

THE STRUCTURE OF LINEAR PRESERVERS OF LEFT MATRIX MAJORIZATION ON \mathbb{R}^{P} *

FATEMEH KHALOOEI[†] AND ABBAS SALEMI[†]

Abstract. For vectors $X, Y \in \mathbb{R}^n$, Y is said to be left matrix majorized by X ($Y \prec_{\ell} X$) if for some row stochastic matrix R, Y = RX. A linear operator $T: \mathbb{R}^p \to \mathbb{R}^n$ is said to be a linear preserver of \prec_{ℓ} if $Y \prec_{\ell} X$ on \mathbb{R}^p implies that $TY \prec_{\ell} TX$ on \mathbb{R}^n . The linear operators $T: \mathbb{R}^p \to \mathbb{R}^n$ (n < p(p-1)) which preserve \prec_{ℓ} have been characterized. In this paper, linear operators $T: \mathbb{R}^p \to \mathbb{R}^n$ which preserve \prec_{ℓ} are characterized without any condition on n and p.

Key words. Row stochastic matrix, Doubly stochastic matrix, Matrix majorization, Weak matrix majorization, Left (right) multivariate majorization, Linear preserver.

AMS subject classifications. 15A04, 15A21, 15A51.

1. Introduction. Let M_{nm} be the algebra of all $n \times m$ real matrices. A matrix $R = [r_{ij}] \in M_{nm}$ is called a *row stochastic* (resp., *row substochastic*) matrix if $r_{ij} \geq 0$ and $\sum_{k=1}^{m} r_{ik} = 1$ (resp., ≤ 1) for all i, j. For A, B in M_{nm}, A is said to be *left matrix majorized* by $B (A \prec_{\ell} B)$, if A = RB for some $n \times n$ row stochastic matrix R. These notions were introduced in [11]. If $A \prec_{\ell} B \prec_{\ell} A$, we write $A \sim_{\ell} B$. Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. T is said to be a linear preserver of \prec_{ℓ} if $Y \prec_{\ell} X$ on \mathbb{R}^p implies that $TY \prec_{\ell} TX$ on \mathbb{R}^n . For more information about types of majorization see [1], [5] and [10]; for their preservers see [2]-[4], [6] and [9].

We shall use the following conventions throughout the paper: Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a nonzero linear operator and let $[T] = [t_{ij}]$ denote the matrix representation of Twith respect to the standard bases $\{e_1, e_2, \ldots, e_p\}$ of \mathbb{R}^p and $\{f_1, f_2, \ldots, f_n\}$ of \mathbb{R}^n . If p = 1, then all linear operators on \mathbb{R}^1 are preservers of \prec_ℓ . Thus, we assume $p \ge 2$. Let A_i be $m_i \times p$ matrices, $i = 1, \ldots, k$. We use the notation $[A_1/A_2/\ldots/A_k]$ to denote the corresponding $(m_1 + m_2 + \ldots + m_k) \times p$ matrix. We let $e = (1, 1, \ldots, 1)^t \in \mathbb{R}^p$, and denote

(1.1)
$$a := \max\{\max T(e_1), \dots, \max T(e_p)\},\ b := \min\{\min T(e_1), \dots, \min T(e_p)\}.$$

^{*}Received by the editors November 18, 2008. Accepted for publication February 3, 2009. Handling Editor: Stephen J. Kirkland.

[†]Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran (f_khalooei@yahoo.com, salemi@mail.uk.ac.ir).

89

THEOREM 1.1. ([9, Theorem 2.2]) Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a nonzero linear preserver of \prec_{ℓ} and suppose $p \geq 2$. Then $p \leq n, b \leq 0 \leq a$ and for each $i \in \{1, \ldots, p\}$, $a = \max T(e_i)$ and $b = \min T(e_i)$. In particular, every column of [T] contains at least one entry equal to a and at least one entry equal to b.

DEFINITION 1.2. Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. We denote by P_i (resp., N_i) the sum of the nonnegative (resp., non positive) entries in the i^{th} row of [T]. If all the entries in the i^{th} row are positive (resp., negative), we define $N_i = 0$ (resp., $P_i = 0$).

We know that T is a linear preserver of \prec_{ℓ} if and only if αT is also a linear preserver of \prec_{ℓ} for some nonzero real number α . Without loss of generality we make the following assumption.

ASSUMPTION 1.3. Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a nonzero linear preserver of \prec_{ℓ} . Let a and b be as in (1.1). We assume that $0 \leq -b \leq 1 = a$.

