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SPACES OF CONSTANT RANK MATRICES OVER GF (2)∗

NIGEL BOSTON†

Abstract. For each n, we consider whether there exists an (n+ 1)-dimensional space of n by n

matrices over GF (2) in which each nonzero matrix has rank n − 1. Examples are given for n = 3, 4,

and 5, together with evidence for the conjecture that none exist for n > 8.
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1. Introduction. There has been much interest [5], [7, Chapter 16D] in spaces
of matrices in which every nonzero matrix has the same rank. We call this a space
of matrices of constant rank. Often there is some algebraic construction behind the
examples - for instance, taking a basis for GF (qn) over GF (q) yields an n-dimensional
space of n by n matrices over GF (q) of constant rank n.

We focus on spaces of n by n matrices of constant rank n− 1, and ask how large
their dimensions can be. In [5], it was shown that for real matrices, the maximal
dimension is max{ρ(n − 1), ρ(n), ρ(n + 1)}, where ρ is the Hurwitz-Radon function,
except for n = 3 and 7 when the maximal dimension is 3 and 7, respectively. As
regards matrices over a general field F , it was shown in [2] that if |F | ≥ n, then this
maximal dimension is at most n. The question then arises as to whether for smaller
fields F there can be such spaces of larger dimension, n + 1.

As noted below, GF (2) has the unusual property that there are about twice as
many n by n matrices of rank n − 1 over it as there are matrices of rank n, and
so interest has focused on this case. By the above, if n < 3, then the maximal
dimension is at most n. In [1], Beasley found a couple of spaces of n by n matrices of
constant rank n− 1 and dimension n + 1 for n = 3. He conjectured that no examples
exist for n > 3, but this author found, by search using the computer algebra system
MAGMA [3], examples for n = 4 and n = 5. The temptation now is to conjecture
that examples exist for all n, but as we shall see, heuristics do not support such a
claim.
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2. Low dimensional examples. This section exhibits spaces of n by n matrices
of constant rank n− 1 and dimension n+1 for n = 3, 4, and 5. For n = 3, Beasley [1]
found some examples. An exhaustive MAGMA search shows that there are exactly
1176 such spaces. Under conjugation by GL(3, 2), these fall into 12 orbits. A basis
for a representative of each orbit is given:

Orbit length 168:




1 0 0
0 0 0
0 1 0


 ,




0 0 1
0 1 0
0 0 0


 ,




1 1 0
0 0 1
0 0 0


 ,




0 1 1
0 0 0
1 0 0


.

Orbit length 168:




0 0 0
1 0 0
0 1 0


 ,




0 1 1
1 0 0
0 0 0


 ,




0 1 0
0 1 1
0 0 0


 ,




0 1 0
0 0 0
1 0 0


.

Orbit length 168:




0 0 0
1 0 0
0 1 0


 ,




1 0 1
1 0 0
0 0 0


 ,




1 0 0
0 1 0
0 0 0


 ,




1 0 0
0 0 0
1 0 1


.

Orbit length 168:




1 0 0
0 0 0
0 1 0


 ,




0 1 1
0 1 0
0 0 0


 ,




1 0 0
0 0 1
0 0 0


 ,




0 0 0
1 0 0
1 0 1


.

Orbit length 84:




0 0 0
1 0 0
0 1 0


 ,




0 0 1
1 0 0
0 0 0


 ,




1 1 0
0 1 0
0 0 0


 ,




0 0 0
0 0 1
1 0 1


.

Orbit length 84:




1 0 0
0 0 0
0 1 0


 ,




0 0 1
0 1 0
0 0 0


 ,




1 0 1
0 0 1
0 0 0


 ,




1 0 0
1 0 0
1 0 1


.

Orbit length 84:




1 0 0
0 0 0
0 1 0


 ,




0 1 0
1 0 0
0 0 0


 ,




1 0 0
0 0 1
0 0 0


 ,




0 1 0
0 0 0
0 0 1


.

Orbit length 84:




1 0 0
0 0 0
0 1 0


 ,




0 1 0
1 0 0
0 0 0


 ,




1 1 0
0 0 1
0 0 0


 ,




0 1 0
0 0 0
1 0 1


.

Orbit length 56:




0 0 0
1 0 0
0 1 0


 ,




0 0 1
1 0 0
0 0 0


 ,




1 0 0
0 1 0
0 0 0


 ,




1 0 0
0 0 0
0 0 1


.

Orbit length 42:




1 0 0
0 0 0
0 1 0


 ,




0 1 0
1 1 0
0 0 0


 ,




1 0 0
0 0 1
0 0 0


 ,




0 0 1
0 0 0
1 0 1


.
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Orbit length 42:




1 0 0
0 1 0
0 0 0


 ,




0 0 1
1 0 0
0 0 0


 ,




0 1 1
0 0 0
0 1 0


 ,




1 0 1
0 0 0
0 0 1


.

Orbit length 28:




0 0 0
1 0 0
0 1 0


 ,




0 0 1
1 0 0
0 0 0


 ,




0 1 0
0 0 1
0 0 0


 ,




0 1 0
0 0 0
1 0 0


.

An example of a 5-dimensional space of 4 by 4 matrices of constant rank 3 is
given by the span of the following matrices:




0 0 0 1
0 1 1 1
1 1 1 1
0 1 1 0


 ,




1 1 0 0
1 0 0 1
0 0 1 0
0 0 1 0


 ,




0 1 1 0
1 1 1 1
0 1 1 0
1 0 0 0


 ,




1 0 0 0
1 0 0 1
1 1 1 0
0 1 1 1


 ,




0 1 0 1
1 0 0 1
0 1 1 1
1 1 0 0


.

