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ELA

NUMERICAL RANGES OF AN OPERATOR ON AN
INDEFINITE INNER PRODUCT SPACE�

CHI-KWONG LIy , NAM-KIU TSINGz AND FRANK UHLIGx

Dedicated to Chandler Davis

Abstract. For n�n complex matrices A and an n�n Hermitian matrix S, we consider
the S-numerical range of A and the positive S-numerical range of A de�ned by

WS(A) =

�
hAv; viS
hv; viS

: v 2 ICn
; hv; viS 6= 0

�
and

W
+

S
(A) = fhAv; viS : v 2 ICn

; hv; viS = 1g ;

respectively, where hu; viS = v�Su. These sets generalize the classical numerical range, and
they are closely related to the joint numerical range of three Hermitian forms and the cone
generated by it. Using some theory of the joint numerical range we can give a detailed
description of WS(A) and W+

S
(A) for arbitrary Hermitian matrices S. In particular, it is

shown that W+

S
(A) is always convex and WS(A) is always p-convex for all S. Similar results

are obtained for the sets

VS(A) =

�
hAv; vi

hSv; vi
: v 2 ICn

; hSv; vi 6= 0

�
; V

+

S
(A) = fhAv; vi : v 2 ICn

; hSv; vi = 1g ;

where hu; vi = v�u. Furthermore, we characterize those linear operators preserving WS(A),
W+

S
(A), VS(A), or V

+

S
(A). Possible generalizations of our results, including their extensions

to bounded linear operators on an in�nite dimensional Hilbert or Krein space, are discussed.

Key words. Field of values, numerical range, generalized numerical range, Krein space,
convexity, linear preserver, inde�nite inner product space.

AMS(MOS) subject classi�cation. 15A60, 15A63, 15A45, 46C20, 52A30

1. Introduction. LetMn be the algebra of n�n complex matrices. The
(classical) numerical range of A 2Mn is de�ned as

W (A) := fhAv; vi : v 2 ICn; hv; vi= 1g =

�
hAv; vi

hv; vi
: v 2 ICn; hv; vi 6= 0

�
;
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where hu; vi := v�u denotes the Euclidean inner product in ICn. The numerical
range is a useful tool for studying matrices and operators, and it has been
investigated extensively. There are many generalizations of the concept moti-
vated by both pure and applied topics. For the background of this subject we
refer the reader to, e.g., [HJ, Chapter 1] and [AL].

Let Hn denote the set of all n � n Hermitian matrices. By replacing the
Euclidean inner product with another inner product hu; viS in the de�nition
of W (A), where S 2 Hn is positive de�nite and hu; viS := v�Su, one obtains
the S-numerical range of A:

WS(A) :=

�
hAv; viS
hv; viS

: v 2 ICn; hv; viS 6= 0

�
;

which coincides with the positive S-numerical range of A:

W+
S (A) := fhAv; viS : v 2 ICn; hv; viS = 1g :

Since S is positive de�nite, S = X�X for some nonsingular X , and it is

easy to show that WS(A) = W+
S (A) = W (XAX�1). In particular, if S

1

2

denotes the (unique) positive de�nite matrix that satis�es (S
1

2 )2 = S, then

WS(A) = W (S
1

2AS�
1

2 ), where S�
1

2 denotes the inverse of S
1

2 . Hence many
properties of the classical numerical range (such as the compactness, convexity,
etc.) can be extended toWS(A) = W+

S (A) if S is positive de�nite. However, if
S is nonsingular and inde�nite, i.e., if ICn becomes an inde�nite inner product
space with respect to its inde�nite inner product h�; �iS, thenWS(A) 6= W+

S (A)
in general, and the properties of these sets might be quite di�erent from those
of the classical numerical range W (A) and certainly worth investigating.

It is not di�cult to verify that for any S 2 Hn,

WS(A) = W+
S (A) [W

+
�S(A):

Some authors use W+
S (A) as the de�nition for a numerical range of A in

inde�nite inner product spaces. For example, Bayasgalan [B] has done so and
has shown that the set W+

S (A) is convex if S is nonsingular and inde�nite.
However, we think that the lack of symmetry in the de�nition of W+

S (A) may
limit its usefulness. In fact in [B], the author later switches to the set WS(A)
and shows that its closure contains the spectrum of A if A is positive de�nite.
In this paper, we shall study both WS(A) and W+

S (A).
Since WS(A) and W

+
S (A) are well-de�ned even if S is singular, one might

be interested to learn the general structure and geometrical shape of these sets
for various kinds of S 2Hn. In fact, the convexity of W+

S (A) has been proven
for all positive semide�nite matrices S in [GP] under a slightly di�erent setup.

In addition to WS(A) and W+
S (A), we also consider the sets

VS(A) :=

�
hAv; vi

hSv; vi
: v 2 ICn; hSv; vi 6= 0

�
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and

V +
S (A) := fhAv; vi : v 2 ICn; hSv; vi= 1g ;

which have been studied by other researchers (e.g., see [GP]). Evidently, we
have

WS(A) = VS(SA); W+
S (A) = V +

S (SA); and VS(A) = V +
S (A)[�V +

�S(A):

To study the sets WS(A);W
+
S (A); VS(A) and V +

S (A), we use an approach
which is di�erent from that in [B] and [GP]. Our work is based on the real-
ization that these sets are closely related to the joint numerical range of k
Hermitian matrices H1; : : : ; Hk de�ned by

W (H1; : : : ; Hk) := f(hH1v; vi; : : : ; hHkv; vi) : v 2 ICn; hv; vi= 1g;

with k = 3. This joint numerical range is another generalization of the clas-
sical numerical range and is well studied (e.g., see [AT], [BL], [C], [Ju] and
their references). More precisely, the relationship between the S-numerical
ranges and the joint numerical range is illustrated in the following result, the
veri�cation of which is straightforward.