DEFINITION 1.4. Let P be the permutation matrix such that $P(e_i) = e_{i+1}$, $1 \leq i \leq p-1$, $P(e_p) = e_1$. Let I denote the $p \times p$ identity matrix, and let $r, s \in \mathbb{R}$ be such that rs < 0. Define the $p(p-1) \times p$ matrix $\mathcal{P}_p(r,s) = [P_1/P_2/\ldots/P_{p-1}]$, where $P_j = rI + sP^j$, for all $j = 1, 2, \ldots, p-1$. It is clear that up to a row permutation, the matrices $\mathcal{P}_p(r,s)$ and $\mathcal{P}_p(s,r)$ are equal. Also define $\mathcal{P}_p(r,0) := rI$, $\mathcal{P}_p(0,s) := sI$ and $\mathcal{P}_p(0,0)$ as a zero row.

The structure of all linear operators $T: M_{nm} \to M_{nm}$ preserving matrix majorizations was considered in [6, 7, 8]. Also the linear operators T from \mathbb{R}^p to \mathbb{R}^n that preserve the left matrix majorization \prec_{ℓ} were characterized in [9] for n < p(p-1). In the present paper, we will characterize all linear preservers of \prec_{ℓ} mapping \mathbb{R}^p to \mathbb{R}^n without any additional conditions.

2. Left matrix majorization. In this section we obtain a key condition that is necessary for $T : \mathbb{R}^p \to \mathbb{R}^n$ to be a linear preserver of \prec_{ℓ} . We first need the following.

LEMMA 2.1. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator such that $\min T(Y) \leq \min T(X)$ for all $X \prec_{\ell} Y$. Then T is a preserver of \prec_{ℓ} .

Proof. Let $X \prec_{\ell} Y$. It is enough to show that $\max T(X) \leq \max T(Y)$. Since $X \prec_{\ell} Y$, $-X \prec_{\ell} -Y$, and hence $\min T(-Y) \leq \min T(-X)$. This means that $\max T(X) \leq \max T(Y)$. Then T is a preserver of \prec_{ℓ} . \square

REMARK 2.2. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \prec_{ℓ} and let a and b be as in Assumption 1.3. By Theorem 1.1 we know that in each column of $[T] = [t_{ij}]$ there is at least one entry equal to a(=1) and at least one entry equal to b. For $1 \le k \le p$,

we define

$$I_k = \{i : 1 \le i \le n, t_{ik} = 1\}, \qquad J_k = \{j : 1 \le j \le n, t_{jk} = b\}.$$

Next we state the key theorem of this paper.

THEOREM 2.3. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \prec_{ℓ} and let a and b be as in Assumption 1.3. Then there exist $0 \leq \alpha \leq 1$ and $b \leq \beta \leq 0$ such that $\mathcal{P}_p(1,\beta)$ and $\mathcal{P}_p(\alpha, b)$ are submatrices of [T], where $\mathcal{P}_p(r, s)$ is as in Definition 1.4.

Proof. Let $1 \leq k \leq p$ be a fixed number and let I_k and J_k be as in Remark 2.2. Since T is a linear preserver of \prec_{ℓ} , it follows that I_k and J_k are nonempty sets. Also $e_k + e_l \prec_{\ell} e_k, l \neq k$. Thus, the other entries in the i^{th} row, $i \in I_k$ (resp., j^{th} row, $j \in J_k$) are non positive (resp., nonnegative). Hence, $t_{il} \leq 0, t_{jl} \geq 0, l \neq k, i \in I_k$, and $j \in J_k$. Let $\beta_k^i = \sum_{l \neq k} t_{il} \leq 0, i \in I_k$ and $\alpha_k^j = \sum_{l \neq k} t_{jl} \geq 0, j \in J_k$. Set

(2.1) $\beta_k := \min\{\beta_k^i, \ i \in I_k\}, \quad \alpha_k := \max\{\alpha_k^j, \ j \in J_k\}.$

Define $X_k = -(N+1)e_k + e$. Choose N_0 large enough such that for all $N \ge N_0$ and $1 \le i \le n$,

(2.2)
$$\min T(X_k) = -N + \beta_k \le -Nt_{ik} + \sum_{l \ne k} t_{il} \le -Nb + \alpha_k = \max T(X_k).$$

We know that $X_k \sim_{\ell} X_r = -(N+1)e_r + e$, $1 \leq r \leq p$ and T is a linear preserver of \prec_{ℓ} . Hence by (2.2), $\alpha := \alpha_k = \alpha_r$ and $\beta := \beta_k = \beta_r, 1 \leq r \leq p$. Also, $X_k \sim_{\ell} -Ne_i + e_j, i \neq j$. For each $N \geq N_0$, there exists $1 \leq h \leq n$ such that $-Nt_{hi} + t_{hj} =$ min $T(-Ne_i + e_j) = \min T(X_k) = -N + \beta$ and for each $1 \leq i \leq p, 1 \leq j \leq p$ and $N \geq N_0$, there exists $1 \leq h \leq n$ such that $-N(1 - t_{hi}) = t_{hj} - \beta$. It follows that $t_{hi} = 1, t_{hj} = \beta$. Hence $\mathcal{P}_p(1,\beta)$ is a submatrix of [T]. Similarly, there exists N_1 , such that for each $N \geq N_1$ there exists $1 \leq h \leq n$ so that $-Nt_{hi} + t_{hj} =$ max $T(-Ne_i + e_j) = \max T(X_k) = -Nb + \alpha$ and $-N(b - t_{hi}) = t_{hj} - \alpha$. Thus, $t_{hi} = b$ and $t_{hj} = \alpha$. Since $1 \leq i \neq j \leq p$ was arbitrary, $\mathcal{P}_p(b,\alpha)$ is a submatrix of [T]. Therefore, $\mathcal{P}_p(1,\beta)$ and $\mathcal{P}_p(b,\alpha)$ are submatrices of [T]. \square

