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BLOCK REPRESENTATIONS OF THE DRAZIN INVERSE OF A
BIPARTITE MATRIX∗
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Abstract. Block representations of the Drazin inverse of a bipartite matrix A =

2
4 0 B

C 0

3
5 in

terms of the Drazin inverse of the smaller order block product BC or CB are presented. Relationships

between the index of A and the index of BC are determined, and examples are given to illustrate

all such possible relationships.
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1. Introduction. Let A be an n × n real or complex matrix. The index of A

is the smallest nonnegative integer q such that rankAq+1 = rankAq. The Drazin
inverse of A is the unique matrix AD satisfying

AAD = ADA(1.1)

ADAAD = AD(1.2)

Aq+1AD = Aq,(1.3)

where q = index A (see, for example, [1, Chapter 4], [2, Chapter 7]). If index A = 0,
then A is nonsingular and AD = A−1. If index A = 1, then AD = A#, the group
inverse of A. See [1], [2], [8] and references therein for applications of the Drazin
inverse.

The problem of finding explicit representations for the Drazin inverse of a general
2 × 2 block matrix in terms of its blocks was posed by Campbell and Meyer in [2].
Since then, special cases of this problem have been studied. Some recent papers
containing representations for the Drazin inverse of such 2× 2 block matrices are [3],
[4], [6], [7], [8], [9], [11] and [12]; however the general problem remains open.
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In this article, we consider n × n block matrices of the form

(1.4) A =


 0 B

C 0


 ,

where B is p × (n − p), C is (n − p) × p and the zero blocks are square. Since the
digraph associated with a matrix of the form (1.4) is bipartite, we call such a matrix
a bipartite matrix. In section 2, we give block representations for the Drazin inverse
of a bipartite matrix. These block representations are given in terms of the Drazin
inverse of either BC or CB, both of which are matrices of smaller order than A. These
formulas for AD when A has the form (1.4) cannot, to our knowledge, be obtained
from known formulas for the Drazin inverse of 2× 2 block matrices. In section 3, we
describe relations between the index of the matrix BC and the index of A, and in
section 4 we give examples to illustrate these results.

2. Block representations for AD. The following result gives the Drazin in-
verse of a bipartite matrix in terms of the Drazin inverse of a product of its subma-
trices.

Theorem 2.1. Let A be as in (1.4). Then

(2.1) AD =


 0 (BC)DB

C(BC)D 0


 .

Furthermore, if index BC = s, then index A ≤ 2s+ 1.

Proof. Denote the matrix on the right hand side of (2.1) by X . Then

AX =


 0 B

C 0





 0 (BC)DB

C(BC)D 0


 =


 BC(BC)D 0

0 C(BC)DB


 ,

XA =


 0 (BC)DB

C(BC)D 0





 0 B

C 0


 =


 (BC)DBC 0

0 C(BC)DB
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and

XAX =


 (BC)DBC 0

0 C(BC)DB





 0 (BC)DB

C(BC)D 0




=


 0 (BC)DBC(BC)DB

C(BC)DBC(BC)D 0




=


 0 (BC)DB

C(BC)D 0


 by (1.2).

Thus, X satisfies AX = XA by (1.1) and XAX = X . Let index BC = s. Then

A2s+2X =


 (BC)s+1 0

0 (CB)s+1





 0 (BC)DB

C(BC)D 0




=


 0 (BC)s+1(BC)DB

(CB)s+1C(BC)D 0




=


 0 (BC)sB

C(BC)s+1(BC)D 0


 by (1.3) and associativity

=


 0 (BC)sB

C(BC)s 0


 by (1.3)

= A2s+1.

By [2, Theorem 7.2.3], index A ≤ 2s+ 1 and X = AD.

We now give three lemmas, the results of which are used to write AD in terms
of (CB)D, rather than (BC)D as in (2.1). Lemma 2.2 is an easy exercise using the
definition of the Drazin inverse, and Lemma 2.3 is proved in [2, p. 149] for square
matrices but that proof holds for the more general case stated below.

Lemma 2.2. If U is an n × n matrix, then (U2)D = (UD)2.