Lemma 1.1. For any A 2 Mn and S 2 Hn, let SA = H + iG with
H;G 2Hn, and de�ne

K(H;G; S) :=
[
��0

�W (H;G; S)(1)

= f(hHv; vi; hGv; vi; hSv; vi) : v 2 ICng :

Then,
(a) x+iy 2 WS(A) if and only if either (x; y; 1) or �(x; y; 1) lies in K(H;G; S),
(b) x+ iy 2 W+

S (A) if and only if (x; y; 1) 2 K(H;G; S).
It is easy to see that the same statements (a) and (b) of Lemma 1.1 are

true when A = H + iG for WS(A) replaced by VS(A) and W+
S (A) by V

+
S (A).

The idea of slicing the set K(H;G; S) to generate the numerical range
of an operator also appeared in [Fo] and a number of references ([BNa], [D1],
[D2], and some of their references) are relevant to our study. In fact, Brickman
[Br] has pointed out that the joint numerical ranges of three Hermitian forms
have been of interest since the time of Hausdor�.

The set K(H;G; S) de�ned in formula (1) is clearly a cone in IR3 (recall
that a subset K of a real linear space is called a cone if �x 2 K whenever
� > 0 and x 2 K). It is known (e.g., see [AT]) that, for any H;G; S 2 Hn,
the set W (H;G; S) is always convex if n > 2, and it is a (possibly degenerate)
elliptical shell (i.e., the surface of an ellipsoid) if n = 2. Quite simply one can
deduce the following result.
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Lemma 1.2. For any H;G; S 2 Hn, the set K(H;G; S) de�ned in (1) is
a convex cone.

By using Lemmas 1.1 and 1.2 and other auxiliary results, we shall give
detailed descriptions of the sets WS(A);W

+
S (A); VS(A) and V +

S (A) for arbi-
trary Hermitian matrices S in Section 2. The results are used to extend some
properties of the classical numerical range.

Linear operators L on Mn preserving WS(A), W
+
S (A), VS(A), or V

+
S (A)

will be characterized in Section 3. The study of linear operators on a matrix
space with preserver properties is currently an active research area in matrix
theory. The readers are referred to [Pi] for a recent survey on the subject.
The proofs of our results rely heavily on the geometrical properties of the
S-numerical ranges as developed in Section 2. This indicates that a good
understanding of the geometrical properties of S-numerical ranges is important
for the study of related problems and further development of the subject.

In the last section, we consider extension of our results to bounded linear
operators on in�nite dimensional Hilbert or Krein spaces. We believe that
the approach of studying numerical ranges of operators on an inde�nite inner
product space via the joint numerical range may lead to a deeper understand-
ing and more insights of the subject. Several open problems are presented
along this direction.

2. Geometrical Structure of the S-numerical Ranges. As shall be
seen (cf. Theorems 2.3 and 2.4), W+

S (A) and V +
S (A) are always convex, but

WS(A) and VS(A) are not. Nevertheless, WS(A) and VS(A) do enjoy some
nice geometrical properties. The following describes one such property. We
say that a nonempty subset X of IRm is p-convex if for any distinct pair of
points x; y 2 X , either

f�x+ (1� �)y : 0 � � � 1g � X

or

f�x+ (1� �)y : � � 0 or 1 � �g � X:

In other words, either the closed line segment [x; y] joining any two points x
and y in X is contained in X , or the line that passes through x and y, less
the relative interior of [x; y], is contained in X . We need the following two
lemmas to prove Theorems 2.3 and 2.4 below.

Lemma 2.1. Let K be a nonempty convex cone in IRm+1 and de�ne

P+ := fx 2 IRm : (x; 1) 2 Kg; P� := fx 2 IRm : �(x; 1) 2 Kg:

Then P+ and P� are convex. Moreover, if both P+ and P� are nonempty and
if P := P+ [ P� is not a singleton set, then both P+ and P� are unbounded
and P is p-convex.
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Proof. P+ and P� are both clearly convex. Suppose P+ and P� are
nonempty, and P+[P� is not a singleton set. Then there exist points x 2 P+

and y 2 P� with x 6= y. Being a convex cone, K must contain the line segment
L joining (x; 1) and �(y; 1), and hence the set [

�>0
�L belongs to K. Since

(�x+ (1� �)y; 1) 2
[
�>0

�L 8� � 1;

and

�(�x+ (1� �)y; 1) 2
[
�>0

�L 8� � 0;

it follows that both P+ and P� are unbounded, and that P = P+ [ P� is
p-convex.

Lemma 2.2. Let S 2 Hn have at least one positive eigenvalue. Then

span fv 2 ICn : v�Sv > 0g = ICn:

Proof. It is clear that the set E := fv 2 ICn : v�Sv > 0g is nonempty. Sup-
pose spanE 6= ICn. Take v 2 E and a nonzero w 2 E?, where the orthogonal
complement is taken with respect to the usual Euclidean inner product. Then
for a large enough real number �,

(�v + w)�S(�v + w) = j�j2v�Sv + 2Re(�w�Sv) + w�Sw > 0;

which implies �v + w 2 E, a contradiction.
We say that two matrices A;B 2Mn are simultaneously congruent to bA

and bB, respectively, if there exists a nonsingular matrix X 2 Mn such that
X�AX = bA and X�BX = bB. Suppose S is singular and X is nonsingular

such that X�SX = S1 � 0k with S1 2 Hn�k . Then X�SAX =

�
B1 B2

0 0

�
,

where B1 2Mn�k and B2 2 IC(n�k)�k . This justi�es our assumption on S and
SA in part (c) of the following theorem.

