2s+1

) ≥ (n− s)
(

1
2s+1 − 1

22s+3

)
≥ ln 2(2s+2 + 2)

(
1

2s+1 − 1
22s+3

)
by hypothesis

≥ ln 2
(
2− 1

2s+1 + 1
2s − 1

22s+2

)
= ln 2

(
2 + 1

2s+1 − 1
22s+2

)
≥ (ln 2)2
= ln 4,

as desired.

Considering Theorem 6.5 and Theorem 6.10 the value of s where permanent
maximizers switch from being partly decomposable to fully indecomposable is ap-
proximately log2 n.

Corollary 6.11. For A striped with w(A) = s, perHn,s−1 ≤ perA ≤ 2sωn−s
s .

Proof. First, we have perHn,s−1 ≤ perA ≤ perHn,s. Considering Lemma 6.9
this inequality becomes perHn,s−1 ≤ perA ≤ 2sωn−s

s .

We now discuss some of the consequences of Corollary 6.11. For s ≥ log2 n,
perHn,s−1 > 2n−2, but perHn = 2n−1 so

2n−2 ≤ P (m,n) ≤ 2s ωn−s
s ≤ 2s

(
2− 1

2s

)n−s

,

and thus, for a fixed n, P (m,n) as a function of m can only grow by a factor of 2 for
s ≥ log2 n. Also, if n ≥ (ln 2)(2s+2 + 2) + s, then Fn,s ≤ 2n−2 so the majority of the
contribution to P (m,n) comes from the first few stripes.
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