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Abstract. The main question raised here is the following one: Given a real orthogonal n × n

matrix X, is it true that there exists a rational orthogonal matrix Y having the same zero-pattern?

It is conjectured that this is the case and proved for n ≤ 5. The related problem for symmetric

orthogonal matrices is also considered.
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1. Introduction. Let X = [Xi,j ] be an m× n matrix over any field. The zero-
pattern of X , denoted by X = [X i,j ], is the m× n (0, 1)-matrix such that

X i,j =
{

1, if Xi,j �= 0;
0, if Xi,j = 0.

We shall say that X is the support of X .

A square matrix X is said to be unitary if its entries are complex and XX† = I,
where X† is the transpose conjugate of X and I is the identity matrix. A square
matrix X is said to be real orthogonal (or, equivalently, orthogonal) if its entries are
real and XXT = I, where XT is the transpose of X . A square matrix X is said to be
rational orthogonal if it is orthogonal and its entries are rational. The sets of unitary,
orthogonal, and rational orthogonal matrices of size n are denoted by U(n), O(n) and
On(Q), respectively.

The notion and the study of the zero-patterns of unitary matrices go back to [5]
(see also [4]) in the mathematical context, and to [11] (see also [10]), motivated by
foundational questions in quantum mechanics. An extended list of references on this
topic is contained in [15]. For a comprehensive reference in matrix theory see, e.g.,
[8].
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When discussing properties of zero-patterns, it is natural to ask whether the
number field influences their structure. Specifically, in this paper we formulate and
support the following two conjectures.

Conjecture 1.1. For any X ∈ U(n) there exists Y ∈ O(n) such that X = Y .

Conjecture 1.2. For any Y ∈ O(n) there exists Z ∈ On(Q) such that Y = Z.

Our main tool of analysis will be the notion of a strongly quadrangular matrix
introduced in [14]. This extends naturally the concept of quadrangularity (or, equiv-
alently, combinatorial orthogonality [1]). A matrix X is said to be quadrangular if
every two rows and every two columns “intersect” in more than a single entry when-
ever their intersection is nonempty. In other words, the inner product of every two
rows and every two columns of X is not 1. Let X = [Xi,j ] be a complex m×n matrix.
We write X > 0 if all Xi,j > 0. For R ⊆ {1, 2, ...,m} and C ⊆ {1, 2, ..., n}, we denote
by XC

R the |R| × |C| submatrix of X in the intersection of the rows and the columns
indexed by R and C, respectively.

Definition 1.3 (Strongly quadrangular matrix). We say that an m× n {0, 1}-
matrix X = [Xi,j ] is row strongly quadrangular (RSQ) if there does not exist R ⊆
{1, 2, ...,m} with |R| ≥ 2 such that, defining R′ = {k : Xi,kXj,k = 1 for some i �= j in
R}, we have |R′| < |R| and XR′

R has no zero-rows. We say that an m×n {0, 1}-matrix
X is strongly quadrangular (SQ) if both X and XT are RSQ.

In [14], it was proved that if X ∈ U(n) then X is SQ, but the converse is not
necessarily true (see also [12]). Proposition 2.1 below gives the smallest possible SQ
zero-patterns that do not support unitary matrices.

So far we have been unable to exhibit counterexamples which would disprove
Conjecture 1.1 or Conjecture 1.2. We can however get a feeling about the problem,
by explicitly working out concrete situations. For instance, Beasley, Brualdi and
Shader [1] have shown that if X is a real matrix with zero-pattern
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X =




1 1 0 1 0 0 1 0 0 0 1
1 1 1 0 1 0 0 1 0 0 0
0 1 1 1 0 1 0 0 1 0 0
0 0 1 1 1 0 1 0 0 1 0
0 0 0 1 1 1 0 1 0 0 1
1 0 0 0 1 1 1 0 1 0 0
0 1 0 0 0 1 1 1 0 1 0
0 0 1 0 0 0 1 1 1 0 1
1 0 0 1 0 0 0 1 1 1 0
0 1 0 0 1 0 0 0 1 1 1
1 0 1 0 0 1 0 0 0 1 1




then X /∈ O(11). Once verified that that X is SQ, we observe that X is not a
candidate for a counterexample to Conjecture 1.1, therefore corroborating the idea
that the number field does not have a strong role in determining a zero-pattern. We
can proceed as follows in four steps:

• By multiplying the columns 1, 2, 4, 7, and 11 by suitable phase factors, all
entries in the first row are real;

• By multiplying the rows 2, 3, 5, 6, 7, 9, 10 and 11 by phase factors, the entries

(2, 1), (3, 2), (5, 4), (6, 1), (7, 2), (9, 1), (10, 2) and (11, 1)

are real;
• By multiplying the columns 3, 5, 6, 8 and 9 by phase factors, the entries

(2, 3), (2, 5), (2, 8), (3, 6) and (3, 9)

are real;
• Finally, by multiplying the rows 4 and 8, and the column 10 by phase factors,

the entries

(4, 3), (8, 3) and (4, 10)

are real.

