
ELA

EXPLICIT POLAR DECOMPOSITIONS OF COMPLEX MATRICES∗

ROGER A. HORN† , GIUSEPPE PIAZZA‡ , AND TIZIANO POLITI§

Abstract. In [F. Uhlig, Explicit polar decomposition and a near-characteristic polynomial:

The 2 × 2 case, Linear Algebra Appl., 38:239–249, 1981], the author gives a representation for the

factors of the polar decomposition of a nonsingular real square matrix of order 2. Uhlig’s formulae

are generalized to encompass all nonzero complex matrices of order 2 as well as all order n complex

matrices with rank at least n − 1.
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1. Introduction and notation. A polar decomposition of A ∈ Cn×n is a fac-
torization

A = UH(1.1)

in which U ∈ Cn×n is unitary and H ∈ Cn×n is positive semidefinite (and therefore
also Hermitian). The factor H is always uniquely determined as the unique positive
semidefinite square root of A∗A: H = (A∗A)1/2

. If A is nonsingular, then the unitary
factor is also unique: U = AH−1. The polar factors of A can be found by exploiting
its singular value decomposition, even if A is singular.

In the literature [1, 2], it has been considered whether it is possible to compute the
polar factors of a complex matrix using only arithmetic operations and extraction of
radicals of integer degree. In [1], the authors note that this can be done if the largest
and smallest singular values are known, e.g., the class of singular real symmetric
stochastic matrices and the class of companion matrices. In [4, 6], explicit formulae
are given for polar factors of companion and block companion matrices. In this note,
we generalize the explicit formulae in [5] for the polar factors of nonsingular real
square matrices of order 2, and obtain explicit formulae for polar factors of n−by−n

complex matrices with rank at least n − 1.
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A singular value decomposition of A ∈ Cn×n is a factorization

A = V ΣW ∗,

in which V, W ∈ Cn×n are unitary and Σ = diag(σ1, . . . , σn) is a real diagonal matrix
whose diagonal entries are σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, the non-increasingly ordered
singular values of A. The matrices H = WΣW ∗ and U = V W ∗ are corresponding
polar factors of A: H is positive semidefinite and H = (A∗A)1/2 (always unique), U

is unitary (unique only if A is nonsingular), and A = UH .

We let adjA denote the adjugate of A, that is, the transposed matrix of cofactors
of A (see [3], p. 20). If A is nonsingular, then

adjA = det A · A−1.

In general,

adjA∗ = (adjA)∗,

adjAB = adjB adjA,

and

adjΣ = diag


∏

j �=1

σj ,
∏
j �=2

σj , . . . ,
∏
j �=n

σj


 .

Moreover,

adjA∗ = adj(WΣV ∗) = (adjV ∗)(adjΣ)(adjW ) = det(V ∗W )V (adjΣ)W ∗.

If A is nonsingular, then eiθ := (detA)/|detA| is a well-defined complex number with
unit modulus and

adjA∗ = e−iθV (adjΣ)W ∗.

2. Orders 2 and 3. In this section, we exhibit an explicit formula for the polar
factors of a nonzero order 2 complex matrix. Our formula reduces to the representa-
tion in [5] when A is real and nonsingular. For order 3 complex matrices with rank at
least two, we give an explicit formula for a unitary factor in the polar decomposition,
given the positive semidefinite factor. This formula suggests a representation for a
unitary factor in the polar decomposition for order n complex matrices with rank at
least n − 1, which we discuss in the next section.
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Theorem 2.1. Let A ∈ C2×2 be nonzero and let θ be any real number such that
det A = eiθ| det A|. Then A = UH, in which

U =
∣∣det(A + eiθadjA∗)

∣∣−1/2
(A + eiθadjA∗)

is unitary and H = U∗A is positive semidefinite. If A is real, then H is real and U

may be chosen to be real.

Proof. Suppose that A is nonsingular, and compute

Zθ := A + eiθadjA∗

= V ΣW ∗ + eiθe−iθV (adjΣ)W ∗

= V (Σ + adjΣ)W ∗

= V

([
σ1 0
0 σ2

]
+

[
σ2 0
0 σ1

])
W ∗

= V ((σ1 + σ2)I)W ∗ = (σ1 + σ2)V W ∗,

which is a positive scalar multiple of the unitary factor of A corresponding to the
positive definite factor H = (A∗A)1/2. Moreover,

| det(A + eiθadjA∗)| = (σ1 + σ2)2.

Now suppose that A is singular and nonzero, so rankA = 1 and Σ = diag(σ1, 0)
with σ1 > 0. For any θ ∈ [0, 2π) we must show that Zθ is a positive scalar multiple
of a unitary matrix and that Z∗

θ A is positive semidefinite. Let γ = eiθdet(V ∗W ) and
compute

Zθ = V (Σ + adjΣ)W ∗

= V

([
σ1 0
0 0

]
+ γ

[
0 0
0 σ1

])
W ∗

= σ1V

[
1 0
0 γ

]
W ∗,

which is a positive scalar multiple of a unitary matrix (a product of three unitary
matrices). Moreover,

Z∗
θ A = σ1W

[
1 0
0 γ̄

]
V ∗ · V

[
σ1 0
0 0

]
W ∗ = σ1WΣW ∗ = σ1H,
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which is positive semidefinite.

Finally, suppose that A is real. Then so is adjA∗. If A is nonsingular, then
θ ∈ {0, π}; if A is singular, take θ = 0.