REMARK 2.4. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ and $\widehat{T} : \mathbb{R}^p \to \mathbb{R}^m$ be two linear operators such that $[T] = [T_1/T_2/\ldots/T_n]$ and let $[\widehat{T}] = [\widehat{T}_1/\widehat{T}_2/\ldots/\widehat{T}_m]$ be the matrix representation of these operators with respect to the standard basis. Let $\mathcal{R}(T) = \{T_1, T_2, \ldots, T_n\}$ be the set of all rows of [T]. If $\mathcal{R}(T) = \mathcal{R}(\widehat{T})$, then T preserves \prec_{ℓ} if and only if \widehat{T} preserves \prec_{ℓ} .

LEMMA 2.5. Let T be a linear operator on \mathbb{R}^p . If $[T] = \mathcal{P}_p(\alpha, \beta), \ \alpha\beta \leq 0$, then T is a preserver of \prec_{ℓ} .

Linear Preservers of Left Matrix Majorization

Proof. Without loss of generality, let $\beta \leq 0 \leq \alpha$ and let $X = (x_1, \ldots, x_p)^t$, $Y = (y_1, \ldots, y_p)^t \in \mathbb{R}^p$ such that $X \prec_{\ell} Y$. Then $y_m = \min Y \leq x_i \leq \max Y = y_M$, for all $1 \leq i \leq p$. It is easy to check that $\alpha y_m + \beta y_M \leq \alpha x_i + \beta x_j$, for all $i \neq j \in \{1, \ldots, p\}$, which implies $\min TY \leq \min TX$. Hence by Lemma 2.1, $TX \prec_{\ell} TY$. \Box

3. Left matrix majorization on \mathbb{R}^2 **.** Let $T:\mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator and let a, b, be as in Assumption 1.3. We consider the square $S = [b, 1] \times [b, 1]$ in \mathbb{R}^2 .

DEFINITION 3.1. Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator and let $[T] = [T_1 / ... / T_n]$, where $T_i = (t_{i1}, t_{i2}), 1 \le i \le n$. Define

$$\Delta := \operatorname{Conv}\left(\{(t_{i1}, t_{i2}), (t_{i2}, t_{i1}), 1 \le i \le n\}\right) \subseteq \mathbb{R}^2$$

Also, let C(T) denote the set of all corners of Δ .

LEMMA 3.2. Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear preserver of \prec_{ℓ} and $[T] = [T_1/\ldots/T_n]$, where $T_j = (t_{j1}, t_{j2}), 1 \leq j \leq n$. If for some $1 \leq i \leq n$, $t_{i1}t_{i2} > 0$, then $T_i \notin C(T)$, where C(T) is as in Definition 3.1.

Proof. Assume that, if possible, there exists $1 \leq i \leq n$ such that $T_i \in C(T)$ and $t_{i1}t_{i2} > 0$. By Remark 2.4 we can assume that [T] has no identical rows. Without loss of generality, we assume that there exist $1 \leq i \leq n$ and real numbers $m \leq M$ such that $t_{i1} > 0, t_{i2} > 0$ and $mt_{i1} + Mt_{i2} < mt_{j1} + Mt_{j2}, j \neq i$. Choose $\varepsilon > 0$ small enough so that $mt_{i1} + (M + \varepsilon)t_{i2} < mt_{j1} + (M + \varepsilon)t_{j2}, j \neq i$. Since $(m, M)^t \prec_{\ell} (m, M + \varepsilon)^t$, $T(m, M)^t \prec_{\ell} T(m, M + \varepsilon)^t$. But $\min(T(m, M + \varepsilon)^t) = mt_{i1} + (M + \varepsilon)t_{i2} > mt_{i1} + Mt_{i2} = \min(T(m, M)^t)$, a contradiction. \square

Next we shall characterize all linear operators $T : \mathbb{R}^2 \to \mathbb{R}^n$ which preserve \prec_{ℓ} .