Theorem 2.3. Let A 2Mn and S 2 Hn. Then,
(a) W+

S (A) = ; if and only if S is negative semide�nite; WS(A) = ; if and
only if S = 0.
(b)WS(A) = f�g if and only if S 6= 0 and SA = �S for some � 2 IC; W+

S (A) =
f�g if and only if S has at least one positive eigenvalue and SA = �S for some
� 2 IC.
(c) Suppose the conditions in (a) and (b) do not hold. Let S and SA be

simultaneously congruent to S1�0k and

�
B1 B2

0 0

�
, respectively, where k > 0,

S1 2 Hn�k is nonsingular, B1 2 Mn�k and B2 2 IC(n�k)�k (for k = 0 take
S1 = S).
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(i) If B2 6= 0, then W+
S (A) = WS(A) = IC.

(ii) If B2 = 0 and S1 > 0, then W+
S (A) = WS(A) = W (S

� 1

2

1 B1S
� 1

2

1 ).
(iii) If B2 = 0 and S1 < 0, then WS(A) can be determined by the result of

(ii) above and the general fact that WS(A) = W�S(A).
(iv) If B2 = 0 and S1 is inde�nite, then W+

S (A) is an unbounded convex

set, and WS(A) = WS1(S
�1
1 B1) is the union of two unbounded convex

sets and is p-convex.
Consequently,W+

S (A) is always convex, and WS(A) is convex unless condition
(c)(iv) holds.

Proof. Let SA = H + iG with H;G 2 Hn. We �rst deal with W+
S (A).

Since W+
S (A) is essentially the intersection of K(H;G; S) with the plane IR2�

f1g (Lemma 1.1), and K(H;G; S) is a convex cone (Lemma 1.2), it is always
convex.
Notice that S is negative semide�nite if and only if the equation v�Sv = 1 has
no solution v 2 ICn. Hence (a) holds.
Suppose W+

S (A) = f�g. Then S has at least one positive eigenvalue by (a).

Since, by Lemma 1.1, K(H;G; S)\
�
IR2 � f1g

�
is a singleton set fpg where

p = (Re�; Im�; 1), the convex coneK(H;G; S) is contained in the line passing
through p and the origin. It then follows that v�(H + iG� �S)v = 0 for all
v 2 ICn, and hence SA = H + iG = �S. Conversely, if SA = �S and S has at
least one positive eigenvalue, then it follows immediately from the de�nition
that ; 6= W+

S (A) = f�g. Hence (b) holds.
Next assume that S and A satisfy the hypotheses in (c). We �rst suppose
B2 6= 0. By our assumption, S and hence S1 have some positive eigenvalues.
By Lemma 2.2 there exists u 2 ICn�k such that u�S1u > 0 and u�B2 6= 0.
Choose v 2 ICk such that u�B2v 6= 0, and consider the function f : IC ! IC
de�ned by

f(�) :=
u�B1u+ �u�B2v

u�S1u
=

(X(u+ �v))�SA(X(u+ �v))

(X(u+ �v))�S(X(u+ �v))
:

Note that f(�) 2 W+
S (A) for all �. As u�B2v 6= 0, the range of f is IC and

hence (c)(i) holds.
If B2 = 0 and S1 > 0, then

W+
S (A) =

�
(Xv)�SA(Xv)

(Xv)�S(Xv)
: v 2 ICn; (Xv)�S(Xv)> 0

�
=

�
v�B1v

v�S1v
: 0 6= v 2 ICn�k

�
= W

�
S
� 1

2

1 B1S
� 1

2

1

�
:

Hence (c)(ii) holds.
Suppose S1 is inde�nite. Then S is inde�nite, and hence K(H;G; S) contains
some points above the xy-plane and some points below it. Moreover, since



ELA
Numerical Ranges of an Operator 7

H + iG is not a (complex) scalar multiple of S by our assumption, the convex
cone K(H;G; S) is not a line passing through the origin. HenceW+

S (A), which

is essentially K(H;G; S)\
�
IR2 � f1g

�
, is unbounded. Therefore the assertion

in (c)(iv) holds.

Now we consider WS(A). AsWS(A) = W+
S (A)[W

+
�S(A), parts (a), (b), (c)(i),

and (c)(ii) follow immediately from the results onW+
S (A). Part (c)(iii) follows

easily from the de�nition. It remains to prove (c)(iv). Let S and SA satisfy
the hypotheses in (c)(iv). Let B1 = H1+ iG1 where H1; G1 2 Hn�k . Since S1
is inde�nite, K := K(H1; G1; S1) contains some points above the xy-plane and
some points below. As H1 + iG1 is not a (complex) scalar multiple of S1 by
assumption, the convex cone K is not a line passing through the origin, and
hence it contains some points (x; y; 1) and �(x0; y0; 1) with (x; y) 6= (x0; y0).
Note that by Lemma 1.1, (x + iy) 2 WS(A) = WS1(S

�1
1 B1) if and only if

(x; y; 1) 2 K or �(x; y; 1) 2 K. By Lemma 2.1, (c)(iv) holds.

We make several remarks in connection with Theorem 2.3.

1. The sets W+
S (A) and WS(A) are nonempty and bounded if and only if (b)

or (c)(ii) (or (c)(iii) for the case of WS(A)) of the above theorem holds. In
these cases both sets are closed.

2. Moreover, the set W+
S (A) is always convex, and WS(A) fails to be convex

only if we have case (c)(iv), when it is p-convex. With this exception noted,
the previous theorem thus extends the classical convexity result of Hausdor�
and Toeplitz of 77 years ago to be (almost) true for W+

S (A) or WS(A) in
inde�nite inner product spaces as well.

