THE STRUCTURE OF LINEAR PRESERVERS OF LEFT MATRIX MAJORIZATION ON $\mathbb{R}^{P *}$

FATEMEH KHALOOEI ${ }^{\dagger}$ AND ABBAS SALEMI ${ }^{\dagger}$

Abstract

For vectors $X, Y \in \mathbb{R}^{n}, Y$ is said to be left matrix majorized by $X\left(Y \prec_{\ell} X\right)$ if for some row stochastic matrix $R, Y=R X$. A linear operator $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ is said to be a linear preserver of \prec_{ℓ} if $Y \prec_{\ell} X$ on \mathbb{R}^{p} implies that $T Y \prec_{\ell} T X$ on \mathbb{R}^{n}. The linear operators T : $\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ $(n<p(p-1))$ which preserve \prec_{ℓ} have been characterized. In this paper, linear operators $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ which preserve \prec_{ℓ} are characterized without any condition on n and p.

Key words. Row stochastic matrix, Doubly stochastic matrix, Matrix majorization, Weak matrix majorization, Left (right) multivariate majorization, Linear preserver.

AMS subject classifications. 15A04, 15A21, 15A51.

1. Introduction. Let $M_{n m}$ be the algebra of all $n \times m$ real matrices. A ma$\operatorname{trix} R=\left[r_{i j}\right] \in M_{n m}$ is called a row stochastic (resp., row substochastic) matrix if $r_{i j} \geq 0$ and $\Sigma_{k=1}^{m} r_{i k}=1$ (resp., ≤ 1) for all i, j. For A, B in $M_{n m}, A$ is said to be left matrix majorized by $B\left(A \prec_{\ell} B\right)$, if $A=R B$ for some $n \times n$ row stochastic matrix R. These notions were introduced in [11]. If $A \prec_{\ell} B \prec_{\ell} A$, we write $A \sim_{\ell} B$. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator. T is said to be a linear preserver of \prec_{ℓ} if $Y \prec_{\ell} X$ on \mathbb{R}^{p} implies that $T Y \prec_{\ell} T X$ on \mathbb{R}^{n}. For more information about types of majorization see [1], [5] and [10]; for their preservers see [2]-[4], [6] and [9].

We shall use the following conventions throughout the paper: Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a nonzero linear operator and let $[T]=\left[t_{i j}\right]$ denote the matrix representation of T with respect to the standard bases $\left\{e_{1}, e_{2}, \ldots, e_{p}\right\}$ of \mathbb{R}^{p} and $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ of \mathbb{R}^{n}. If $p=1$, then all linear operators on \mathbb{R}^{1} are preservers of \prec_{ℓ}. Thus, we assume $p \geq 2$. Let A_{i} be $m_{i} \times p$ matrices, $i=1, \ldots, k$. We use the notation $\left[A_{1} / A_{2} / \ldots / A_{k}\right]$ to denote the corresponding $\left(m_{1}+m_{2}+\ldots+m_{k}\right) \times p$ matrix. We let $e=(1,1, \ldots, 1)^{t} \in \mathbb{R}^{p}$, and denote

$$
\begin{align*}
& a: \\
& b:=\max \left\{\max T\left(e_{1}\right), \ldots, \max T\left(e_{p}\right)\right\}, \tag{1.1}\\
&\left.\min T\left(e_{1}\right), \ldots, \min T\left(e_{p}\right)\right\}
\end{align*}
$$

[^0]Theorem 1.1. ([9, Theorem 2.2]) Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a nonzero linear preserver of \prec_{ℓ} and suppose $p \geq 2$. Then $p \leq n, b \leq 0 \leq a$ and for each $i \in\{1, \ldots, p\}$, $a=\max T\left(e_{i}\right)$ and $b=\min T\left(e_{i}\right)$. In particular, every column of $[T]$ contains at least one entry equal to a and at least one entry equal to b.

Definition 1.2. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator. We denote by P_{i} (resp., N_{i}) the sum of the nonnegative (resp., non positive) entries in the $i^{t h}$ row of [T]. If all the entries in the $i^{t h}$ row are positive (resp., negative), we define $N_{i}=0$ (resp., $P_{i}=0$).

We know that T is a linear preserver of \prec_{ℓ} if and only if αT is also a linear preserver of \prec_{ℓ} for some nonzero real number α. Without loss of generality we make the following assumption.

Assumption 1.3. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a nonzero linear preserver of \prec_{ℓ}. Let a and b be as in (1.1). We assume that $0 \leq-b \leq 1=a$.

Definition 1.4. Let P be the permutation matrix such that $P\left(e_{i}\right)=e_{i+1}$, $1 \leq i \leq p-1, P\left(e_{p}\right)=e_{1}$. Let I denote the $p \times p$ identity matrix, and let $r, s \in \mathbb{R}$ be such that $r s<0$. Define the $p(p-1) \times p$ matrix $\mathcal{P}_{p}(r, s)=\left[P_{1} / P_{2} / \ldots / P_{p-1}\right]$, where $P_{j}=r I+s P^{j}$, for all $j=1,2, \ldots, p-1$. It is clear that up to a row permutation, the matrices $\mathcal{P}_{p}(r, s)$ and $\mathcal{P}_{p}(s, r)$ are equal. Also define $\mathcal{P}_{p}(r, 0):=r I, \mathcal{P}_{p}(0, s):=s I$ and $\mathcal{P}_{p}(0,0)$ as a zero row.