At this point, all the entries mentioned above are real. If X ∈ U(n) then the
inner products of different rows of the matrix obtained with these steps must vanish.
It follows that X is a real matrix, but we know that X /∈ O(11) by [1].

Here we adopt a systematic approach to our conjectures. In Section 2, we verify
Conjecture 1.1 and Conjecture 1.2 for all (0, 1)-matrices of size n ≤ 5. For this
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purpose, we use the tables in [15] of all SQ (0, 1)-matrices of small size. On the way,
we prove that some of those are not zero-patterns of unitary matrices, thus refining
the classification of [15]. In Section 3, we construct examples of symmetric rational
orthogonal matrices with specified indecomposable zero-pattern and specified trace.
In Section 4, we construct some infinite families of rational orthogonal matrices. The
constructions are based on orthogonal designs, graphs and combinatorial arguments.
We conclude our paper in Section 5 with four intriguing open problems.

Recall that an n × n matrix X that contains an s × (n − s) zero submatrix for
0 < s < n is said to be decomposable. If no such submatrix exists then X is said to
be indecomposable.

2. Rational orthogonal matrices of small size. We shall consider the inde-
composable SQ zero-patterns of size n ≤ 5. Two (0, 1)-matrices X and Y are said to
be equivalent if there are permutation matrices P and Q such that PXQ = Y . A list
of representatives for equivalence classes of indecomposable SQ zero-patterns of size
n ≤ 5 was drawn in [15]. We construct rational orthogonal matrices for each specific
zero-pattern. This is not possible for the cases 14, 15 and 16, because it turns out
that those do not support unitary matrices. Here is a formal statement of such a fact:

Proposition 2.1. There is no matrix X ∈ U(5) such that X is one of the
following zero-patterns:



0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1




14

,




0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1




15

,




0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0




16

.

Proof. Suppose that such X exists. Let Y = X
{1,2}
{3,4,5} and Z = X

{3,4}
{3,4,5}. By

inspecting the above three zero-patterns, we conclude that Z has rank 2. Since
X is unitary, we have Y †Z = 0 and so the two columns of Y must be linearly
dependent. Consequently, the first two columns of X are linearly dependent, which
is a contradiction.

The main result of the paper is essentially the following theorem:

Theorem 2.2. Conjecture 1.1 and Conjecture 1.2 are true for n ≤ 5.

Proof. Clearly it suffices to consider only the indecomposable SQ zero-patterns.
For n ≤ 5, these zero-patterns have been enumerated in [15] (up to equivalence).
All of these zero-patterns support unitary matrices, except the three cases for n = 5
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mentioned in Proposition 2.1. Thus, in order to prove the theorem it suffices to
construct a matrix in On(Q) for each of the remaining zero-patterns. This is done in
the list below. Many of these matrices have been constructed by using an exhaustive
search but in some cases this was not possible and we have resorted to ad hoc methods.
Some of these methods are sketched in Section 4.

In our list, a matrix X will be written in the form

X =
1
d




∗ · · · ∗
...

. . .
...

∗ · · · ∗




k

,

where k is simply a numerical label for the equivalence classes of zero-patterns, iden-
tical to the labels in [15]. We say that the denominator d is minimal if it is the
smallest possible denominator among all rational orthogonal matrices with the same
zero-pattern. All denominators in the list are minimal except for a few cases, when
n = 5. Exceptions are the cases 6, 7, 19, 28, and 31.

2.1. n = 2.

1
5

[
3 4
4 −3

]
1

.

2.2. n = 3.

1
25




16 12 15
12 9 −20
15 −20 0




1

1
3




2 −1 2
−1 2 2
2 2 −1




2

.

2.3. n = 4.