3. The setsWS(A) andW
+
S (A) may not be closed in case (c)(iv). For example,

if S =

�
0 1
1 0

�
and A =

�
�1 0
2 1

�
then WS(A) = fz 2 IC : Re(z) 6= 0g and

W+
S (A) = fz 2 IC : Re(z) > 0g are not closed.

4. It is well-known for the classical numerical range that W (A) = f�g if and
only if A = �I . Theorem 2.3(b) can be viewed as a generalization of this fact.

For VS(A) and V +
S (A), we have the following analogous result.

Theorem 2.4. Let A 2Mn and S 2 Hn. Then,
(a) V +

S (A) = ; if and only if S is negative semide�nite; VS(A) = ; if and only
if S = 0.
(b) VS(A) = f�g if and only if S 6= 0 and A = �S for some � 2 IC;
V +
S (A) = f�g if and only if S has at least one positive eigenvalue and A = �S

for some � 2 IC.
(c) Suppose the conditions in (a) and (b) do not hold. Let S and A be simulta-

neously congruent to S1 � 0k and

�
A1 A2

A3 A4

�
, respectively, where 0 � k < n,

S1 2 Hn�k is nonsingular, and A1 2 Mn�k (for k = 0 take S1 = S and
A1 = A).

(i) If S1 > 0 and A2; A3 and A4 are zero, then V +
S (A) = VS(A) =
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W (S
� 1

2

1 A1S
� 1

2

1 ).
(ii) If S1 > 0 and at least one of A2; A3; A4 is nonzero, then both V +

S (A)
and VS(A) are unbounded and convex.

(iii) If S1 < 0, then VS(A) can be determined by the results of (i), (ii)
above and the fact that VS(A) = �V�S(A).

(iv) If S1 is inde�nite, then V +
S (A) is unbounded and convex, whereas

VS(A) is unbounded and p-convex.
Consequently, V +

S (A) is always convex, and VS(A) is convex unless (c)(iv)
holds.

Proof. We �rst deal with V +
S (A). We only need to prove part (c), as

a proof of the other parts is similar to that of Theorem 2.3. Let S and A
satisfy the hypotheses in (c). If A2; A3 and A4 are zero, then clearly V +

S (A) =

V +
S1
(A1) = W (S

� 1

2

1 A1S
� 1

2

1 ) which is compact. Conversely, suppose V +
S (A) is

bounded. Without loss of generality we let S = S1 � 0k and A = (aij). Let
fe1; : : : ; eng be the standard basis for ICn and let 1 � i � (n�k) < j � n.
Consider the function g : IC! IC de�ned by

g(�) :=
(ei + �ej)

�A(ei + �ej)

(ei + �ej)�S(ei + �ej)
=
aii + �aij + ��aji + j�j2ajj

e�iS1ei
:

Notice that g(�) 2 V +
S (A) and hence g is bounded uniformly for all � 2 IC.

One can then deduce that aij = aji = ajj = 0 for all 1 � i � (n� k) < j � n.
Hence A = A1 � 0k. This proves (c) for the set V

+
S (A).

The result for VS(A) can be easily deduced from the fact that VS(A) = V +
S (A)[

�V +
�S(A).
Concurrent with our work, Grigorie� and Plato [GP, Lemma 2.1, Theorem

2.2] have given an even more detailed description of V +
S (A) for the case S � 0

than that in (c)(i) and (c)(ii) above.
It is well-known that W (A) � IR for the classical numerical range if and

only if A is Hermitian. The next corollary extends this result. We call a
matrix A 2Mn S-Hermitian if SA 2 Hn.

Corollary 2.5. Let A 2Mn and S 2 Hn. Then,
(a) ; 6= WS(A) � IR (or ; 6= VS(A) � IR, respectively) if and only if S 6= 0
and A is S-Hermitian (or A is Hermitian, respectively);
(b) ; 6= W+

S (A) � IR (or ; 6= V +
S (A) � IR, respectively) if and only if S

has at least one positive eigenvalue and A is S-Hermitian (or A is Hermitian,
respectively).

Proof. We consider onlyW+
S (A). The proofs forWS(A); VS(A) and V

+
S (A)

are similar. Let SA = H + iG, where H;G 2 Hn, and let K(H;G; S) be
de�ned as in (1). Suppose ; 6= W+

S (A) � IR. Then S has at least one
positive eigenvalue by Theorem 2.3(a), and by Lemma 1.1(b), the set P :=

K(H;G; S)\
�
IR2 � f1g

�
is nonempty and is contained in the xz-plane of IR3.
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This and the fact that K(H;G; S) is a convex cone (Lemma 1.2) imply that
K(H;G; S) itself is contained in the xz-plane of IR3: for if K(H;G; S) contains
some point p := (x; y; z) with y 6= 0, and p0 := (x0; 0; 1) 2 P , then K(H;G; S)
contains all points of the form (�x+�x0; �y; �z+�) = �p+�p0 with �; � � 0
and, since there exist �; � � 0 that satisfy �y 6= 0 and �z + � = 1, it follows
that P is not contained in the xz-plane | a contradiction. Consequently we
have v�Gv = 0 for all v 2 ICn. Thus G = 0, or equivalently A is S-Hermitian.
By reversing the argument, we obtain the converse statement.