The structure of all linear operators $T: M_{n m} \rightarrow M_{n m}$ preserving matrix majorizations was considered in $[6,7,8]$. Also the linear operators T from \mathbb{R}^{p} to \mathbb{R}^{n} that preserve the left matrix majorization \prec_{ℓ} were characterized in [9] for $n<p(p-1)$. In the present paper, we will characterize all linear preservers of \prec_{ℓ} mapping \mathbb{R}^{p} to \mathbb{R}^{n} without any additional conditions.
2. Left matrix majorization. In this section we obtain a key condition that is necessary for $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ to be a linear preserver of \prec_{ℓ}. We first need the following.

LEMMA 2.1. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator such that $\min T(Y) \leq$ $\min T(X)$ for all $X \prec_{\ell} Y$. Then T is a preserver of \prec_{ℓ}.

Proof. Let $X \prec_{\ell} Y$. It is enough to show that $\max T(X) \leq \max T(Y)$. Since $X \prec_{\ell}$ $Y,-X \prec_{\ell}-Y$, and hence $\min T(-Y) \leq \min T(-X)$. This means that $\max T(X) \leq$ $\max T(Y)$. Then T is a preserver of $\prec_{\ell} . \square$

REmARK 2.2. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear preserver of \prec_{ℓ} and let a and b be as in Assumption 1.3. By Theorem 1.1 we know that in each column of $[T]=\left[t_{i j}\right]$ there is at least one entry equal to $a(=1)$ and at least one entry equal to b. For $1 \leq k \leq p$,
we define

$$
I_{k}=\left\{i: 1 \leq i \leq n, t_{i k}=1\right\}, \quad J_{k}=\left\{j: 1 \leq j \leq n, t_{j k}=b\right\}
$$

Next we state the key theorem of this paper.
ThEOREM 2.3. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear preserver of \prec_{ℓ} and let a and b be as in Assumption 1.3. Then there exist $0 \leq \alpha \leq 1$ and $b \leq \beta \leq 0$ such that $\mathcal{P}_{p}(1, \beta)$ and $\mathcal{P}_{p}(\alpha, b)$ are submatrices of $[T]$, where $\mathcal{P}_{p}(r, s)$ is as in Definition 1.4.

Proof. Let $1 \leq k \leq p$ be a fixed number and let I_{k} and J_{k} be as in Remark 2.2. Since T is a linear preserver of \prec_{ℓ}, it follows that I_{k} and J_{k} are nonempty sets. Also $e_{k}+e_{l} \prec_{\ell} e_{k}, l \neq k$. Thus, the other entries in the $i^{t h}$ row, $i \in I_{k}$ (resp., $j^{t h}$ row, $j \in J_{k}$) are non positive (resp., nonnegative). Hence, $t_{i l} \leq 0, t_{j l} \geq 0, l \neq k, i \in I_{k}$, and $j \in J_{k}$. Let $\beta_{k}^{i}=\sum_{l \neq k} t_{i l} \leq 0, i \in I_{k}$ and $\alpha_{k}^{j}=\sum_{l \neq k} t_{j l} \geq 0, j \in J_{k}$. Set

$$
\begin{equation*}
\beta_{k}:=\min \left\{\beta_{k}^{i}, i \in I_{k}\right\}, \quad \alpha_{k}:=\max \left\{\alpha_{k}^{j}, j \in J_{k}\right\} \tag{2.1}
\end{equation*}
$$

Define $X_{k}=-(N+1) e_{k}+e$. Choose N_{0} large enough such that for all $N \geq N_{0}$ and $1 \leq i \leq n$,

$$
\begin{equation*}
\min T\left(X_{k}\right)=-N+\beta_{k} \leq-N t_{i k}+\sum_{l \neq k} t_{i l} \leq-N b+\alpha_{k}=\max T\left(X_{k}\right) \tag{2.2}
\end{equation*}
$$

We know that $X_{k} \sim_{\ell} X_{r}=-(N+1) e_{r}+e, 1 \leq r \leq p$ and T is a linear preserver of \prec_{ℓ}. Hence by (2.2), $\alpha:=\alpha_{k}=\alpha_{r}$ and $\beta:=\beta_{k}=\beta_{r}, 1 \leq r \leq p$. Also, $X_{k} \sim_{\ell}$ $-N e_{i}+e_{j}, i \neq j$. For each $N \geq N_{0}$, there exists $1 \leq h \leq n$ such that $-N t_{h i}+t_{h j}=$ $\min T\left(-N e_{i}+e_{j}\right)=\min T\left(X_{k}\right)=-N+\beta$ and for each $1 \leq i \leq p, 1 \leq j \leq p$ and $N \geq N_{0}$, there exists $1 \leq h \leq n$ such that $-N\left(1-t_{h i}\right)=t_{h j}-\beta$. It follows that $t_{h i}=1, t_{h j}=\beta$. Hence $\mathcal{P}_{p}(1, \beta)$ is a submatrix of [T]. Similarly, there exists N_{1}, such that for each $N \geq N_{1}$ there exists $1 \leq h \leq n$ so that $-N t_{h i}+t_{h j}=$ $\max T\left(-N e_{i}+e_{j}\right)=\max T\left(X_{k}\right)=-N b+\alpha$ and $-N\left(b-t_{h i}\right)=t_{h j}-\alpha$. Thus, $t_{h i}=b$ and $t_{h j}=\alpha$. Since $1 \leq i \neq j \leq p$ was arbitrary, $\mathcal{P}_{p}(b, \alpha)$ is a submatrix of [T]. Therefore, $\mathcal{P}_{p}(1, \beta)$ and $\mathcal{P}_{p}(b, \alpha)$ are submatrices of $[T]$.