1
9




8 −3 2 2
−3 0 6 6
2 6 −4 5
2 6 5 −4




1

1
9




6 0 3 −6
0 1 8 4
3 8 −2 2

−6 4 2 −5




2

1
33




16 7 0 −28
7 0 32 4
0 32 −1 8

−28 4 8 −15




3

1
3




1 2 −2 0
2 0 1 2

−2 1 0 2
0 2 2 −1




4
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1
65




25 0 −36 48
0 0 52 39

−36 52 −9 12
48 39 12 −16




5

1
15




0 0 9 12
2 14 −4 3

10 −5 −8 6
11 2 8 −6




6

1
25




15 0 12 16
0 20 12 −9

−20 0 9 12
0 15 −16 12




7

1
2




1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1




8

.

2.4. n = 5.

1
4




3 1 1 1 −2
1 3 −1 −1 2
1 −1 3 −1 2
1 −1 −1 3 2

−2 2 2 2 0




1

1
7




4 −3 2 4 2
−3 4 2 4 2
2 2 3 −4 4
4 4 −4 1 0
2 2 4 0 −5




2

1
11




8 4 1 2 −6
4 5 −4 0 8
1 −4 0 10 2
2 0 10 −1 4

−6 8 2 4 −1




3

1
5




3 2 −2 2 2
2 2 1 −4 0

−2 1 2 0 4
2 −4 0 −1 2
2 0 4 2 −1




4

1
147




145 8 0 14 −18
8 51 80 −112 0
0 80 47 70 90
14 −112 70 0 63

−18 0 90 63 −96




5

1
625




256 240 192 375 300
240 225 180 0 −500
192 180 144 −500 225
375 0 −500 0 0
300 −500 225 0 0