3. Linear Maps Preserving WS(A);W
+
S (A); VS(A); or V +

S (A). This
section is devoted to the study of those linear operators L on Mn that satisfy
one of the following linear preserver properties

W+
S (L(A)) = W+

S (A) for all A 2Mn;(2)

WS(L(A)) = WS(A) for all A 2Mn;(3)

V +
S (L(A)) = V +

S (A) for all A 2Mn;(4)

VS(L(A)) = VS(A) for all A 2Mn;(5)

where S 2 Hn is a given matrix. To make the study more sensible, we impose
some mild conditions on S. For example, in (2) and (4) we shall assume that S
has at least one positive eigenvalue; for otherwise W+

S (A) = V +
S (A) = ; for all

A and thus L can be of any form. Similarly we shall assume that S 6= 0 in (3)
and (5). As can be seen, the proofs in this section rely heavily on the results
concerning the geometrical properties of WS(A);W

+
S (A); VS(A) and V +

S (A)
obtained in the previous section.

3.1. Statement of Results, Examples, and Remarks. By the result
in [P], a linear operator L on Mn satis�es

W (L(A)) = W (A) for all A 2Mn

if and only if L is of the form A 7! X�AX or A 7! X�AtX for some unitary
matrix X . It turns out that the linear operators L that satisfy (4) have a very
similar structure as shown in the following theorem.

Theorem 3.1. Suppose S 2 Hn has at least one positive eigenvalue. A
linear operator L on Mn satis�es V +

S (L(A)) = V +
S (A) for all A 2Mn if and

only if L is of the form
(a) A 7! X�AX for some nonsingular X 2Mn satisfying X�SX = S, or
(b) A 7! X�AtX for some nonsingular X 2Mn satisfying X�StX = S.

The structure of those linear operators that satisfy (5) is slightly more
complicated. For example, if n = 2k and S = Ik � �Ik, then the linear

operator L de�ned by L(A) := �X�AX with X =

�
0k Ik
Ik 0k

�
satis�es (5).

More generally, we have the following result for (5).
Theorem 3.2. Suppose 0 6= S 2 Hn. A linear operator L onMn satis�es

VS(L(A)) = VS(A) for all A 2Mn if and only if there exists � = �1 such that
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L is of the form
(a) A 7! �X�AX for some nonsingular X 2Mn satisfying X�SX = �S, or
(b) A 7! �X�AtX for some nonsingular X 2Mn satisfying X�StX = �S.

For linear operators L to satisfy (2) and (3), the conditions are much more
complicated. For example, if S = In�k � 0k, then (2) and (3) are satis�ed by
any linear operator L on Mn of the form

A =

�
A1 A2

A3 A4

�
7!

�
A1 A2

�a(A) �b(A)

�
;

where A1 2 Mn�k , and �a : Mn ! ICk�(n�k), �b : Mn ! Mk are arbitrary
linear transformations. As can be easily seen, such complications will not
arise when S is nonsingular. In fact, if we impose the assumption that S is
nonsingular, the statements of our results for (2) and (3) and the proofs would
be much simpler. For the sake of completeness, however, we shall present
the results and proofs for (2) and (3) for the general case. When stating our
theorems, we shall use �X and 	X to denote the following linear operators on
Mn de�ned by

�X(A) := X�AX; 	X(A) := X�1AX;

respectively, where X 2 Mn is nonsingular. Clearly �X and 	X are the
congruence transform and the similarity transform induced by X . We shall
use � to denote the transpose operator on Mn, i.e., �(A) := At.

Theorem 3.3. Let S 2 Hn have at least one positive eigenvalue and
satisfy R�SR = S1 � 0k for some nonsingular R 2 Mn and a nonsingular
S1 2 Hn�k (0 � k < n).
A linear operator L on Mn satis�es W+

S (L(A)) = W+
S (A) for all A 2 Mn if

and only if 	R � L �	R�1 is of the form�
A1 A2

A3 A4

�
7!

�
�1(A1) + �2(A2) �3(A2)

�a(A) �b(A)

�
(6)

in which the block matrix partitioning is compatible with that of S1 � 0k =�
S1 0
0 0

�
, �1; �2; �3; �a and �b are linear with �3 nonsingular, and

(a) �1 = 	X for some nonsingular X 2Mn�k satisfying �X(S1) = S1, or
(b) �1 = 	X �� for some nonsingular X 2Mn�k satisfying �X ��(S

�1
1 ) = S1,

and there are no further restrictions on �2; �a; �b.
Theorem 3.4. Let 0 6= S 2 Hn be such that R�SR = S1 � 0k for some

nonsingular R 2Mn and a nonsingular S1 2 Hn�k (0 � k < n).
A linear operator L on Mn satis�es WS(L(A)) = WS(A) for all A 2 Mn if
and only if 	R �L �	R�1 is of the form in (6), where �1; �2; �3; �a and �b are
linear with �3 nonsingular, and there exists � = �1 with
(a) �1 = 	X for some nonsingular X 2Mn�k satisfying �X(S1) = �S1, or
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(b) �1 = 	X�� for some nonsingularX 2Mn�k satisfying �X��(S
�1
1 ) = �S1,

and there are no further restrictions on �2; �a; �b.
Several remarks are in order in connection with Theorems 3.1 { 3.4.

1. From Theorems 3.1 and 3.2, we see that apart from the trivial cases of
S = 0 for VS(�) and S � 0 for V +

S (�), the linear preservers of VS(�) or V
+
S (�)

must be nonsingular, even for singular S.
2. If S in Theorem 3.3 or 3.4 is nonsingular, we may take R = I and S = S1,
so that linear preservers L of W+

S (�) (or of WS(�)) are indeed the �1 described
in (a) and (b) of Theorem 3.3 (or in (a) and (b) of Theorem 3.4). In this case,
L must be nonsingular. But for singular S, the operator L could be singular.
3. In Theorems 3.3 and 3.4, one can always choose R so that R�SR = Ir �
�Is � 0t, the inertia matrix of S.
4. In Theorems 3.2 and 3.4, � may assume the value �1 if and only if S
has balanced inertia, i.e., if S has the same number of positive and negative
eigenvalues.
5. If S = I , then all of our Theorems 3.1 { 3.4 reduce to the classical result in
[P].