REMARK 2.4. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $\widehat{T}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ be two linear operators such that $[T]=\left[T_{1} / T_{2} / \ldots / T_{n}\right]$ and let $[\widehat{T}]=\left[\widehat{T}_{1} / \widehat{T}_{2} / \ldots / \widehat{T}_{m}\right]$ be the matrix representation of these operators with respect to the standard basis. Let $\mathcal{R}(T)=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ be the set of all rows of $[T]$. If $\mathcal{R}(T)=\mathcal{R}(\widehat{T})$, then T preserves \prec_{ℓ} if and only if \widehat{T} preserves \prec_{ℓ}.

Lemma 2.5. Let T be a linear operator on \mathbb{R}^{p}. If $[T]=\mathcal{P}_{p}(\alpha, \beta), \alpha \beta \leq 0$, then T is a preserver of \prec_{ℓ}.

Proof. Without loss of generality, let $\beta \leq 0 \leq \alpha$ and let $X=\left(x_{1}, \ldots, x_{p}\right)^{t}, Y=$ $\left(y_{1}, \ldots, y_{p}\right)^{t} \in \mathbb{R}^{p}$ such that $X \prec_{\ell} Y$. Then $y_{m}=\min Y \leq x_{i} \leq \max Y=y_{M}$, for all $1 \leq i \leq p$. It is easy to check that $\alpha y_{m}+\beta y_{M} \leq \alpha x_{i}+\beta x_{j}$, for all $i \neq j \in\{1, \ldots, p\}$, which implies $\min T Y \leq \min T X$. Hence by Lemma 2.1, $T X \prec_{\ell} T Y$. \square
3. Left matrix majorization on \mathbb{R}^{2}. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ be a linear operator and let a, b, be as in Assumption 1.3. We consider the square $S=[b, 1] \times[b, 1]$ in \mathbb{R}^{2}.

Definition 3.1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ be a linear operator and let $[T]=\left[T_{1} / \ldots / T_{n}\right]$, where $T_{i}=\left(t_{i 1}, t_{i 2}\right), 1 \leq i \leq n$. Define

$$
\Delta:=\operatorname{Conv}\left(\left\{\left(t_{i 1}, t_{i 2}\right),\left(t_{i 2}, t_{i 1}\right), 1 \leq i \leq n\right\}\right) \subseteq \mathbb{R}^{2}
$$

Also, let $C(T)$ denote the set of all corners of Δ.
Lemma 3.2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ be a linear preserver of \prec_{ℓ} and $[T]=\left[T_{1} / \ldots / T_{n}\right]$, where $T_{j}=\left(t_{j 1}, t_{j 2}\right), 1 \leq j \leq n$. If for some $1 \leq i \leq n, t_{i 1} t_{i 2}>0$, then $T_{i} \notin C(T)$, where $C(T)$ is as in Definition 3.1.

Proof. Assume that, if possible, there exists $1 \leq i \leq n$ such that $T_{i} \in C(T)$ and $t_{i 1} t_{i 2}>0$. By Remark 2.4 we can assume that $[T]$ has no identical rows. Without loss of generality, we assume that there exist $1 \leq i \leq n$ and real numbers $m \leq M$ such that $t_{i 1}>0, t_{i 2}>0$ and $m t_{i 1}+M t_{i 2}<m t_{j 1}+M t_{j 2}, j \neq i$. Choose $\varepsilon>0$ small enough so that $m t_{i 1}+(M+\varepsilon) t_{i 2}<m t_{j 1}+(M+\varepsilon) t_{j 2}, j \neq i$. Since $(m, M)^{t} \prec_{\ell}(m, M+\varepsilon)^{t}$, $T(m, M)^{t} \prec_{\ell} T(m, M+\varepsilon)^{t}$. But $\min \left(T(m, M+\varepsilon)^{t}\right)=m t_{i 1}+(M+\varepsilon) t_{i 2}>m t_{i 1}+$ $M t_{i 2}=\min \left(T(m, M)^{t}\right)$, a contradiction.

Next we shall characterize all linear operators $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ which preserve \prec_{ℓ}.
THEOREM 3.3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then T is a linear preserver of \prec_{ℓ} if and only if $\mathcal{P}_{2}(x, y)$ is a submatrix of $[T]$ and $x y \leq 0$ for all $(x, y) \in C(T)$.