6

1
75




50 −25 0 30 40
−25 50 0 30 40

0 0 0 60 −45
30 30 60 −9 −12
40 40 −45 −12 −16




7

1
25




16 12 0 12 −9
12 9 0 −16 12
0 0 0 15 20
12 −16 15 0 0
−9 12 20 0 0




8
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1
9




8 2 2 0 −3
2 4 −6 3 4
2 −6 1 6 2
0 3 6 0 6

−3 4 2 6 −4




9

1
9




0 0 6 3 6
0 4 5 2 −6
6 −5 0 4 −2
3 6 −4 4 2
6 2 2 −6 1




10

1
27




20 −12 10 9 2
−12 6 15 18 0
10 15 2 0 −20
9 18 0 0 19
2 0 −20 18 −21




11

1
21




0 0 4 5 20
0 7 10 16 −6
18 −10 0 4 −1
9 16 −10 0 2
6 6 15 −12 0




12

1
9




4 4 2 6 3
4 4 2 −3 −6
2 2 1 −6 6
6 −3 −6 0 0
3 −6 6 0 0




13

1
9




8 0 −3 2 2
0 7 0 4 −4

−3 0 0 6 6
2 4 6 −3 4
2 −4 6 4 −3




17

1
9




5 4 0 −6 2
4 3 −4 6 2
0 −4 1 0 8

−6 6 0 0 3
2 2 8 3 0




18

1
441




400 0 100 105 116
0 400 80 84 −145

100 80 41 −420 0
105 84 −420 0 0
116 −145 0 0 −400




19

1
6




3 3 3 −3 0
3 3 −3 3 0
3 −3 1 1 4

−3 3 1 1 4
0 0 4 4 −2




1

20

1
21




18 0 6 0 −9
0 17 6 −10 4
6 6 0 15 12
0 −10 15 −4 10

−9 4 12 10 −10




1

21

1
15




10 0 3 4 10
0 10 6 8 −5
3 6 6 −12 0
4 8 −12 −1 0

10 −5 0 0 −10




22

1
5




3 2 2 −2 −2
2 3 −2 2 2
2 −2 3 −2 3

−2 2 2 −2 3
−2 2 2 3 −2




23
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1
11




0 0 2 6 9
1 −2 −6 8 −4
2 7 6 4 −4
4 −8 6 1 −2

10 2 −3 −2 2




24

1
10




0 0 0 6 8
1 −7 −5 −4 3
1 −7 5 4 −3
7 1 −5 4 −3
7 1 5 −4 3




25

1
45




0 0 0 27 36
0 42 6 12 −9
5 −16 12 32 −24

20 2 −39 8 −6
40 1 18 −8 6




26

1
45




0 0 0 27 −36
0 35 20 16 12
15 0 −30 24 18
30 −20 25 8 6
30 20 −10 −20 −15




27

1
165




0 0 0 132 −99
0 80 35 84 112
5 0 160 −24 −32

160 −35 0 12 16
−40 −140 20 45 60




28

1
39




0 0 0 15 36
28 5 −6 24 −10
2 18 −32 −12 5

27 −4 10 −24 10
−2 34 19 0 0




29

1
15




0 0 0 9 12
0 14 2 4 −3
10 −4 3 8 −6
10 3 4 −8 6
5 2 −14 0 0




30

1
165




0 0 0 99 132
0 35 140 64 −48

160 0 −20 28 −21
40 20 75 −112 84
5 −160 40 0 0




31

1
15




0 0 0 9 12
0 10 10 4 −3
10 0 −5 8 −6
10 5 0 −8 6
5 −10 10 0 0




32

1
21




0 0 7 14 14
0 7 0 14 −14

−6 18 6 −6 3
9 8 −16 2 6

18 2 10 −3 −2




33

1
21




0 0 6 18 9
0 14 0 −7 14
13 8 12 0 −8
4 10 −15 8 −6

16 −9 −6 −2 8




34

1
21




0 0 6 9 18
0 14 0 −14 7
20 1 6 0 −2
4 10 −15 10 0

−5 12 12 8 −8




35
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1
15




0 0 0 9 12
0 −12 −9 0 0
5 −6 8 −8 6

10 −3 4 8 −6
10 6 −8 −4 3




36

1
13




0 0 4 3 12
1 10 0 −8 2
2 7 6 8 −4
8 2 −9 4 2

−10 4 −6 4 1




37

1
15




0 0 5 −10 10
3 −12 0 6 6

12 1 8 0 −4
−6 4 10 8 3
6 8 −6 5 8




38

1
33




0 0 11 22 22
8 15 0 −20 20

10 12 26 0 −13
30 −12 −6 3 0
5 24 −16 14 −6




39

1
65




0 0 0 25 60
−7 60 24 0 0
24 −20 57 0 0
36 9 −12 −48 20
48 12 −16 36 −15




40

1
75




0 0 0 45 60
0 0 60 36 −27

−10 70 15 −16 12
50 25 −30 32 −24
55 −10 30 −32 24




41

1
65




0 0 0 39 52
0 0 25 −48 36
25 −60 0 0 0
36 15 48 16 −12
48 20 −36 −12 9




42

1
125




0 0 0 75 100
0 75 100 0 0
0 60 −45 80 −60

100 −48 36 36 −27
75 64 −48 −48 36




43

.

3. Symmetric rational orthogonal matrices. A square matrix X is involu-
tory if X2 = I. It is well known that a matrix X ∈ U(n) is hermitian if and only
if it is involutory. In particular, a matrix X ∈ O(n) is symmetric if and only if it is
involutory.

One can easily formulate the symmetric analogues of Conjecture 1.1 and Conjec-
ture 1.2. For the sake of simplicity we shall formulate just the combined conjecture.

Conjecture 3.1. For any hermitian X ∈ U(n) there exists a symmetric Z ∈
On(Q) such that X = Z and Tr (X) = Tr (Z).

Let X = X† ∈ U(n). Then X2 = In and so the eigenvalues of X belong to
{±1}. Consequently, Tr(X) is an integer congruent to nmod 2. Since −X = X
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and Tr(−X) = −Tr(X), in proving this conjecture we may assume that Tr(X) ≥ 0.
Clearly, we can also assume that the zero-pattern X is indecomposable (we also know
that it is necessarily SQ). There are further restrictions on possible values of the trace.

Proposition 3.2. There is no indecomposable hermitian matrix X ∈ U(n),
n ≥ 2, with X1,2 = 0 and Tr (X) = n− 2.

Proof. Suppose that such a matrix, X , exists. As X2 = I and X �= ±I, the
eigenvalues of X are +1 and −1 and the two eigenspaces of X are orthogonal to each
other. By indecomposability we have X2,2 �= 1. Let {e1, . . . , en} be the standard basis
of Cn. Since X1,2 = 0, the vector Xe2 is orthogonal to e1 and also Xe2 �= e2. Thus
the vector v = Xe2 − e2 is nonzero and v ⊥ e1. As Xv = −v and the −1-eigenspace
of X is 1-dimensional, we conclude that the subspace v⊥ is the +1-eigenspace of X .
Hence Xe1 = e1, i.e., X1,1 = 1. This contradicts the indecomposability of X .

The objective of this section is to provide a support for the above conjecture
by constructing examples of symmetric rational orthogonal matrices with specified
indecomposable zero-pattern and specified trace. We shall consider zero-patterns of
size n ≤ 5.