3.2. Proofs. We shall �rst prove the su�ciency parts of Theorems 3.1
and 3.2. Next we shall show that linear preservers of V +

S (�) or VS(�) are
preservers of rank-1 Hermitian matrices. Then we can apply a result in [L] on
linear preservers of rank-1 Hermitian matrices to prove the necessity parts of
Theorems 3.1 and 3.2. Finally, we shall apply Theorems 3.1 and 3.2 to prove
Theorems 3.3 and 3.4.

Lemma 3.5. Let S 2 Hn.
(a) Suppose L is of the form (a) or (b) in Theorem 3.1. Then V +

S (L(A)) =
V +
S (A) for all A 2Mn.

(b) Suppose L is of the form (a) or (b) in Theorem 3.2. Then VS(L(A)) =
VS(A) for all A 2Mn.

Proof. Each statement can be veri�ed directly. As an illustration, we
shall show that if L is in the form of (b) in Theorem 3.2 with � = �1, then
VS(L(A)) = VS(A) for all A 2 Mn. Notice that by assumption L(A) =
�X�AtX and �X�StX = S. Hence

VS(L(A)) = V�X�StX(�X
�AtX) =

(
v�(�X�AtX)v

v�(�X�StX)v
: v�(�X�StX)v 6= 0

)

=

�
v�Av

v�Sv
: v�Sv 6= 0

�
= VS(A):

We now prove the necessity part of Theorem 3.1.
Lemma 3.6. Suppose S 2 Hn has at least one positive eigenvalue. If

V +
S (L(A)) = V +

S (A) for all A 2 Mn then L is of form (a) or (b) in Theo-
rem 3.1.

Proof. Notice that if S = R�DR where R is nonsingular and D = Ir �
�Is�0t, one can easily verify that V

+
S (A) = V +

D (R��AR�1), where R�� stands
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for (R�1)�. Notice further that V +
S (L(A)) = V +

S (A) for all A if and only if

V +
D (bL(A)) = V +

D (A) for all A, where bL(A) := R��(L(R�AR))R�1. Thus we
may assume without loss of generality that S = D = Ir��Is � 0t with r > 0.
Suppose V +

D (L(A)) = V +
D (A) for all A 2Mn. We are going to show that L is

of the form A 7! U�AU or A 7! U�AtU , where U is nonsingular and satis�es
U�DU = D. Then the result will follow.
Consider the usual inner product h�; �i in Mn de�ned by hA;Bi := tr (AB�).
Recall that the dual transformation L� of L is the linear operator that satis�es
hL(A); Bi = hA;L�(B)i for all A;B 2 Mn. Since L satis�es VD(L(A)) =
VD(A) for all A, it follows that hA;L

�(�+)i = hA;�+i for all A, where

�+ := fvv� : v 2 ICn; hD; vv�i = 1g:(7)

Consequently we have L�(conv�+) = conv�+ and, by the linearity of L�,
the restriction of L� on conv�+ is one-to-one. Since �+ is the set of all
extreme points of conv�+, it follows that L

�(�+) = �+. Since e1e
�
1 2 �+,

we have L�(e1e�1) = uu� 2 �+ for some u 2 ICn. We claim that L� maps the
set of rank one Hermitian matrices into itself. In fact, if v 2 ICn is such that
hD; vv�i > 0, then �vv� 2 �+ for some � > 0. Thus L�(�vv�) 2 �+ is a
rank one Hermitian matrix. If v 2 ICn is such that hD; vv�i � 0, then consider
v(�) = �e1 + v. For all su�ciently large � > 0; hD; v(�)v(�)�i > 0. Hence
L�(v(�)v(�)�) = �2L�(e1e�1) + �L�(e1v� + ve�1) + L�(vv�) has rank one for
all su�ciently large � > 0 (and hence for in�nitely many �) by the previous
discussion. It follows that L�(vv�) has rank one. Using Theorem 4 from [L],
we conclude that L� is of the form A 7! UAU� or A 7! UAtU t. One can easily
check that consequently L is of form A 7! U�AU or A 7! U�AtU . Finally
f1g = V +

D (D) = V +
D (L(D)) = V +

D (U�DU), thus using Theorem 2.4(b) we see
that U�DU = D.

The following proves the necessity part of Theorem 3.2.
Lemma 3.7. Suppose 0 6= S 2 Hn. If VS(L(A)) = VS(A) for all A 2Mn,

then L is of form (a) or (b) in Theorem 3.2.
Proof. With an argument similar to that in the proof of Lemma 3.6, we

assume without loss of generality that S = D = Ir � �Is � 0t with r + s > 0.
Suppose VD(L(A)) = VD(A) for all A. Then L� satis�es

hA;L�(�)i = hA;�i for all A;(8)

where � := �+
S
�� with �+ de�ned in (7) and

�� := f�vv� : v 2 ICn; hD;�vv�i = 1g:

If one of �+ and �� is empty then the other must be nonempty and, by
the argument used in the proof of Lemma 3.6, L is of the form (a) or (b) of
Theorem 3.2 with � = 1. Suppose both �+ and �� are nonempty (i.e., both
r > 0 and s > 0). Then it may not be true that � is the set of extreme
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points of conv�, and the proof used for Lemma 3.6 need not work. Hence we
proceed with the following argument instead.
As the real linear span of � equalsHn, (8) implies that L

�, and hence L as well,
maps Hn onto Hn and thus L must be invertible. Observe that 0 =2 hA;�i for
any de�nite matrix A. On the other hand, if X 2 Hn is zero or inde�nite then
there exists a de�nite A 2 Hn such that hA;Xi = 0. With (8), we conclude
that

L�(�) � (H+ [ �H+) n f0ng;

where H+ denotes the cone of positive semide�nite matrices in Hn. Take any
element E0 2 �+. If L�(E0) 2 H+ then we must have L�(�+) � H+; for
if there is another E1 2 �+ with L�(E1) 2 �H+, then, since �+ is path
connected, there must be some E 2 �+ such that L�(E) is either zero or
inde�nite | a contradiction. Similarly, if L�(E0) 2 �H+ then we must have
L�(�+) � �H+. We consider the case L�(�+) � H+ �rst.