THEOREM 3.3. Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator. Then T is a linear preserver of \prec_{ℓ} if and only if $\mathcal{P}_2(x, y)$ is a submatrix of [T] and $xy \leq 0$ for all $(x, y) \in C(T)$.

Proof. Let T be a linear preserver of \prec_{ℓ} with $0 \leq -b \leq 1 = a$. Let $(x, y) \in C(T)$, then by Lemma 3.2, $xy \leq 0$. Without loss of generality, let $T_i = (t_{i1}, t_{i2}) \in C(T)$ and $t_{i1}t_{i2} \leq 0$. By Remark 2.4, we assume that [T] has no identical rows. Then there exist real numbers $m, M \in \mathbb{R}$ such that $mt_{i1} + Mt_{i2} < mt_{j1} + Mt_{j2}, j \neq i$. Choose $\varepsilon_0 > 0$ small enough so that $(m-\varepsilon)t_{i1} + (M+\varepsilon)t_{i2} < (m-\varepsilon)t_{j1} + (M+\varepsilon)t_{j2}, j \neq i, 0 < \varepsilon \leq \varepsilon_0$. Since $(M + \varepsilon, m - \varepsilon)^t \sim_{\ell} (m - \varepsilon, M + \varepsilon)^t$, $T(M + \varepsilon, m - \varepsilon)^t \sim_{\ell} T(m - \varepsilon, M + \varepsilon)^t$. Hence, for all $0 < \varepsilon \leq \varepsilon_0$, there exist $1 \leq k \leq n$ such that $T_k = (t_{k1}, t_{k2}) \in C(T)$ and $(m - \varepsilon)t_{i1} + (M + \varepsilon)t_{i2} = \min T(m - \varepsilon, M + \varepsilon)^t = \min T(M + \varepsilon, m - \varepsilon)^t = (M + \varepsilon)t_{k1} + (m - \varepsilon)t_{k2}$. Since $k \in \{1, 2, ..., n\}$ is a finite set, there exists k such that $t_{k1} = t_{i2}$ and $t_{k2} = t_{i1}$. Therefore, $\mathcal{P}_2(t_{i1}, t_{i2})$ is a submatrix of [T].

Conversely, let $\mathcal{P}_2(x, y)$ be a submatrix of [T] and suppose for all $(x, y) \in C(T)$,

 $xy \leq 0$. Define the linear operator \widehat{T} on \mathbb{R}^2 such that $[\widehat{T}] = [\mathcal{P}_2(x_1, y_1) / \cdots / \mathcal{P}_2(x_r, y_r)]$, where $(x_i, y_i) \in C(T), 1 \leq i \leq r$. By elementary convex analysis, we know that $\max T(X) = \max \widehat{T}(X)$ and $\min T(X) = \min \widehat{T}(X)$ for all $X \in \mathbb{R}^2$. Hence it is enough to show that \widehat{T} is a linear preserver of \prec_{ℓ} . By Lemma 2.5, each $\mathcal{P}_2(x_i, y_i)$ is a linear preserver of \prec_{ℓ} . \square

4. Left matrix majorization on \mathbb{R}^p . In this section we shall characterize all linear operators $T : \mathbb{R}^p \to \mathbb{R}^n$ which preserve \prec_{ℓ} . We shall prove several lemmas and prove the main theorem of this paper.

DEFINITION 4.1. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator and let $[T] = [T_1/\ldots/T_n]$. Define

$$\Omega := \operatorname{Conv}(\{T_i = (t_{i1}, \dots, t_{ip}), 1 \le i \le n\}) \subseteq \mathbb{R}^p.$$

Also, let C(T) be the set of all corners of Ω .

LEMMA 4.2. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \prec_{ℓ} and $[T] = [T_1/\ldots/T_n]$, where $T_i = (t_{i1}, t_{i2}, \ldots, t_{ip}), 1 \leq i \leq n$. Suppose there exists $1 \leq i \leq n$ such that $t_{ij} > 0, \forall 1 \leq j \leq p$, or $t_{ij} < 0, \forall 1 \leq j \leq p$. Then $T_i \notin C(T)$, where C(T) is as in Definition 4.1.