Two symmetric (0, 1)-matrices X and Y are said to be congruent if there is
a permutation matrix P such that PXPT = Y . In graph-theoretical terms, the
permutation matrix P represents an isomorphism between the undirected graph with
adjacency matrix X and the undirected graph with adjacency matrix Y .

Let X = [Xi,j ] ∈ U(n) be a hermitian matrix. We say that X is in quasi-normal
form if Tr(X) ≥ 0 and X1,1 ≥ X2,2 ≥ · · · ≥ Xn,n. In our list a matrix X will be
written in the form

X =
1
d




∗ · · · ∗
...

. . .
...

∗ · · · ∗




t

k,l

,

where k and l are simply numerical labels and t is the trace of the matrix. The index
k corresponds to the one used for the matrices in Section 2. The index l specifies the
congruence class of symmetric zero-patterns within the k-th equivalence class.

Our list is not complete. We are in fact unable to construct symmetric rational
orthogonal matrices with specified trace for exactly two among all zero-patterns. For
these matrices, we give examples of matrices as close as possible to symmetric rational
one in Section 5. All denominators in the list are minimal except for a few cases, when
n = 5. Exceptions are the cases (k, l) = (2, 2) , (3, 2) , (6, 1) , (11, 2), (22, 2).
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3.1. n = 2

1
5

[
3 4
4 −3

]0
1

.

.

3.2. n = 3.

1
25




16 12 15
12 9 −20
15 −20 0




1

1

1
3




2 −1 2
−1 2 2
2 2 −1




1

2

.

3.3. n = 4.

1
9




8 −3 2 2
−3 0 6 6
2 6 −4 5
2 6 5 −4




0

1

1
9




8 2 −2 3
2 5 4 −6

−2 4 5 6
3 −6 6 0




2

1

1
9




6 0 3 −6
0 1 8 4
3 8 −2 2

−6 4 2 −5




0

2,1

1
9




8 5 −10 6
5 0 10 10

−10 10 0 5
6 10 5 −8




0

2,2

1
33




16 7 0 −28
7 0 32 4
0 32 −1 8

−28 4 8 −15




0

3

1
3




2 0 2 1
0 2 1 −2
2 1 −2 0
1 −2 0 −2




0

4,1

1
3




1 2 −2 0
2 0 1 2

−2 1 0 2
0 2 2 −1




0

4,2

1
65




25 0 −36 48
0 0 52 39

−36 52 −9 12
48 39 12 −16




0

5

1
2




1 −1 1 1
−1 1 1 1
1 1 −1 1
1 1 1 −1




0

8

1
2




1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1




2

8

.
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3.4. n = 5.

1
4




3 1 1 1 −2
1 3 −1 −1 2
1 −1 3 −1 2
1 −1 −1 3 2

−2 2 2 2 0




3

1

1
27




19 4 −12 12 8
4 16 6 −15 14

−12 6 9 18 12
12 −15 18 0 6
8 14 12 6 −17




1

1

1
7




4 −3 2 4 2
−3 4 2 4 2
2 2 3 −4 4
4 4 −4 1 0
2 2 4 0 −5




1

2,1

1
375




200 90 120 125 −250
90 168 −276 150 75

120 −276 7 200 100
125 150 200 0 250

−250 75 100 250 0




1

2,2

1
11




8 4 1 2 −6
4 5 −4 0 8
1 −4 0 10 2
2 0 10 −1 4

−6 8 2 4 −1




1

3,1

1
325




245 84 80 −140 112
84 80 112 35 −280
80 112 0 280 91

−140 35 280 0 80
112 −280 91 80 0




1

3,2

1
5




3 2 −2 2 2
2 2 1 −4 0

−2 1 2 0 4
2 −4 0 −1 2
2 0 4 2 −1




1

4,1

1
5




4 0 1 −2 2
0 4 −2 1 2
1 −2 0 4 2

−2 1 4 0 2
2 2 2 2 −3




1

4,2

1
147




145 8 0 14 −18
8 51 80 −112 0
0 80 47 70 90
14 −112 70 0 63

−18 0 90 63 −96




1

5,1

1
625




256 240 192 375 300
240 225 180 0 −500
192 180 144 −500 225
375 0 −500 0 0
300 −500 225 0 0