Since f1g = hD;�+i, by (8) we have L�(�+) � bH+, where bH+ := fH 2
H+ : hD;Hi = 1g is a convex set with �+ as the set of extreme points. It

then follows that L�( bH+) � bH+. As this is true for (L�)�1 as well, we have

L�( bH+) = bH+ and hence L�(�+) = �+. Now we can repeat the argument
used in the proof of Lemma 3.6 to show that L is of the form (a) or (b) of
Theorem 3.2 with � = 1.
If L�(�+) � �H+ then, using the arguments in the preceding paragraph, we

can show that (�L)�( bH+) = bH+. Hence L is of the form A 7! �U�AU or
A 7! �U�AtU for some nonsingular U . Since f1g = VD(D) = VD(L(D)) =
VD(�U

�DU), we have �U�DU = D by Theorem 2.4(b). Hence L is of the
form (a) or (b) of Theorem 3.2 with � = �1.

Next we present the proof of Theorem 3.4. The proof of Theorem 3.3 is
similar and simpler and shall be omitted.

Proof of Theorem 3.4. We �rst consider the case of S = S1 being nonsin-
gular. For any linear operator L on Mn, de�ne bL by bL(A) = SL(S�1A). This

establishes a one-to-one correspondence between L and bL. Since WS(A) =

VS(SA), we can easily deduce that VS(bL(A)) = VS(A) for all A if and only
if WS(L(A)) = WS(A) for all A. Then we can apply Theorem 3.2 to show
that WS(L(A)) = WS(A) for all A if and only if L = �1, where �1 is of the
form described in (a) or (b) of Theorem 3.4. This proves Theorem 3.4 for
nonsingular S.
Now suppose that S is singular and that R�SR = S1�0k, where both R 2Mn

and S1 2 Hn�k are nonsingular. It is easy to deduce thatWS(A) = WS(L(A))
for all A if and only if

VS1�0k((S1 � 0k)A) = VS1�0k((S1 � 0k)�(A))(9)

for all A, where �(A) := R�1L(RAR�1)R = 	R � L � 	R�1(A). Write A =
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A1 A2

A3 A4

�
, in which the block partition is compatible with that of S1� 0k =�

S1 0
0 0

�
. Let � be of the form

�
A1 A2

A3 A4

�
7!

�P4
j=1 �1j(Aj)

P4
j=1 �2j(Aj)

�a(A) �b(A)

�
:

Then (9) is satis�ed for all A if and only if

VS1�0k

�
S1A1 S1A2

0 0

�
= VS1�0k

�P4
j=1 S1�1j(Aj)

P4
j=1 S1�2j(Aj)

0 0

�
(10)

for all A.
Suppose (10) is satis�ed for all A. By putting A1 = 0 and A2 = 0, the left hand
side of (10) becomes f0g. By Theorem 2.4(b), we conclude that �13; �14; �23
and �24 are all zero. Now take A2 = 0 and A1 2 S�11 Hn�k . By Corollary 2.5,
the left hand side of (10) is contained in IR. This and Corollary 2.5 imply
that �21(S

�1
1 Hn�k) = f0g. Since the complex span of Hn�k equals Mn�k ,

this implies that �21 is zero. By putting A2 = 0, (10) becomes VS1(S1A1) =
VS1(S1�11(A1)), or equivalently, WS1(A1) = WS1(�11(A1)) for all A1. By the
result at the beginning of the proof, �11 is of the form of �1 in (a) or (b) of
Theorem 3.4. In particular, �11 is nonsingular. Finally, let A1 2 Mn�k be

such that S1�11(A1) = B1 > 0. Suppose there exists a nonzero B2 2 IC(n�k)�k

such that �22(B2) = 0. Take A2 = �B2, where � > 0. Then the left hand side

of (10) becomes WS1�0k

�
A1 �B2

0 0

�
, which is equal to IC by Theorem 2.3. On

the other hand, the right hand side of (10) then becomes VS1(B1+�S1�12(B2)).
Let � > 0 be the smallest eigenvalue of B1. For � small enough and for any
nonzero v 2 ICn�k , we have

jv�(B1 + �S1�12(B2))vj � (�� �kS1�12(B2)k) kvk
2 > 0;

where the symbol k � k denotes the Euclidean vector norm on ICn�k and the
corresponding induced matrix norm on Mn�k , respectively. Thus 0 is not
contained in the right hand side of equation (10) | a contradiction. Hence �22
must be nonsingular. Consequently, � is of the form described in Theorem 3.4,
with �11 = �1, �12 = �2 and �22 = �3.
Conversely, if L is of the form described in Theorem 3.4, with �1 in the form
of (a) or (b), then one can easily deduce that (9) is satis�ed for all A, which
implies WS(A) = WS(L(A)) for all A.