Proof. Assume that, if possible, there exists $1 \leq i \leq n$ such that $T_i \in C(T)$ and $t_{ij} > 0$, for all $1 \leq j \leq p$, or $t_{ij} < 0$, for all $1 \leq j \leq p$. By Remark 2.4, without loss of generality, we can assume that [T] has no identical rows and there exists $1 \leq i \leq n$ such that $t_{ij} > 0$, for all $1 \leq j \leq p$. Since $T_i \in C(T)$, there exists $X = (x_1, \ldots, x_p)^t$ such that $x_1t_{i1} + x_2t_{i2} + \cdots + x_pt_{ip} < x_1t_{j1} + x_2t_{j2} + \cdots + x_pt_{jp}, j \neq i$. Let $x_k = \max\{x_i, 1 \leq i \leq p\}$. Choose $\varepsilon > 0$ small enough so that $x_1t_{i1} + \cdots + (x_k + \varepsilon)t_{ik} + \cdots + x_pt_{ip} < x_1t_{j1} + \cdots + (x_k + \varepsilon)t_{jk} + \cdots + x_pt_{jp}, j \neq i$. Define $\widehat{X} = (x_1, \ldots, x_k + \varepsilon, \ldots, x_p)^t$. Since $t_{ik} > 0$, hence $\min T(X) = x_1t_{i1} + x_2t_{i2} + \cdots + x_pt_{ip} < x_1t_{i1} + \cdots + (x_k + \varepsilon)t_{ik} + \cdots + x_pt_{ip} = \min T(\widehat{X})$. But $X \prec_{\ell} \widehat{X}$, a contradiction. \square

Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. Without loss of generality, we assume that $[T] = [T^p/T^n/\tilde{T}]$, where all entries of T^p (resp., T^n) are positive (resp., negative) and each row of \tilde{T} has nonnegative and non positive entries.

COROLLARY 4.3. Let T and \widetilde{T} be as above. Then T preserves \prec_{ℓ} if and only if $C(T) = C(\widetilde{T})$ and \widetilde{T} preserves \prec_{ℓ} , where C(T) is as in Definition 4.1.

Proof. Let T preserve \prec_{ℓ} . By Lemma 4.2, $C(T) = C(\tilde{T})$. Thus, if $X \in \mathbb{R}^p$, then $\max T(X) = \max \tilde{T}(X)$ and $\min T(X) = \min \tilde{T}(X)$. Therefore \tilde{T} preserves \prec_{ℓ} . Conversely, let $C(T) = C(\tilde{T})$. Then $\max T(X) = \max \tilde{T}(X)$ and $\min T(X) = \min \tilde{T}(X)$. Since \tilde{T} preserves \prec_{ℓ} , T preserves \prec_{ℓ} . \square

Linear Preservers of Left Matrix Majorization

DEFINITION 4.4. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. Define

$$\Delta = \operatorname{Conv}(\{(P_i, N_i), (N_i, P_i) : 1 \le i \le n\}),$$

where P_i, N_i be as in (1.2). Let $E(T) = \{(P_i, N_i) : (P_i, N_i) \text{ is a corner of } \Delta\}$. Let $1 \leq i \leq n$, define $[i] = \{j : 1 \leq j \leq n, P_i = P_j \text{ and } N_i = N_j\}$.

LEMMA 4.5. Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \prec_{ℓ} and let C(T), E(T) be as in Definitions 4.1, 4.4, respectively. If $(P_r, N_r) \in E(T)$ for some $1 \leq r \leq n$, then there exists $k \in [r]$ such that $T_k \in C(T)$.

Proof. Suppose there exist $1 \leq r \leq n$ such that $(P_r, N_r) \in E(T)$. Then there exists $m \leq M$ such that

$$(4.1) P_r m + N_r M < P_j m + N_j M, \ j \notin [r].$$

Let $X \in \mathbb{R}^p$ such that $\min(X) = m$ and $\max(X) = M$. Then there exists $1 \le k \le n$ such that $\min TX = \sum_{l=1}^p t_{kl} x_l$. Hence

(4.2)
$$P_r m + N_r M \le P_k m + N_k M \le \sum_{l=1}^p t_{kl} x_l = \min T(X).$$

Define $Y \in \mathbb{R}^p$ by $y_l = m$, if $t_{rl} > 0$ and $y_l = M$, if $t_{rl} \leq 0$. Obviously $Y \prec_{\ell} X$. Since T preserves \prec_{ℓ} , $TY \prec_{\ell} TX$ which implies that

(4.3)
$$P_k m + N_k M \le \sum_{l=1}^p t_{kl} x_l = \min T X \le \min T Y \le P_r m + N_r M.$$

Now, by (4.2) and (4.3), we have $P_rm + N_rM = P_km + N_kM$. Thus by (4.1), $k \in [r]$ and min $TX = \sum_{l=1}^{p} t_{kl}x_l$. Hence $T_k \in C(T)$ for some $k \in [r]$.

Next we state the main result in this paper.

THEOREM 4.6. Let T and E(T) be as in Definition 4.4. Then T preserves \prec_{ℓ} if and only if $\mathcal{P}_p(\alpha, \beta)$ is a submatrix of [T] for all $(\alpha, \beta) \in E(T)$.