1

6
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1
75




50 −25 0 30 40
−25 50 0 30 40

0 0 0 60 −45
30 30 60 −9 −12
40 40 −45 −12 −16




1

7

1
25




16 12 0 12 −9
12 9 0 −16 12
0 0 0 15 20
12 −16 15 0 0
−9 12 20 0 0




1

8

1
9




8 2 2 0 −3
2 4 −6 3 4
2 −6 1 6 2
0 3 6 0 6

−3 4 2 6 −4




1

9

1
27




19 12 8 −12 4
12 5 −20 12 4
8 −20 3 0 16

−12 12 0 0 21
4 4 16 21 0




1

10

1
27




20 −12 10 9 2
−12 6 15 18 0
10 15 2 0 −20
9 18 0 0 18
2 0 −20 18 −1




1

11,1

1
78625




50320 27156 0 −46620 27183
27156 28305 −43680 51408 9620

0 −43680 0 12025 64260
−46620 51408 12025 0 34944
27183 9620 64260 34944 0




1

11,2

1
9




4 4 2 6 3
4 4 2 −3 −6
2 2 1 −6 6
6 −3 −6 0 0
3 −6 6 0 0




1

13

1
9




8 0 −3 2 2
0 7 0 4 −4

−3 0 0 6 6
2 4 6 −3 4
2 −4 6 4 −3




1

17

1
9




5 4 0 −6 2
4 3 −4 6 2
0 −4 1 0 8

−6 6 0 0 3
2 2 8 3 0




1

18

1
441




400 0 100 105 116
0 400 80 84 −145

100 80 41 −420 0
105 84 −420 0 0
116 −145 0 0 −400




1

19
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1
6




3 3 3 −3 0
3 3 −3 3 0
3 −3 1 1 4

−3 3 1 1 4
0 0 4 4 −2




1

20

1
21




18 0 6 0 −9
0 17 6 −10 4
6 6 0 15 12
0 −10 15 −4 10

−9 4 12 10 −10




1

21

1
15




10 0 3 4 10
0 10 6 8 −5
3 6 6 −12 0
4 8 −12 −1 0

10 −5 0 0 −10




1

22,1

1
75




39 0 −48 30 30
0 25 0 −50 50

−48 0 11 40 40
30 −50 40 0 25
30 50 40 25 0




1

22,2

1
5




3 2 2 −2 −2
2 3 −2 2 2
2 −2 3 −2 2

−2 2 2 −2 3
−2 2 2 3 −2




1

23

1
5




3 2 2 2 −2
2 3 −2 −2 2
2 −2 3 −2 2
2 −2 −2 3 2

−2 2 2 2 3




3

23

.

4. Infinite families of rational orthogonal matrices. In this section we
employ different techniques to construct infinite families of symmetric rational or-
thogonal matrices with specified zero-pattern and trace. The following well-known
fact will be useful. We include a proof for the sake of completeness.

Proposition 4.1. The set SOn(Q) is dense in SO(n) (in Euclidean topology).

Proof. It is sufficient to observe that the Cayley transformation

X �−→ Y =
I +X

I −X
,

from the space of n×n real skew-symmetric matrices to SO(n) has dense image, and
if X is a rational matrix so is Y .

Let ∆n,k be the n× n zero-pattern all of whose entries are 1 except for the first
k diagonal entries which are 0.

Corollary 4.2. Let 0 ≤ k < l < n. If there exists X = XT ∈ On(Q) with
X = ∆n,l, then there exists Y = Y T ∈ On(Q) with X = ∆n,k and Tr(X) = Tr(Y ).
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Proof. Without any loss of generality we may assume that l = k + 1. Let
X = XT ∈ On(Q) be such that X = ∆n,l. Set Y = P×PT , where P = Ik⊕R⊕In−l−1

and R is the rotation matrix [
cos θ − sin θ
sin θ cos θ

]
.

Clearly we can choose θ ∈ R such that Y = ∆n,k. Since the rational points on the unit
circle are dense (see Proposition 4.1), we can replace R with R1 ∈ SO2(Q) without
affecting the zero-pattern of Y .

4.1. Symmetric rational orthogonal matrices with few zero entries. Ob-
serve that the matrix Xn = In − 2

nJn is rational orthogonal and involutory, where
Jn denotes the all-ones matrix. Moreover, Tr(Xn) = n− 2 and, if n > 2, Xn has no
zero entries, i.e., X = Jn. This Xn is often called Grover matrix in the literature of
quantum computation (see, e.g., [13]).

Proposition 4.3. Let t = n− 2k where k ∈ {1, 2, ..., n− 1}. Then there exists
a symmetric matrix X ∈ On(Q) such that Tr(X) = t and X = Jn.