Lemma 2.3. If V is m × n and W is n × m, then (V W )D = V [(WV )2]DW .

Lemma 2.4. If B is p×(n−p) and C is (n−p)×p, then (BC)DB = B(CB)D.

Proof. By Lemmas 2.2 and 2.3, (BC)D = B[(CB)2]DC = B[(CB)D]2C. Us-
ing (1.1) and (1.2), this gives (BC)DB = B[(CB)D]2CB = B(CB)D(CB)DCB =
B(CB)DCB(CB)D = B(CB)D.
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Note that Lemma 2.4 implies that (CB)DC = C(BC)D and thus Theorem 2.1
gives the following four representations for the Drazin inverseAD of a bipartite matrix.

Corollary 2.5. Let A be as in (1.4). Then

AD =


 0 (BC)DB

C(BC)D 0


 =


 0 B(CB)D

C(BC)D 0




=


 0 (BC)DB

(CB)DC 0


 =


 0 B(CB)D

(CB)DC 0


 .

We end this section with some special cases for AD in Corollary 2.5. If A is
nonsingular, then B and C are necessarily square and nonsingular, and the formulas
in Corollary 2.5 reduce to

A−1 =


 0 C−1

B−1 0


 .

If BC is nilpotent, then both (BC)D and AD are zero matrices. If C = B∗ is (n−p)×p

with rankB < p, then BB∗ is singular and Hermitian; thus index BB∗ = 1. As A

is also Hermitian, index A = 1. In this case, AD = A# = A†, the Moore-Penrose
inverse of A, with

AD =


 0 (BB∗)†B

B∗(BB∗)† 0


 =


 0 B∗†

B† 0


 = A†.

3. Index of A from the index of BC. Results in this section that we state
for index A in terms of BC and index BC could alternatively be stated in terms of
CB and index CB.

Let A be as in (1.4). Then for j = 0, 1, . . .

A2j =


 (BC)j 0

0 (CB)j




and

A2j+1 =


 0 (BC)jB

C(BC)j 0


 =


 0 B(CB)j

(CB)jC 0


 .
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Thus,

(3.1) rankA2j = rank(BC)j + rank(CB)j

and

(3.2) rankA2j+1 = rank(BC)jB + rankC(BC)j .

Let s = index BC and suppose that s = 0. If n = 2p, then B and C are both p×p

invertible matrices and index A = 0. In this case, AD = A−1. Otherwise, if n �= 2p,
then rankBC = rankB = rankC = rankCB = p, index A = 1 and AD = A# as
given in [5, Theorem 2.2] in terms of (BC)−1.

We use the following rank inequality (see [10, page 13]) of Frobenius in the proof
of some of the results in this section.

Lemma 3.1. (Frobenius Inequality) If U is m × k, V is k × n and W is n × p,
then

rankUV + rankV W ≤ rankV + rankUV W.

Theorem 3.2. Let A be as in (1.4) and suppose that index BC = s ≥ 1. Then
index A = 2s − 1, 2s or 2s+ 1.

Proof. From Theorem 2.1, index A ≤ 2s+ 1. By Lemma 3.1,

rankB(CB)s−1 + rank(CB)s−1C ≤ rank(CB)s−1 + rank(BC)s

< rank(CB)s−1 + rank(BC)s−1,

since index BC = s. Thus, using (3.1) and (3.2), rankA2s−1 < rankA2s−2 and index
A > 2s − 2. Therefore, index A = 2s − 1, 2s or 2s+ 1.

In the following three theorems, we give necessary and sufficient conditions for
each of the values of index A which are identified in Theorem 3.2.

Theorem 3.3. Let A be as in (1.4) and suppose that index BC = s ≥ 1. Then
index A = 2s − 1 if and only if
(i) rank(BC)s = rank(BC)s−1B and rank(CB)s = rank(CB)s−1C, or
(ii) rank(BC)s = rank(CB)s−1C and rank(CB)s = rank(BC)s−1B.