Proof. Let T be a preserver of \prec_{ℓ} and let $(P_r, N_r) \in E(T)$. Then there exists $m \leq M$ such that $P_r m + N_r M < P_j m + N_j M$, $j \notin [r]$. Choose ε_0 small enough so that for all $0 < \varepsilon < \varepsilon_0$,

$$P_r(m-\varepsilon) + N_r(M+\varepsilon) < P_j(m-\varepsilon) + N_j(M+\varepsilon), \quad j \notin [r],$$

If $j \in [r]$, then $P_j = P_r$ and $N_j = N_r$. Thus

(4.4)
$$P_r(m-\varepsilon) + N_r(M+\varepsilon) \le P_j(m-\varepsilon) + N_j(M+\varepsilon), \quad 1 \le j \le n.$$

Let $0 < \varepsilon < \varepsilon_0$, be fixed and let $X^{\varepsilon} = (x_1^{\varepsilon}, \dots, x_p^{\varepsilon})^t \in \mathbb{R}^p$ with min $X^{\varepsilon} = m - \varepsilon$ and max $X^{\varepsilon} = M + \varepsilon$. As in the proof of Lemma 4.5, there exists $k \in [r]$ such that

$$P_r(m-\varepsilon) + N_r(M+\varepsilon) = \min T(X^{\varepsilon}) = \sum_{l=1}^p t_{kl} x_l^{\varepsilon}.$$

Fix $i \neq j \in \{1, \ldots, p\}$ and define $Y^{\varepsilon} = (y_1^{\varepsilon}, \ldots, y_p^{\varepsilon})^t \in \mathbb{R}^p$ such that $y_i^{\varepsilon} = m - \varepsilon$, $y_j^{\varepsilon} = M + \varepsilon$ and $y_l^{\varepsilon} = \gamma_l$, $m - \varepsilon < \gamma_l < M + \varepsilon$, $l \neq i, j$. Since $X^{\varepsilon} \sim_{\ell} Y^{\varepsilon}$, $TX^{\varepsilon} \sim_{\ell} TY^{\varepsilon}$, there exists $q \in [r]$ such that $t_{qi}(m - \varepsilon) + t_{qj}(M + \varepsilon) + \sum_{l \neq i, j} \gamma_l t_{ql} = P_r(m - \varepsilon) + N_r(M + \varepsilon)$. Since $0 < \varepsilon < \varepsilon_0$ and $m - \varepsilon \le \gamma_l \le M + \varepsilon$, $l \neq r, s$ are arbitrary, it is easy to show that there exists $s \in [r]$ such that $t_{si} = P_r$ and $t_{sj} = N_r$ and $t_{sl} = 0, l \neq i, j$. Therefore [T] has $\mathcal{P}_p(P_r, N_r)$ as a submatrix.

Conversely, Let $E(T) = \{(P_{i_1}, N_{i_1}), ..., (P_{i_s}, N_{i_s})\}$. Then up to a row permutation $[T] = [\mathcal{P}_p(P_{i_1}, N_{i_1}) / ... / \mathcal{P}_p(P_{i_s}, N_{i_s}) / Q].$

Let \widehat{T} be the operator on \mathbb{R}^p such that $[\widehat{T}] = [\mathcal{P}_p(P_{i_1}, N_{i_1}) / \dots / \mathcal{P}_p(P_{i_k}, N_{i_k})].$ Let $T_i \in Q$ and suppose there exists $X \in \mathbb{R}^p$ such that

$$\min T(X) = \sum_{l=1}^{p} t_{il} x_l \le \sum_{l=1}^{p} t_{jl} x_l, 1 \le j \le n.$$

Obviously, $P_im + N_iM \leq \sum_{l=1}^p t_{il}x_l \leq \sum_{l=1}^p t_{jl}x_l, 1 \leq j \leq n$, where $m = \min X$ and $M = \max X$. We know that $(P_i, N_i) \in \Delta$ and Δ is convex. Hence there is $1 \leq k \leq n$ such that $(P_k, N_k) \in E(T)$ and $P_km + N_kM \leq P_im + N_iM$. As in the proof of Lemma 4.5, $\min TX = P_km + N_kM$. Then $\min \widehat{T}X \leq \min TX$. But we know that $\min T(X) \leq \min \widehat{T}X$ and thus $\min \widehat{T}X = \min TX$. Similarly, $\max \widehat{T}X = \max TX$. Therefore, T is a preserver of \prec_{ℓ} if and only if \widehat{T} preserves \prec_{ℓ} . By Lemma 2.5 each $\mathcal{P}_p(P_{i_l}, N_{i_l})$ is a preserver of $\prec_{\ell}, 1 \leq l \leq k$. Hence \widehat{T} is a preserver of \prec_{ℓ} and the theorem is proved. \square

Next we state necessary conditions for $T : \mathbb{R}^p \to \mathbb{R}^n$ to be a linear preserver of \prec_{ℓ} . We use the notation of Theorem 2.3 in the following corollary.

COROLLARY 4.7. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator and let a and b be as given in (1.1). If the following conditions hold, then T is a linear preserver of \prec_{ℓ} .