4. Further Extensions and Research. For a bounded linear operator
A on an in�nite dimensional Hilbert space (H; h�; �i) equipped with a sesquilin-
ear form (u; v) 7! hu; viS := hSu; vi, where S is self-adjoint, one may de�ne
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WS(A) as

WS(A) :=

�
hAv; viS
hv; viS

: v 2 H; hv; viS 6= 0

�
;

and de�ne W+
S (A); VS(A), and V +

S (A) analogously. By writing SA or A as
H + iG, where H and G are self-adjoint, and considering the joint numerical
range W (H;G; S) and the convex cone K(H;G; S) (the de�nitions of which
are the same as those for the �nite dimensional case), one may obtain some
results analogous to Theorems 2.3, 2.4, and Corollary 2.5. For instance, we
have the following proposition.

Proposition 4.1. Let A and S be bounded linear operators on H such
that S = S�. Then,
(a) W+

S (A) is always convex.
(b) W+

S (A) = ; if and only if S is negative semide�nite.
WS(A) = ; if and only if S = 0.
(c) W+

S (A) = f�g if and only if there exists v 2 H with hSv; vi > 0 and
SA = �S for some � 2 IC.
WS(A) = f�g if and only if S 6= 0 and SA = �S for some � 2 IC.
(d) ; 6= W+

S (A) � IR if and only if there exists v 2 H with hSv; vi > 0 and
SA is self-adjoint.
; 6= WS(A) � IR if and only if S 6= 0 and SA is self-adjoint.
(e) If S is semide�nite then WS(A) is convex.
(f) If S is inde�nite and SA 6= �S for any � 2 IC, then WS(A) is unbounded
and p-convex.

It is worth mentioning that one has to be careful when applying the �nite
dimensional techniques to study in�nite dimensional operators. For example,
in the in�nite dimensional case, even if S is positive de�nite, S�1 may not
exist, and therefore one may not be able to obtain a condition such as (c)(ii)
of Theorem 2.3.

Next, we turn to another generalization. Given Hermitian matrices (or
operators, if the space ICn is changed to an in�nite dimensional Hilbert space)
S;H1; : : : ; Hk, one may de�ne:

VS(H1; : : : ; Hk) := f(hH1v; vi; : : : ; hHkv; vi)=hSv; vi : v 2 ICn; hSv; vi 6= 0g ;

V +
S (H1; : : : ; Hk) := f(hH1v; vi; : : : ; hHkv; vi) : v 2 ICn; hSv; vi= 1g :

The joint S-numerical ranges WS(H1; : : : ; Hk) and W+
S (H1; : : : ; Hk) can be

similarly de�ned for S-Hermitian matrices (or operators) H1; : : : ; Hk, so that
the resulting sets are subsets in IRk. Note that (x; y) 2 WS(H1; H2) if and
only if x + iy 2 WS(H1 + iH2), and thus our results (e.g., Theorem 2.3 and
Corollary 2.5) on WS(A) can be rephrased to hold for WS(H1; H2). Similar
conclusions can be drawn for VS(H1; H2) and VS(H1 + iH2), etc. It is known
that if k � 3 and S is inde�nite then, in general, W+

S (H1; : : : ; Hk) may not be
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convex and WS(H1; : : : ; Hk) may not be p-convex. It would be of interest to
study the properties of WS(H1; : : : ; Hk), etc., for general k � 3.

We emphasize that this paper is intended as a starting point for studying
the numerical range of operators on an inde�nite inner product space using
the theory of the joint numerical range and the cone generated by it. There
are many open problems whose study may lead to a better understanding of
linear operators acting on an inde�nite inner product space. We describe a
few of them in the following questions.

1. It is known (e.g., see [HJ]) that W (A) is the convex hull of �(A), the
spectrum of A, if A 2Mn is normal. Is there an analogous result for WS(A)
and S-normal matrices A? (Note thatA is S-normal if AS�1A�S = S�1A�SA,
see e.g. [GLR, pp. 84{85].)

2. It is known that A 2 Mn is unitary if and only if W (A) � D :=
fz 2 IC : jzj � 1g and �(A) � @D, the boundary of D. Can one get a
similar characterization for S-unitary matrices? (Note that A is S-unitary if
A�SA = S, see, e.g., [GLR, p. 25].)

One item of interest is to verify spectral containment such as �(A) �
WS(A) in the �nite dimensional or Hilbert space setting. It was proved in [B]
that for positive operators A the closure of WS(A) contains the eigenvalues of
A. Clearly if u is an isotropic eigenvector for A with hu; uiS = 0, this vector
u cannot contribute to the set WS(A). If we call a vector u anisotropic if
hu; uiS 6= 0, and use the term anisotropic spectrum �a(A) to denote the set of
eigenvalues of A with anisotropic eigenvectors, then clearly �a(A) � WS(A)

and hence �a(A) � WS(A), generalizing the result of [B]. But an eigenvalue
might be isotropic and not be repeated for A and still appear in WS(A). For

example, if S =

�
0 1
1 0

�
and A =

�
x z
0 y

�
with x 6= y and z 6= 0, then x

is an eigenvalue which is isotropic and not repeated for A, and x 2 WS(A).
Related to these observations, one may ask the following questions.

3. Since every set WS(A) contains all of the anisotropic part of the spec-
trum of A, what shape and signi�cance does their intersection

T
S2Hn

WS(A)
have?

4. How can one classify the matrices and operators A and S for which
spectral containment �(A) � WS(A) holds?

Concerning the geometrical properties of the S-numerical ranges, one may
ask the following questions.

5. Are the boundary curves of the S-numerical ranges algebraic curves as
shown to be true for those of W (A) by Fiedler [F]?

6. How can one plot the S-numerical ranges VS(A) and WS(A), possibly
using the ideas and algorithm of Johnson for plotting W (A) in [J]?
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