Proof. Let T be a linear preserver of \prec_{ℓ} with $0 \leq-b \leq 1=a$. Let $(x, y) \in C(T)$, then by Lemma 3.2, $x y \leq 0$. Without loss of generality, let $T_{i}=\left(t_{i 1}, t_{i 2}\right) \in C(T)$ and $t_{i 1} t_{i 2} \leq 0$. By Remark 2.4, we assume that $[T]$ has no identical rows. Then there exist real numbers $m, M \in \mathbb{R}$ such that $m t_{i 1}+M t_{i 2}<m t_{j 1}+M t_{j 2}, j \neq i$. Choose $\varepsilon_{0}>0$ small enough so that $(m-\varepsilon) t_{i 1}+(M+\varepsilon) t_{i 2}<(m-\varepsilon) t_{j 1}+(M+\varepsilon) t_{j 2}, j \neq i, 0<\varepsilon \leq \varepsilon_{0}$. Since $(M+\varepsilon, m-\varepsilon)^{t} \sim_{\ell}(m-\varepsilon, M+\varepsilon)^{t}, T(M+\varepsilon, m-\varepsilon)^{t} \sim_{\ell} T(m-\varepsilon, M+\varepsilon)^{t}$. Hence, for all $0<\varepsilon \leq \varepsilon_{0}$, there exist $1 \leq k \leq n$ such that $T_{k}=\left(t_{k 1}, t_{k 2}\right) \in C(T)$ and $(m-\varepsilon) t_{i 1}+(M+\varepsilon) t_{i 2}=\min T(m-\varepsilon, M+\varepsilon)^{t}=\min T(M+\varepsilon, m-\varepsilon)^{t}=$ $(M+\varepsilon) t_{k 1}+(m-\varepsilon) t_{k 2}$. Since $k \in\{1,2, \ldots, n\}$ is a finite set, there exists k such that $t_{k 1}=t_{i 2}$ and $t_{k 2}=t_{i 1}$. Therefore, $\mathcal{P}_{2}\left(t_{i 1}, t_{i 2}\right)$ is a submatrix of $[T]$.

Conversely, let $\mathcal{P}_{2}(x, y)$ be a submatrix of $[T]$ and suppose for all $(x, y) \in C(T)$,
$x y \leq 0$. Define the linear operator \widehat{T} on \mathbb{R}^{2} such that $[\widehat{T}]=\left[\mathcal{P}_{2}\left(x_{1}, y_{1}\right) / \cdots / \mathcal{P}_{2}\left(x_{r}, y_{r}\right)\right]$, where $\left(x_{i}, y_{i}\right) \in C(T), 1 \leq i \leq r$. By elementary convex analysis, we know that $\max T(X)=\max \widehat{T}(X)$ and $\min T(X)=\min \widehat{T}(X)$ for all $X \in \mathbb{R}^{2}$. Hence it is enough to show that \widehat{T} is a linear preserver of \prec_{ℓ}. By Lemma 2.5, each $\mathcal{P}_{2}\left(x_{i}, y_{i}\right)$ is a linear preserver of \prec_{ℓ}. Thus, \widehat{T} is a linear preserver of \prec_{ℓ}. \square
4. Left matrix majorization on \mathbb{R}^{p}. In this section we shall characterize all linear operators $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ which preserve \prec_{ℓ}. We shall prove several lemmas and prove the main theorem of this paper.

Definition 4.1. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator and let $[T]=\left[T_{1} / \ldots / T_{n}\right]$. Define

$$
\Omega:=\operatorname{Conv}\left(\left\{T_{i}=\left(t_{i 1}, \ldots, t_{i p}\right), 1 \leq i \leq n\right\}\right) \subseteq \mathbb{R}^{p}
$$

Also, let $C(T)$ be the set of all corners of Ω.
Lemma 4.2. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear preserver of \prec_{ℓ} and $[T]=\left[T_{1} / \ldots / T_{n}\right]$, where $T_{i}=\left(t_{i 1}, t_{i 2}, \ldots, t_{i p}\right), 1 \leq i \leq n$. Suppose there exists $1 \leq i \leq n$ such that $t_{i j}>0, \forall 1 \leq j \leq p$, or $t_{i j}<0, \forall 1 \leq j \leq p$. Then $T_{i} \notin C(T)$, where $C(T)$ is as in Definition 4.1.

Proof. Assume that, if possible, there exists $1 \leq i \leq n$ such that $T_{i} \in C(T)$ and $t_{i j}>0$, for all $1 \leq j \leq p$, or $t_{i j}<0$, for all $1 \leq j \leq p$. By Remark 2.4, without loss of generality, we can assume that $[T]$ has no identical rows and there exists $1 \leq i \leq n$ such that $t_{i j}>0$, for all $1 \leq j \leq p$. Since $T_{i} \in C(T)$, there exists $X=\left(x_{1}, \ldots, x_{p}\right)^{t}$ such that $x_{1} t_{i 1}+x_{2} t_{i 2}+\cdots+x_{p} t_{i p}<x_{1} t_{j 1}+x_{2} t_{j 2}+\cdots+$ $x_{p} t_{j p}, j \neq i$. Let $x_{k}=\max \left\{x_{i}, 1 \leq i \leq p\right\}$. Choose $\varepsilon>0$ small enough so that $x_{1} t_{i 1}+\cdots+\left(x_{k}+\varepsilon\right) t_{i k}+\cdots+x_{p} t_{i p}<x_{1} t_{j 1}+\cdots+\left(x_{k}+\varepsilon\right) t_{j k}+\cdots+x_{p} t_{j p}, j \neq i$. Define $\widehat{X}=\left(x_{1}, \ldots, x_{k}+\varepsilon, \ldots, x_{p}\right)^{t}$. Since $t_{i k}>0$, hence $\min T(X)=x_{1} t_{i 1}+x_{2} t_{i 2}+$ $\cdots+x_{p} t_{i p}<x_{1} t_{i 1}+\cdots+\left(x_{k}+\varepsilon\right) t_{i k}+\cdots+x_{p} t_{i p}=\min T(\widehat{X})$. But $X \prec_{\ell} \widehat{X}$, a contradiction.

Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator. Without loss of generality, we assume that $[T]=\left[T^{p} / T^{n} / \widetilde{T}\right]$, where all entries of T^{p} (resp., T^{n}) are positive (resp., negative) and each row of \widetilde{T} has nonnegative and non positive entries.

Corollary 4.3. Let T and \widetilde{T} be as above. Then T preserves \prec_{ℓ} if and only if $C(T)=C(\widetilde{T})$ and \widetilde{T} preserves \prec_{ℓ}, where $C(T)$ is as in Definition 4.1.

Proof. Let T preserve \prec_{ℓ}. By Lemma 4.2, $C(T)=C(\widetilde{T})$. Thus, if $X \in \mathbb{R}^{p}$, then $\max T(X)=\max \widetilde{T}(X)$ and $\min T(X)=\min \widetilde{T}(X)$. Therefore \widetilde{T} preserves \prec_{ℓ}. Conversely, let $C(T)=C(\widetilde{T})$. Then $\max T(X)=\max \widetilde{T}(X)$ and $\min T(X)=\min \widetilde{T}(X)$. Since \widetilde{T} preserves \prec_{ℓ}, T preserves \prec_{ℓ}.

Definition 4.4. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator. Define

$$
\Delta=\operatorname{Conv}\left(\left\{\left(P_{i}, N_{i}\right),\left(N_{i}, P_{i}\right): 1 \leq i \leq n\right\}\right)
$$

where P_{i}, N_{i} be as in (1.2). Let $E(T)=\left\{\left(P_{i}, N_{i}\right):\left(P_{i}, N_{i}\right)\right.$ is a corner of $\left.\Delta\right\}$. Let $1 \leq i \leq n$, define $[i]=\left\{j: 1 \leq j \leq n, P_{i}=P_{j}\right.$ and $\left.\mathrm{N}_{\mathrm{i}}=\mathrm{N}_{\mathrm{j}}\right\}$.

LEmma 4.5. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear preserver of \prec_{ℓ} and let $C(T), E(T)$ be as in Definitions 4.1, 4.4, respectively. If $\left(P_{r}, N_{r}\right) \in E(T)$ for some $1 \leq r \leq n$, then there exists $k \in[r]$ such that $T_{k} \in C(T)$.

Proof. Suppose there exist $1 \leq r \leq n$ such that $\left(P_{r}, N_{r}\right) \in E(T)$. Then there exists $m \leq M$ such that

$$
\begin{equation*}
P_{r} m+N_{r} M<P_{j} m+N_{j} M, j \notin[r] . \tag{4.1}
\end{equation*}
$$

Let $X \in \mathbb{R}^{p}$ such that $\min (X)=m$ and $\max (X)=M$. Then there exists $1 \leq k \leq n$ such that $\min T X=\sum_{l=1}^{p} t_{k l} x_{l}$. Hence

$$
\begin{equation*}
P_{r} m+N_{r} M \leq P_{k} m+N_{k} M \leq \sum_{l=1}^{p} t_{k l} x_{l}=\min T(X) \tag{4.2}
\end{equation*}
$$

Define $Y \in \mathbb{R}^{p}$ by $y_{l}=m$, if $t_{r l}>0$ and $y_{l}=M$, if $t_{r l} \leq 0$. Obviously $Y \prec_{\ell} X$. Since T preserves $\prec_{\ell}, T Y \prec_{\ell} T X$ which implies that

$$
\begin{equation*}
P_{k} m+N_{k} M \leq \sum_{l=1}^{p} t_{k l} x_{l}=\min T X \leq \min T Y \leq P_{r} m+N_{r} M \tag{4.3}
\end{equation*}
$$

Now, by (4.2) and (4.3), we have $P_{r} m+N_{r} M=P_{k} m+N_{k} M$. Thus by (4.1), $k \in[r]$ and $\min T X=\sum_{l=1}^{p} t_{k l} x_{l}$. Hence $T_{k} \in C(T)$ for some $k \in[r]$. प

Next we state the main result in this paper.
ThEOREM 4.6. Let T and $E(T)$ be as in Definition 4.4. Then T preserves \prec_{ℓ} if and only if $\mathcal{P}_{p}(\alpha, \beta)$ is a submatrix of $[T]$ for all $(\alpha, \beta) \in E(T)$.