Proof. From Theorem 3.2, index A ≥ 2s − 1. Now, using (3.1) and (3.2),
rankA2s = rankA2s−1 if and only if rank(BC)s + rank(CB)s = rank(BC)s−1B +
rank(CB)s−1C, or equivalently, (i) or (ii) holds. Thus, index A = 2s − 1 if and only
if either of the above rank conditions hold.
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Note that if index A = 2s − 1, then in fact rank(BC)s = rank(BC)s−1B =
rank(CB)s = rank(CB)s−1C. The conditions of Theorem 3.3 hold for any Hermitian
bipartite matrix A (as in (1.4) with C = B∗) since index BB∗ = 1 = index A.

Lemma 3.4. If index BC = s, then

rank(BC)s+1 = rank(BC)s = rank(BC)sB = rankC(BC)s = rank(CB)s+1.

Proof. Let t = rank(BC)s. Since index BC = s, it follows that t = rank(BC)s =
rank(BC)s+1 = rank(BC)sB = rankC(BC)s, where the latter two equalities hold as
t = rank(BC)s+1 ≤ rank(BC)sB ≤ rank(BC)s = t and t = rank(BC)s+1 ≤
rankC(BC)s ≤ rank(BC)s = t. By Lemma 3.1,

rankC(BC)s + rank(BC)sB ≤ rank(BC)s + rank(CB)s+1

so

2t ≤ t+ rank(CB)s+1 = rankA2s+2 ≤ rankA2s+1 = 2t.

Thus, rank(CB)s+1 = t.

Theorem 3.5. Let A be as in (1.4) and suppose that index BC = s ≥ 1. Then
index A = 2s if and only if index CB = s and (i) rank(BC)s < rank(BC)s−1B or
(ii) rank(CB)s < rank(CB)s−1C.

Proof. Suppose that index A = 2s. Let t = rank(BC)s. Then

rankA2s = rankA2s+1 = 2t < rankA2s−1,

where the second equality follows from Lemma 3.4. Since rankA2s = rank(BC)s +
rank(CB)s = 2t, it follows that rank(CB)s = t. Using (3.2),

rankA2s−1 = rank(BC)s−1B + rankC(BC)s−1

= rankB(CB)s−1 + rank(CB)s−1C

≤ rank(CB)s−1 + rank(BC)s by Lemma 3.1

= rank(CB)s−1 + t.

Thus,

2t < rankA2s−1 ≤ rank(CB)s−1 + t

and therefore t < rank(CB)s−1. This shows that index CB = s since rank(CB)s+1 =
t by Lemma 3.4. Also, if rank(BC)s = rank(BC)s−1B and rank(CB)s =
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rank(CB)s−1C, then by Theorem 3.3(i), index A = 2s − 1, a contradiction. Thus,
rank(BC)s < rank(BC)s−1B or rank(CB)s < rank(CB)s−1C.

On the other hand, suppose that index CB = s and (i) or (ii) holds. Since (i) or
(ii) holds, index A �= 2s−1 from Theorem 3.3. If index A = 2s+1, then rankA2s+1 <

rankA2s or equivalently rank(BC)sB + rankC(BC)s < rank(BC)s + rank(CB)s.
Thus, Lemma 3.4 implies that t < rank(CB)s, contradicting index CB = s and
showing by Theorem 3.2 that index A = 2s.

If A is as in (1.4) with index BC = index CB = s ≥ 1, then index A is 2s or
2s− 1, depending on whether or not one of the rank conditions (i) or (ii) in Theorem
3.5 holds. Note that if neither of these rank conditions holds, then the rank condition
(i) of Theorem 3.3 holds. For example, if A is as in (1.4) with

B = C =


 1 0

0 0


 ,

then index BC = index CB = 1 = s, and index A = 1 = 2s− 1. Note that neither of
the rank conditions in Theorem 3.5 holds.

Theorem 3.6. Let A be as in (1.4) and suppose that index BC = s ≥ 1. Then
index A = 2s+ 1 if and only if rank(CB)s > rank(CB)sC.

Proof. Let t = rank(BC)s and suppose that index A = 2s + 1. Then as in
the proof of Theorem 3.5, it follows that t < rank(CB)s. But by Lemma 3.4,
rank(CB)s+1 = rank(CB)sC = rankC(BC)s = t. Thus, rank(CB)s > rank(CB)sC.
For the converse, rank(CB)s > rank(CB)sC implies that rank(BC)s + rank(CB)s >

rank(BC)sB + rankC(BC)s. That is, rankA2s > rankA2s+1 and by Theorem 3.2,
index A = 2s+ 1.