Proof. Note that the assertion is vacuous for n = 1 and trivial for n = 2. We
proceed by induction on n ≥ 3. We may assume that t ≥ 0. If k = 1 the above
observation shows that the assertion is true. Let k > 1. Then t = n−2k ≤ n−4 implies
that n ≥ 4. By induction hypothesis there exists a symmetric matrix Y ∈ On−2(Q)
such that Tr(Y ) = t and Y = Jn−2. The matrix

Z = Y ⊕ 1
5

[
3 4
4 −3

]
∈ On(Q)

is symmetric with Tr(Z) = t. By using Proposition 4.1, we can choose P ∈ On(Q)
such that X = PZPT has no zero entries, i.e., X = Jn.

Proposition 4.4. Let X = XT ∈ On(Q) be such that Xi,n �= 0 for 1 ≤ i ≤ n.
Then, m > n > 1, there exists Y = Y T ∈ Om(Q) such that Xi,j = 0 if and only if
Yi,j = 0, for 1 ≤ i, j ≤ n, and Yi,j �= 0, for i > n. Moreover, Y can be chosen so that
Tr(Y ) = m− n+Tr(X).

Proof. Without any loss of generality we may assume that m = n+ 1. Then we
can take Y = P (X ⊕ [1])PT , where

P = In−1 ⊕
[

a b

b −a

]

and a, b ∈ Q∗ are chosen such that a2 + b2 = 1 and a2/b2 �= −X±1
n,n.
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By using the fact that ∆4,2 supports a matrix X = XT ∈ O4(Q) such that
Tr(X) = 0, if follows from the above proposition that ∆m,2, m ≥ 4, supports a
matrix Y = Y T ∈ Om(Q) with Tr(Y ) = m− 4.

4.2. Symmetric rational orthogonal matrices with zero-pattern Jn− In.
If there exists a symmetric matrix X ∈ O(n) with zero-pattern Jn − In, then n must
be even. Indeed since such X is involutory, its trace is an integer of the same parity
as n.

A conference matrix of order n is an n× n matrix C with zero diagonal and all
other entries in {±1} and such that CCT = (n−1)In. If a conference matrix of order
n > 1 exists, then n must be even. It is known that they exist for all even orders
n = 2m ≤ 64 except for m = 11, 17 and 29 (when they do not exist). A conference
matrix is normalized if all entries in the first row and column are equal to 1, except
the (1, 1) entry which is 0.

Let C be a normalized conference matrix of order n. If n ≡ 2 (mod 4), then C is
necessarily symmetric. On the other hand, if n ≡ 0 (mod 4), then the submatrix of
C obtained by deleting the first row and column is necessarily skew-symmetric. By a
well known construction of Paley (see, e.g. [7]), we know that there exist conference
matrices of order n = 1 + pk for any odd prime p and any positive integer k. From
these facts we deduce the following result.

Proposition 4.5. Let C be a normalized conference matrix of order n = 1+m2,
where m is an odd positive integer. Then 1

mC is a symmetric rational orthogonal
matrix with zero-pattern Jn − In. Such C exists if m is an odd prime power.

4.3. Symmetric rational orthogonal matrices from orthogonal designs.
An orthogonal design (see, e.g., [6]) of order n and type (s1, s2, ..., su) for si > 0,
on the commuting variables x1, x2, ..., xu, is an n × n matrix M with entries from
{0,±xi : i = 1, 2, ..., u} such that

MMT =

(
u∑

i=1

six
2
i

)
In.

Such design can be used to construct infinitely many rational orthogonal matrices
with the same zero-pattern. As an example, consider the following orthogonal design:
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X =




x y z 0 a 0 0 −b

y −x 0 −z 0 −a b 0
z 0 −x y 0 −b −a 0
0 −z y x b 0 0 a

a 0 0 b −x y z 0
0 −a −b 0 y x 0 −z

0 b −a 0 z 0 x y

−b 0 0 a 0 −z y −x



,

XXT =
(
x2 + y2 + z2 + a2 + b2

)
I.

If we set x = y = z = 1/4, a = 1/2, and b = 3/4, we then obtain a symmetric matrix
in O8(Q), with the same zero-pattern as X .

4.4. Indecomposable rational orthogonal matrices with maximal num-
ber of zero entries. We recall from [1] that the maximum number of the zero entries
in an indecomposable n × n unitary matrix, n ≥ 2, is (n− 2)2. Let us say that an
indecomposable n× n zero-pattern is maximal if it has exactly (n− 2)2 zero entries.
In the same paper it is shown that, for n ≥ 5, the maximal zero-patterns form either a
single equivalence class or two equivalence classes which are transposes of each other.
We shall see below that both possibilities occur. It is also known (see [2]) that the
number of zero entries in indecomposable n× n unitary matrices can take any of the
values 0, 1, 2, ..., (n− 2)2.