Proof. Let T be a preserver of \prec_{ℓ} and let $\left(P_{r}, N_{r}\right) \in E(T)$. Then there exists $m \leq M$ such that $P_{r} m+N_{r} M<P_{j} m+N_{j} M, j \notin[r]$. Choose ε_{0} small enough so that for all $0<\varepsilon<\varepsilon_{0}$,

$$
P_{r}(m-\varepsilon)+N_{r}(M+\varepsilon)<P_{j}(m-\varepsilon)+N_{j}(M+\varepsilon), \quad j \notin[r]
$$

If $j \in[r]$, then $P_{j}=P_{r}$ and $N_{j}=N_{r}$. Thus

$$
\begin{equation*}
P_{r}(m-\varepsilon)+N_{r}(M+\varepsilon) \leq P_{j}(m-\varepsilon)+N_{j}(M+\varepsilon), \quad 1 \leq j \leq n \tag{4.4}
\end{equation*}
$$

Let $0<\varepsilon<\varepsilon_{0}$, be fixed and let $X^{\varepsilon}=\left(x_{1}^{\varepsilon}, \ldots, x_{p}^{\varepsilon}\right)^{t} \in \mathbb{R}^{p}$ with $\min X^{\varepsilon}=m-\varepsilon$ and $\max X^{\varepsilon}=M+\varepsilon$. As in the proof of Lemma 4.5, there exists $k \in[r]$ such that

$$
P_{r}(m-\varepsilon)+N_{r}(M+\varepsilon)=\min T\left(X^{\varepsilon}\right)=\sum_{l=1}^{p} t_{k l} x_{l}^{\varepsilon}
$$

Fix $i \neq j \in\{1, \ldots, p\}$ and define $Y^{\varepsilon}=\left(y_{1}^{\varepsilon}, \ldots, y_{p}^{\varepsilon}\right)^{t} \in \mathbb{R}^{p}$ such that $y_{i}^{\varepsilon}=m-\varepsilon$, $y_{j}^{\varepsilon}=M+\varepsilon$ and $y_{l}^{\varepsilon}=\gamma_{l}, \quad m-\varepsilon<\gamma_{l}<M+\varepsilon, l \neq i, j$. Since $X^{\varepsilon} \sim_{\ell} Y^{\varepsilon}, T X^{\varepsilon} \sim_{\ell} T Y^{\varepsilon}$, there exists $q \in[r]$ such that $t_{q i}(m-\varepsilon)+t_{q j}(M+\varepsilon)+\sum_{l \neq i, j} \gamma_{l} t_{q l}=P_{r}(m-\varepsilon)+$ $N_{r}(M+\varepsilon)$. Since $0<\varepsilon<\varepsilon_{0}$ and $m-\varepsilon \leq \gamma_{l} \leq M+\varepsilon, l \neq r, s$ are arbitrary, it is easy to show that there exists $s \in[r]$ such that $t_{s i}=P_{r}$ and $t_{s j}=N_{r}$ and $t_{s l}=0, l \neq i, j$. Therefore $[T]$ has $\mathcal{P}_{p}\left(P_{r}, N_{r}\right)$ as a submatrix.

Conversely, Let $E(T)=\left\{\left(P_{i_{1}}, N_{i_{1}}\right), \ldots,\left(P_{i_{s}}, N_{i_{s}}\right)\right\}$. Then up to a row permutation $[T]=\left[\mathcal{P}_{p}\left(P_{i_{1}}, N_{i_{1}}\right) / \ldots / \mathcal{P}_{p}\left(P_{i_{s}}, N_{i_{s}}\right) / Q\right]$.

Let \widehat{T} be the operator on \mathbb{R}^{p} such that $[\widehat{T}]=\left[\mathcal{P}_{p}\left(P_{i_{1}}, N_{i_{1}}\right) / \ldots / \mathcal{P}_{p}\left(P_{i_{k}}, N_{i_{k}}\right)\right]$. Let $T_{i} \in Q$ and suppose there exists $X \in \mathbb{R}^{p}$ such that

$$
\min T(X)=\sum_{l=1}^{p} t_{i l} x_{l} \leq \sum_{l=1}^{p} t_{j l} x_{l}, 1 \leq j \leq n
$$

Obviously, $P_{i} m+N_{i} M \leq \sum_{l=1}^{p} t_{i l} x_{l} \leq \sum_{l=1}^{p} t_{j l} x_{l}, 1 \leq j \leq n$, where $m=\min X$ and $M=\max X$. We know that $\left(P_{i}, N_{i}\right) \in \Delta$ and Δ is convex. Hence there is $1 \leq k \leq n$ such that $\left(P_{k}, N_{k}\right) \in E(T)$ and $P_{k} m+N_{k} M \leq P_{i} m+N_{i} M$. As in the proof of Lemma 4.5, $\min T X=P_{k} m+N_{k} M$. Then $\min \widehat{T} X \leq \min T X$. But we know that $\min T(X) \leq \min \widehat{T} X$ and thus $\min \widehat{T} X=\min T X$. Similarly, $\max \widehat{T} X=\max T X$. Therefore, T is a preserver of \prec_{ℓ} if and only if \widehat{T} preserves \prec_{ℓ}. By Lemma 2.5 each $\mathcal{P}_{p}\left(P_{i_{l}}, N_{i_{l}}\right)$ is a preserver of $\prec_{\ell}, 1 \leq l \leq k$. Hence \widehat{T} is a preserver of \prec_{ℓ} and the theorem is proved.

Next we state necessary conditions for $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ to be a linear preserver of \prec_{ℓ}. We use the notation of Theorem 2.3 in the following corollary.