- [T] has $[\mathcal{P}_p(a,0)/\mathcal{P}_p(0,b)/\mathcal{P}_p(a,b)]$ as a submatrix.
- $0 \leq P_i \leq a \text{ and } b \leq N_i \leq 0, \quad 1 \leq i \leq n,$

where P_i and N_i , $1 \le i \le n$ are as in Definition 1.2.

Proof. It is clear that $E(T) = \{(a, 0), (0, b), (a, b)\}$. Since [T] has $\mathcal{P}_p(a, 0), \mathcal{P}_p(0, b)$ and $\mathcal{P}_p(a, b)$ as submatrices, it follows by Theorem 4.6 that T is a linear preserver of \prec_{ℓ} . \Box

Linear Preservers of Left Matrix Majorization

Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \prec_{ℓ} , and let $[T] = [T^1 | T^2 | \dots | T^p]$, where T^i is the *i*th column of [T]. For $i \neq j \in \{1, \dots, p\}$ define $T^{ij} : \mathbb{R}^2 \to \mathbb{R}^n$ such that $[T^{ij}] = [T^i | T^j]$.

LEMMA 4.8. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \prec_{ℓ} , and let T^{ij} be as above. Then T^{ij} is a linear preserver of \prec_{ℓ} for all $i \neq j \in \{1, \ldots, p\}$.

Proof. Let $i \neq j \in \{1, \ldots, p\}$ and let $x = (x_1, x_2)^t$, $y = (y_1, y_2)^t \in \mathbb{R}^2$ such that $x \prec_{\ell} y$. Define $X, Y \in \mathbb{R}^p$ such that $X_i = x_1, X_j = x_2, Y_i = y_1, Y_j = y_2$ and $X_k = Y_k = 0$, for all $k \neq i, j$. It is obvious that $X \prec_{\ell} Y$ in \mathbb{R}^p and hence $TX \prec_{\ell} TY$ in \mathbb{R}^n . But $T^{ij}x = x_1T^i + x_2T^j = TX \prec_{\ell} TY = y_1T^i + y_2T^j = T^{ij}y$. Therefore, T^{ij} is a linear preserver of \prec_{ℓ} . \square

The following example shows that the converse of Lemma 4.8 is not necessarily true.

EXAMPLE 4.9. Assume $[T] = [\mathcal{P}_3(1, -0.5)/0.25 \ 0.25 \ 0.25]$. Consider $X = (-1, -1, -1)^t$ and $Y = (-1, -1, -0.75)^t$, we know that $X \prec_{\ell} Y$ and $\min TX < \min TY$. Thus T is not a linear preserver of \prec_{ℓ} . However, by Corollary 4.7, for all $i \neq j \in \{1, 2, 3\}, T^{ij}$ preserves \prec_{ℓ} .

5. Additional results. In this section we give short proofs of some Theorems from [6, 9].

THEOREM 5.1. [6] Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator. Then T preserves \prec_{ℓ} if and only if T has the form T(X) = (aI + bP)X for all $X \in \mathbb{R}^2$, where P is the 2 × 2 permutation matrix not equal to I, and $ab \leq 0$.

Proof. Let T be a preserver of \prec_{ℓ} . By Assumption 1.3, a = 1. By Theorem 2.3, there exist $0 \leq \alpha \leq 1$ and $b \leq \beta \leq 0$ such that $P(1,\beta)$ and $P(b,\alpha)$ are submatrices of [T]. Since [T] is a 2×2 matrix, $\beta = b$ and $\alpha = 1$. Therefore, $[T] = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$ and hence T(X) = (I + bP)X, for all $X \in \mathbb{R}^2$. Conversely, up to a row permutation, $[T] = \mathcal{P}_2(1,b)$ and by Lemma 2.5, T preserves \prec_{ℓ} .

THEOREM 5.2. [6] Let $p \geq 3$. Then $T: \mathbb{R}^p \to \mathbb{R}^p$ is a linear preserver of left matrix majorization if and only if T is of the form $X \mapsto aPX$ for some $a \in \mathbb{R}$ and some permutation matrix P.

Proof. By Assumption 1.3, we have a = 1. Let T be a preserver of \prec_{ℓ} . By Theorem 2.3, b = 0 and [T] has $\mathcal{P}_p(1,0)$ as a submatrix; hence, up to a row permutation, $[T] = \mathcal{P}_p(1,0) = I$. Conversely, by a row permutation, $[T] = \mathcal{P}_p(1,0)$; hence by Lemma 2.5, T preserves \prec_{ℓ} .

THEOREM 5.3. ([9, Theorem 3.1]) For a linear preserver T of \mathbb{R}^p to \mathbb{R}^n the following assertions hold.

(a) If n < 2p and $p \ge 3$, then T is nonnegative.