An example of a 6-dimensional space of 5 by 5 matrices of constant rank 4 is
given by the span of the following matrices:




0 0 0 1 1
1 1 1 0 1
0 0 1 0 0
0 1 1 0 0
0 0 1 0 0




,




0 0 0 0 1
0 0 1 1 0
1 1 1 1 1
0 0 1 0 1
0 0 0 0 1




,




0 1 0 1 0
1 1 1 1 0
0 0 1 1 0
1 1 0 0 1
1 0 0 1 0




,




1 0 0 0 0
0 1 0 1 1
0 0 1 0 0
1 1 1 0 0
1 1 0 0 0




,




1 1 1 0 1
1 1 1 1 0
0 1 0 1 0
1 1 1 0 0
0 0 0 0 1




,




1 1 0 0 1
1 0 1 1 0
0 0 1 0 1
1 0 0 0 1
0 0 1 0 1




.

These were discovered by careful search using the computer algebra system,
MAGMA [3].

3. Heuristics. Let C(n, r, q) denote the number of n by n matrices of rank r

over GF (q). Landsberg [6] (later refined by Buckheister [4] to count matrices with a
given rank and trace) showed that

C(n, r, q) = qr(r−1)/2
r∏

i=1

(qn−i+1 − 1)2/(qi − 1).
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As n → ∞, the probability that an n by n matrix over GF (q) has rank n − r,
i.e., the ratio of C(n, n − r, q) to the total number of matrices qn2

, tends to a limit
K(r, q), where for instance K(0, 2) = 0.2888, K(1, 2) = 0.5776, (which is the basis
for the statement above that an n by n matrix over GF (2) is twice as likely to
have rank n − 1 as rank n), K(2, 2) = 0.1284, K(3, 2) = 0.0052, . . . Since we will
make great use of K(1, 2) in this paper, note that to 20 decimal places K(1, 2) =
0.57757619017320484256.

Our heuristic claims that, in the absence of any other algebraic structure, the
probability that each matrix in a space of n by n matrices has rank n − r should
be independently approximated by K(r, q). Let N(n, r, q, d) denote the number of
ordered d-tuples of n by n matrices over GF (q) for which all nontrivial linear com-
binations have rank n − r. By the above heuristic, this should be about K(r, q)qd−1

multiplied by the total number of ordered d-tuples, namely qdn2
, i.e.,

N(n, r, q, d) ≈ K(r, q)qd−1qdn2
.

To test our heuristic, let Sn be the set of all n by n matrices over GF (2) of rank
n − 1. We seek the probability that, given M1, M2 ∈ Sn, M1 + M2 also lies in
Sn. Exhaustive computation shows that it equals (2/3)2 = 0.4444, (85/147)2 =
0.5782, (2722/4725)2 = 0.5761, (174751/302715)2 = 0.5773 for n = 2, 3, 4, 5, respec-
tively. This is apparently approaching the limit K(1, 2), as proposed.

Likewise, we can test whether, given 3 matrices in Sn, the 4 nontrivial linear
combinations of these matrices are all in Sn with probability approaching K(1, 2)4 =
0.1113 as the heuristic suggests. For example, |S3| = 294 and of the 2943 ordered
triples, 2709504 or 10.66% satisfy this, which is close to the predicted 11.13%.

Finally, we consider some implications of the heuristic. Let g(k) denote the order
of GL(k, 2), i.e., g(k) = C(k, k, 2) = (2k − 1)(2k − 2) · · · (2k − 2k−1). This counts
the number of ordered bases of a k-dimensional vector space over GF (2). If our
heuristic holds true, then N(n, 1, 2, n + 1) ≈ K(1, 2)2

n+1−12(n+1)n2
implies that the

number of (n+1)-dimensional spaces of n by n matrices over GF (2) of constant rank
n − 1 is N(n, 1, 2, n + 1)/g(n + 1) ≈ K(1, 2)2

n+1−12(n+1)n2
/g(n + 1). Moreover, if

conjugacy by GL(n, 2) acts faithfully on the set of such spaces, then the number of
orbits under conjugacy ≈ K(1, 2)2

n+1−12(n+1)n2
/(g(n)g(n + 1)). If it is not faithful,

then the number will be slightly larger (but not by orders of magnitude - see the
examples for n = 3 in Section 2 where the stabilizers all have order ≤ 6).

For n = 1, . . . , 10, this gives (to 4 significant figures) respectively 0.1285, 0.08713,

5.388, 244200, 6.783×1012, 1.162×1021, 1.868×1024, 1.006×109, 3.562×10−54, 4.986×
10−223. It is easy to see that our estimate on the number of orbits is tending to zero
very fast. The above data suggests the following:
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Conjecture 3.1. There exists an (n + 1)-dimensional space of n by n matrices
over GF (2) of constant rank n − 1 if and only if 3 ≤ n ≤ 8.

Our results in Section 2 prove this for n ≤ 5. Note also that for n = 3 the
heuristic predicts about 5.388 orbits or equivalently about 905 spaces of dimension 4
and constant rank 2, whereas there are actually 1176 of them.

Acknowledgment. The author thanks Rod Gow for introducing him to these
problems and for useful feedback on this work.
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