Corollary 4.7. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator and let a and b be as given in (1.1). If the following conditions hold, then T is a linear preserver of \prec_{ℓ}.

- $[T] \operatorname{has}\left[\mathcal{P}_{p}(a, 0) / \mathcal{P}_{p}(0, b) / \mathcal{P}_{p}(a, b)\right]$ as a submatrix.
- $0 \leq P_{i} \leq a$ and $b \leq N_{i} \leq 0, \quad 1 \leq i \leq n$,
where P_{i} and $N_{i}, 1 \leq i \leq n$ are as in Definition 1.2.
Proof. It is clear that $E(T)=\{(a, 0),(0, b),(a, b)\}$. Since $[T]$ has $\mathcal{P}_{p}(a, 0), \mathcal{P}_{p}(0, b)$ and $\mathcal{P}_{p}(a, b)$ as submatrices, it follows by Theorem 4.6 that T is a linear preserver of $\prec_{\ell} . \square$

Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear preserver of \prec_{ℓ}, and let $[T]=\left[T^{1}\left|T^{2}\right| \ldots \mid T^{p}\right]$, where T^{i} is the $i^{t h}$ column of $[T]$. For $i \neq j \in\{1, \ldots, p\}$ define $T^{i j}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ such that $\left[T^{i j}\right]=\left[T^{i} \mid T^{j}\right]$.

Lemma 4.8. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear preserver of \prec_{ℓ}, and let $T^{i j}$ be as above. Then $T^{i j}$ is a linear preserver of \prec_{ℓ} for all $i \neq j \in\{1, \ldots, p\}$.

Proof. Let $i \neq j \in\{1, \ldots, p\}$ and let $x=\left(x_{1}, x_{2}\right)^{t}, y=\left(y_{1}, y_{2}\right)^{t} \in \mathbb{R}^{2}$ such that $x \prec_{\ell} y$. Define $X, Y \in \mathbb{R}^{p}$ such that $X_{i}=x_{1}, X_{j}=x_{2}, Y_{i}=y_{1}, Y_{j}=y_{2}$ and $X_{k}=Y_{k}=0$, for all $k \neq i, j$. It is obvious that $X \prec_{\ell} Y$ in \mathbb{R}^{p} and hence $T X \prec_{\ell} T Y$ in \mathbb{R}^{n}. But $T^{i j} x=x_{1} T^{i}+x_{2} T^{j}=T X \prec_{\ell} T Y=y_{1} T^{i}+y_{2} T^{j}=T^{i j} y$. Therefore, $T^{i j}$ is a linear preserver of \prec_{ℓ}.

The following example shows that the converse of Lemma 4.8 is not necessarily true.

Example 4.9. Assume $[T]=\left[\mathcal{P}_{3}(1,-0.5) / 0.250 .250 .25\right]$. Consider $X=$ $(-1,-1,-1)^{t}$ and $Y=(-1,-1,-0.75)^{t}$, we know that $X \prec_{\ell} Y$ and $\min T X<$ $\min T Y$. Thus T is not a linear preserver of \prec_{ℓ}. However, by Corollary 4.7, for all $i \neq j \in\{1,2,3\}, T^{i j}$ preserves \prec_{ℓ}.
5. Additional results. In this section we give short proofs of some Theorems from $[6,9]$.

Theorem 5.1. [6] Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear operator. Then T preserves \prec_{ℓ} if and only if T has the form $T(X)=(a I+b P) X$ for all $X \in \mathbb{R}^{2}$, where P is the 2×2 permutation matrix not equal to I, and $a b \leq 0$.

Proof. Let T be a preserver of \prec_{ℓ}. By Assumption 1.3, $a=1$. By Theorem 2.3, there exist $0 \leq \alpha \leq 1$ and $b \leq \beta \leq 0$ such that $P(1, \beta)$ and $P(b, \alpha)$ are submatrices of $[T]$. Since $[T]$ is a 2×2 matrix, $\beta=b$ and $\alpha=1$. Therefore, $[T]=\left[\begin{array}{ll}1 & b \\ b & 1\end{array}\right]$ and hence $T(X)=(I+b P) X$, for all $X \in \mathbb{R}^{2}$. Conversely, up to a row permutation, $[T]=\mathcal{P}_{2}(1, b)$ and by Lemma 2.5, T preserves $\prec_{\ell} . \square$

Theorem 5.2. [6] Let $p \geq 3$. Then $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ is a linear preserver of left matrix majorization if and only if T is of the form $X \mapsto a P X$ for some $a \in \mathbb{R}$ and some permutation matrix P.