(b) If T is nonnegative, then there exists an $n \times n$ permutation matrix Q such that [T] = Q[I/W], where W is a (possibly vacuous) $(n-p) \times p$ matrix of one of the following forms (i), (ii) or (iii):

- (i) W is row stochastic;
- (ii) W is row substochastic and has a zero row;

(iii) W = [(cI)/B], where 0 < c < 1 and B is an $(n-2p) \times p$ row substochastic matrix with row sums at least c.

(c) Let Q be an $n \times n$ permutation matrix, and let W be an $(n-p) \times p$ matrix of the form (i), (ii), or (iii) in part (b). Then the operator $X \mapsto Q[X/(WX)]$ from \mathbb{R}^p into \mathbb{R}^n is a nonnegative linear preserver of \prec_{ℓ} .

Proof.

(a) Assume that, if possible, b < 0. By Theorem 2.3 $n \ge p(p-1)$. Since $p \ge 3, n \ge 2p$, a contradiction.

(b) Since T is nonnegative, $N_i = 0, 1 \le i \le n$, and $0 \le P_i \le 1$. By Theorem 2.3, [T] has $\mathcal{P}_p(1,0)$ as its submatrix and therefore up to a row permutation [T] = [I/W]. Let $c = \min\{P_i, 1 \le i \le n\}$. Then $E(T) = \{(1,0), (c,0)\}$. By Theorem 4.6, $\mathcal{P}_p(c,0)$ is a submatrix of [T]. If c = 1 then (i) holds; if c = 0 then (ii) holds and if 0 < c < 1, then (iii) holds.

(c) Let [T] = [I/W], where W is an $(n - p) \times p$ matrix of the form (i), (ii), or (iii) in part (b). Then $E(T) = \{(1,0), (c,0)\}$. By Theorem 4.6, T is a nonnegative linear preserver of \prec_{ℓ} .

THEOREM 5.4. ([9, Theorem 4.5]) Assume $T : \mathbb{R}^p \to \mathbb{R}^n$ is a linear preserver of \prec_{ℓ} , b < 0 and $2p \leq n < p(p-1)$. Let P_i (resp., N_i) denote the sum of the positive (resp., negative) entries of the i^{th} row of [T]. Then, up to a row permutation, [T] = [I/bI/B] and $\min(N_i + bP_i) = b$, (i = 1, 2, ..., n).

Proof. By Theorem 2.3, $\mathcal{P}_p(1,\beta)$ and $\mathcal{P}_p(\alpha, b)$ are submatrices of [T]. Since n < p(p-1), $\beta = \alpha = 0$ and $E(T) = \{(1,0), (0,b)\}$, where E(T) is as in Definition4.4. Then up to a row permutation, [T] = [I/bI/B] and $\min\{(bx + y) : (x, y) \in \Delta\} = \min\{(bx + y) : (x, y) \in E(T)\} = b$. Therefore, $\min(N_i + bP_i) = b$, (i = 1, 2, ..., n). \Box

Acknowledgment. This research has been supported by the Mahani Mathematical Research Center and the Linear Algebra and Optimization Center of Excellence of the Shahid Bahonar University of Kerman.

REFERENCES

- T. Ando. Majorization, doubly stochastic matrices and comparison of eigenvalues. *Linear Algebra Appl.*, 118:163–248, 1989.
- [2] A. Armandnejad and A. Salemi. The structure of linear preservers of gs-majorization. Bull. Iranian Math. Soc., 32(2):31–42,2006.
- [3] L.B. Beasley and S.-G. Lee. Linear operators preserving multivariate majorization. *Linear Algebra Appl.*, 304:141–159, 2000.
- [4] L.B. Beasley, S.-G. Lee, and Y.-H. Lee. Linear operators strongly preserving multivariate majorization with T(I) = I. Kyugpook Mathematics Journal, 39:191–194, 1999.
- [5] R. Bhatia, *Matrix Analysis*. Springer-Verlag, New York, 1997.
- [6] A.M. Hasani and M. Radjabalipour. Linear preservers of matrix majorization. Int. J. Pure Appl. Math., 32(4):475–482, 2006.
- [7] A.M. Hasani and M. Radjabalipour. The structure of linear operators strongly preserving majorizations of matrices. *Electron. J. Linear Algebra*, 15:260–268, 2006.
- [8] A.M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization. *Linear Algebra Appl.*, 423(2/3):255–261, 2007.
- [9] F. Khalooei, M. Radjabalipour, and P. Torabian. Linear preservers of left matrix majorization. Electron. J. Linear Algebra, 17:304–315, 2008.
- [10] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications. Academic Press, New York, 1972.
- [11] F. D. Martínez Pería, P. G. Massey, and L. E. Silvestre. Weak matrix-majorization. *Linear Algebra Appl.*, 403:343–368, 2005.