If A is nonsingular, then eiθ and U in the preceding theorem are uniquely deter-
mined. If A is singular, then eiθ may be any complex number with modulus one, and
U is not uniquely determined.

Theorem 2.2. Let A ∈ C3×3 and suppose that rankA ≥ 2. Let H be the positive
semidefinite square root of A∗A, and let θ be any real number such that det A =
eiθ| det A|. Then A = UH, in which

U =
1

tr(adjH)
((trH)A − AH + eiθadjA∗)(2.1)

is unitary. If A is real, then H is real and U may be chosen to be real.

Proof. Suppose that A is nonsingular, and compute

Zθ := (trH)A − AH + eiθadjA∗

= (trΣ)V ΣW ∗ − (V ΣW ∗)(WΣW ∗) + eiθe−iθV (adjΣ)W ∗

= V ((trΣ)Σ − Σ2 + adjΣ)W ∗

= (σ1σ2 + σ1σ3 + σ2σ3)V W ∗ = tr(adjΣ)V W ∗,

which is a positive scalar multiple of the unitary polar factor of A corresponding to
the positive definite factor H .

Now suppose that rankA = 2, so Σ = diag(σ1, σ2, 0) and σ1 ≥ σ2 > 0. Let
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γ = eiθdet(V ∗W ) and compute

Zθ = V
(
(trΣ)Σ − Σ2 + γadjΣ

)
W ∗

= V





 σ1(σ1 + σ2) 0 0

0 σ2(σ1 + σ2) 0
0 0 0


 −


 σ2

1 0 0
0 σ2

2 0
0 0 0




+ γ


 0 0 0

0 0 0
0 0 σ1σ2




 W ∗

= σ1σ2V


 1 0 0

0 1 0
0 0 γ


W ∗,

which is a positive scalar multiple of a unitary matrix. One checks that Z∗
θ A =

σ1σ2WΣW ∗ = σ1σ2H .

3. Order n for n ≥ 3. Let pH(z) be the characteristic polynomial of the n-by-n
positive semidefinite matrix H = (A∗A)1/2:

pH(z) = zn +
n∑

k=1

pkzn−k.(3.1)

The coefficients pk are elementary symmetric functions of the eigenvalues of H , which
are the singular values of A:

pk = (−1)k
∑

1≤i1<···<ik≤n

k∏
j=1

σij , k = 1, . . . , n.

Alternatively, pk = (−1)kEk(H), in which Ek(H) is the sum of the
(
n
k

)
principal

minors of H (see [3], pp. 41-42). In particular, pn = pH(0) = (−1)nEn(H) =
(−1)n det H , pn−1 = p′H(0) = (−1)n−1En−1(H) = (−1)n−1tr(adjH), and pn−2 =
1
2p′′H(0) = (−1)n−2En−2(H).

Theorem 3.1. Let n ≥ 3, let A ∈ Cn×n, and suppose that rankA ≥ n − 1. Let
H be the positive semidefinite square root of A∗A, let θ be any real number such that
det A = eiθ| det A|, let pH(z) be the characteristic polynomial (3.1) of H, and let

qH(z) = (pH(z) − pn−2z
2 − pn−1z − pn)/z2.

Then A = UH, in which

U =
1

tr(adjH)
((−1)npn−2A + (−1)nAqH(H) + eiθadjA∗)(3.2)
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is unitary. If A is real, then H is real and U may be chosen to be real.

Proof. Notice that qH(z) is a monic polynomial of degree n − 2 and qH(0) = 0.
Suppose that A is nonsingular, and compute

Zθ := (−1)npn−2A + (−1)nAqH(H) + eiθadjA∗

= V ((−1)npn−2Σ + (−1)nΣqH(Σ) + adjΣ) W ∗.

It suffices to show that

(−1)npn−2Σ + (−1)nΣqH(Σ) + adjΣ = tr(adjΣ)I.

That is, we must show that

σkqH(σk) = −pn−2σk − pn−1 − (−1)n
∏
i�=k

σi, k = 1, 2, . . . , n.

Since each σk > 0 and pH(σk) = 0, we have

σkqH(σk) = (pH(σk) − pn−2σ
2
k − pn−1σk − pn)/σk

= −pn−2σk − pn−1 − pn/σk

= −pn−2σk − pn−1 − (−1)n
∏
i�=k

σi.

Now suppose that rankA = n − 1, so Σ = diag(σ1, . . . , σn−1, 0) and σ1 ≥ · · · ≥
σn−1 > 0. Let γ = eiθdet(V ∗W ) and compute

Zθ = V ((−1)npn−2Σ + (−1)nΣqH(Σ) + γadjΣ) W ∗.

For k = 1, . . . , n − 1, the kth main diagonal entry of V ∗ZθW is

(−1)npn−2σk + (−1)n(−pn−2σk − pn−1) = (−1)n−1pn−1 = tr(adjH)

because σn = 0. The nth main diagonal entry of V ∗ZθW is γσ1 · · ·σn−1 = γtr(adjH).
Thus, Zθ = tr(adjH)V diag(1, . . . , 1, γ)W ∗, which is a positive scalar multiple of a
unitary matrix. One checks that Z∗

θ A = tr(adjH)W ∗ΣW = tr(adjH)H .

For n = 3, (3.2) becomes

U =
1

tr(adjH)
((−(−trH))A − AH + eiθadjA∗),(3.3)

which is (2.1).
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