Proof. By Assumption 1.3, we have $a=1$. Let T be a preserver of \prec_{ℓ}. By Theorem $2.3, b=0$ and $[T]$ has $\mathcal{P}_{p}(1,0)$ as a submatrix; hence, up to a row permutation, $[T]=\mathcal{P}_{p}(1,0)=I$. Conversely, by a row permutation, $[T]=\mathcal{P}_{p}(1,0)$; hence by Lemma 2.5, T preserves \prec_{ℓ}. \square

Theorem 5.3. ([9, Theorem 3.1]) For a linear preserver T of \mathbb{R}^{p} to \mathbb{R}^{n} the following assertions hold.
(a) If $n<2 p$ and $p \geq 3$, then T is nonnegative.
(b) If T is nonnegative, then there exists an $n \times n$ permutation matrix Q such that $[T]=Q[I / W]$, where W is a (possibly vacuous) $(n-p) \times p$ matrix of one of the following forms (i), (ii) or (iii):
(i) W is row stochastic;
(ii) W is row substochastic and has a zero row;
(iii) $W=[(c I) / B]$, where $0<c<1$ and B is an $(n-2 p) \times p$ row substochastic matrix with row sums at least c.
(c) Let Q be an $n \times n$ permutation matrix, and let W be an $(n-p) \times p$ matrix of the form (i), (ii), or (iii) in part (b). Then the operator $X \mapsto Q[X /(W X)]$ from \mathbb{R}^{p} into \mathbb{R}^{n} is a nonnegative linear preserver of \prec_{ℓ}.

Proof.
(a) Assume that, if possible, $b<0$. By Theorem $2.3 n \geq p(p-1)$. Since $p \geq$ $3, n \geq 2 p$, a contradiction.
(b) Since T is nonnegative, $N_{i}=0,1 \leq i \leq n$, and $0 \leq P_{i} \leq 1$. By Theorem 2.3, $[T]$ has $\mathcal{P}_{p}(1,0)$ as its submatrix and therefore up to a row permutation $[T]=[I / W]$. Let $c=\min \left\{P_{i}, 1 \leq i \leq n\right\}$. Then $E(T)=\{(1,0),(c, 0)\}$. By Theorem 4.6, $\mathcal{P}_{p}(c, 0)$ is a submatrix of $[T]$. If $c=1$ then (i) holds; if $c=0$ then (ii) holds and if $0<c<1$, then (iii) holds.
(c) Let $[T]=[I / W]$, where W is an $(n-p) \times p$ matrix of the form (i), (ii), or (iii) in part (b). Then $E(T)=\{(1,0),(c, 0)\}$. By Theorem 4.6, T is a nonnegative linear preserver of \prec_{ℓ}.

Theorem 5.4. ([9, Theorem 4.5]) Assume $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ is a linear preserver of $\prec_{\ell}, b<0$ and $2 p \leq n<p(p-1)$. Let P_{i} (resp., N_{i}) denote the sum of the positive (resp., negative) entries of the $i^{\text {th }}$ row of $[T]$. Then, up to a row permutation, $[T]=[I / b I / B]$ and $\min \left(N_{i}+b P_{i}\right)=b,(i=1,2, \ldots, n)$.

Proof. By Theorem 2.3, $\mathcal{P}_{p}(1, \beta)$ and $\mathcal{P}_{p}(\alpha, b)$ are submatrices of $[T]$. Since $n<$ $p(p-1), \beta=\alpha=0$ and $E(T)=\{(1,0),(0, b)\}$, where $E(T)$ is as in Definition4.4. Then up to a row permutation, $[T]=[I / b I / B]$ and $\min \{(b x+y):(x, y) \in \Delta\}=$ $\min \{(b x+y):(x, y) \in E(T)\}=b$. Therefore, $\min \left(N_{i}+b P_{i}\right)=b,(i=1,2, \ldots, n)$.

Acknowledgment. This research has been supported by the Mahani Mathematical Research Center and the Linear Algebra and Optimization Center of Excellence of the Shahid Bahonar University of Kerman.

REFERENCES

[1] T. Ando. Majorization, doubly stochastic matrices and comparison of eigenvalues. Linear Algebra Appl., 118:163-248, 1989.
[2] A. Armandnejad and A. Salemi. The structure of linear preservers of gs-majorization. Bull. Iranian Math. Soc., 32(2):31-42,2006.
[3] L.B. Beasley and S.-G. Lee. Linear operators preserving multivariate majorization. Linear Algebra Appl., 304:141-159, 2000.
[4] L.B. Beasley, S.-G. Lee, and Y.-H. Lee. Linear operators strongly preserving multivariate majorization with $T(I)=I$. Kyugpook Mathematics Journal, 39:191-194, 1999.
[5] R. Bhatia, Matrix Analysis. Springer-Verlag, New York, 1997.
[6] A.M. Hasani and M. Radjabalipour. Linear preservers of matrix majorization. Int. J. Pure Appl. Math., 32(4):475-482, 2006.
[7] A.M. Hasani and M. Radjabalipour. The structure of linear operators strongly preserving majorizations of matrices. Electron. J. Linear Algebra, 15:260-268, 2006.
[8] A.M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization. Linear Algebra Appl., 423(2/3):255-261, 2007.
[9] F. Khalooei, M. Radjabalipour, and P. Torabian. Linear preservers of left matrix majorization. Electron. J. Linear Algebra, 17:304-315, 2008.
[10] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications. Academic Press, New York, 1972.
[11] F. D. Martínez Pería, P. G. Massey, and L. E. Silvestre. Weak matrix-majorization. Linear Algebra Appl., 403:343-368, 2005.

[^0]: *Received by the editors November 18, 2008. Accepted for publication February 3, 2009. Handling Editor: Stephen J. Kirkland.
 ${ }^{\dagger}$ Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran (f_khalooei@yahoo.com, salemi@mail.uk.ac.ir).