Corollary 3.7. Let A be as in (1.4) and suppose that index BC = s ≥ 1. Then
index A = 2s+ 1 if and only if index CB = s+ 1.

Proof. Suppose that index A = 2s + 1. Theorem 3.6 gives rank(CB)s >

rank(CB)sC ≥ rank(CB)s+1 so index CB ≥ s + 1. The index assumptions on A

and BC give rankA2s+2 = rankA2s+4 and rank(BC)s+1 = rank(BC)s+2, and using
(3.1), these imply that rank(CB)s+1 = rank(CB)s+2. Thus, index CB = s+ 1. For
the converse, if index CB = s + 1, then rank(CB)s > rank(CB)s+1 so rankA2s >

rankA2s+2 by (3.1). Using (3.1), (3.2) and Lemma 3.4, rankA2s+2 = rankA2s+1 and
it follows that index A = 2s+ 1.

4. Examples. We give examples to illustrate each of the indices in Theorem 3.2
and the associated Drazin inverses.
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Example 4.1. Let

A =




0 0 0 1 0

0 0 0 1 −2
0 0 0 −1 1

1 1 1 0 0

1 1 2 0 0




=


 0 B

C 0


 .

Then

BC =




1 1 1

−1 −1 −3
0 0 1


 ,

and it is easily shown that index BC = 2 = s. Since rankA = 4, rankA2 = 3 and
rankA3 = rankA4 = 2, it follows that index A = 3 = 2s − 1. By the formula in [2,
Theorem 7.7.1] for the Drazin inverse of a 2 × 2 block triangular matrix and noting
that the leading block of BC is a 2× 2 nilpotent matrix,

(BC)D =




0 0 −1
0 0 −1
0 0 1


 ,

giving

AD =


 0 (BC)DB

C(BC)D 0


 =




0 0 0 1 −1
0 0 0 1 −1
0 0 0 −1 1

0 0 −1 0 0

0 0 0 0 0




.

It is easily verified that conditions (i) and (ii) of Theorem 3.3 are satisfied.

Example 4.2. Let

A =


 0 B

I 0


 ,
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where B is a p×p singular matrix with index B = s ≥ 1, and C = I, the p×p identity
matrix. Then index CB = s and rank(CB)s < rank(CB)s−1C; thus by Theorem 3.5,
index A = 2s. In this case, by Theorem 2.1,

AD =


 0 BDB

BD 0


 .

Example 4.3. Let A be the 7× 7 matrix

A =




0 0 0 −1 0 0 1

0 0 0 1 1 0 0

0 0 0 0 1 1 0

1 1 0 0 0 0 0

0 −1 1 0 0 0 0

0 0 −1 0 0 0 0

1 0 0 0 0 0 0




=


 0 B

C 0


 ,

for which the directed graph D(A) is a path graph (see, for example, [5]). Then

BC =




0 −1 0

1 0 1

0 −1 0


 and (BC)2 =




−1 0 −1
0 −2 0

−1 0 −1


 ,

so rankBC = rank(BC)2 = 2 and index BC = 1 = s. Thus, (BC)D = (BC)# and
as the directed graph D(BC) is a path graph, (BC)# is given by [5, Corollary 3.8]:

(BC)# =
1
2




0 1 0

−1 0 −1
0 1 0


 .
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Using Theorem 2.1,

AD =


 0 (BC)#B

C(BC)# 0


 =

1
2




0 0 0 1 1 0 0

0 0 0 1 −1 −1 −1
0 0 0 1 1 0 0

−1 1 −1 0 0 0 0

1 1 1 0 0 0 0

0 −1 0 0 0 0 0

0 1 0 0 0 0 0




.

Note that rankCB = 3 > rankCBC = 2 and index CB = 2; thus by Theorem 3.6 or
Corollary 3.7, index A = 2s+ 1 = 3. Although A# does not exist, (BC)# does exist
and thus results in [5] can be applied to determine AD in this example.
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