We shall use the special zigzag matrices introduced in [3]. These are the matrices
X defined by means of two sequences x0, x1, x2, . . . and y1, y2, . . . as follows:

X =




x0x1 x0y1 0 0 0 0 0 · · ·
−y1x2 x1x2 y2x3 y2y3 0 0 0
y1y2 −x1y2 x2x3 x2y3 0 0 0

0 0 −y3x4 x3x4 y4x5 y4y5 0
0 0 y3y4 −x3y4 x4x5 x4y5 0
0 0 0 0 −y5x6 x5x6 y6x7

0 0 0 0 y5y6 −x5y6 x6x7

...
. . .



. (4.1)

If the above sequences are infinite, X will be an infinite matrix and we shall
denote it by X∞. If X is of size n then we shall denote it by Xn. Thus Xn is defined
by two finite sequences: x0, x1, . . . , xn and y1, y2, . . . , yn−1. Note that Xn is just the
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n×n submatrix lying in the left upper corner of X∞. If x2
k +y2

k = 1 for 1 ≤ k ≤ n−1
and x0, xn ∈ {±1}, then Xn ∈ O(n).

Proposition 4.6. If M is a maximal n × n zero-pattern then there exists X ∈
On(Q) such that X = M .

Proof. In the above matrix Xn, we can chose the rational values for xk and yk

such that x2
k + y2

k = 1 and xkyk �= 0, for 1 ≤ k ≤ n − 1, and set x0 = xn = 1. Then
Xn ∈ On(Q) and it has the desired zero-pattern. It remains to observe that Xn must
be equivalent to M or MT by a result of [1].

Let Yn be the matrix obtained from Xn by reversing the order of its rows. Let
us denote its zero-pattern by Λn. This is an example of a maximal zero-pattern (see
[1]).

We set x0 = xn = 1 and impose the conditions xk = xn−k, yk = yn−k and
x2

k + y2
k = 1 for 1 ≤ k < n. We can choose such xk and yk to be rational and nonzero.

Hence, in that case maximal zero-patterns form just one equivalence class. If n is
odd, then Λn and Yn are symmetric matrices. On the other hand, if n is even then
Λn is not symmetric. In fact, in that case the equivalence class of Λn contains no
symmetric patterns. This follows by comparing the row sums and column sums of
Λn. For n = 6, we have verified that the maximal zero-patterns form two equivalence
classes.

Now let n = 2m be even. Denote by Λ#
n the n× n symmetric zero-pattern in the

following infinite sequence:

Λ#
4 =




1 1 1 1
1 1 1 1
1 1 1 0
1 1 0 0


 , Λ#

6 =




0 0 0 0 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 0 0
1 1 1 0 0 0
1 1 1 0 0 0



,

Λ#
8 =




0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 1 1 1 1 1 0
0 0 1 1 1 1 1 0
0 0 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0



,
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Λ#
10 =




0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0




, . . .

Note that Λ#
n has exactly 4n− 3 ones.

Theorem 4.7. For odd (resp. even) n > 2 there exist symmetric rational or-
thogonal matrices with zero-pattern Λn (resp. Λ#

n ).

Proof. We have already taken care of the odd case. In the even case, we shall
construct the required matrices Zn for n = 4, 6 and 8 only. It will be obvious how to
proceed for bigger values of n. For (xk, yk), k ≥ 0, we can choose any rational point
on the unit circle x2 + y2 = 1 such that xkyk �= 0. For n = 4, 6 we take the matrices
in the forms

Z4 =




x0x
2
1 x0x1y1 y0x1 y1

x0x1y1 x0y
2
1 y0y1 −x1

y0x1 y0y1 −x0 0
y1 −x1 0 0


 ,

Z6 =




0 0 0 0 y2 x2

0 x0x
2
1 x0x1y1 y0x1 y1x2 −y1y2

0 x0x1y1 x0y
2
1 y0y1 −x1x2 x1y2

0 y0x1 y0y1 −x0 0 0
y2 y1x2 −x1x2 0 0 0
x2 −y1y2 x1y2 0 0 0



.

For n = 8 we take

Z8 =




0 0 0 0 0 y2x3 x2x3 y3

0 0 0 0 0 y2y3 x2y3 −x3

0 0 x0x
2
1 x0x1y1 y0x1 y1x2 −y1y2 0

0 0 x0x1y1 x0y
2
1 y0y1 −x1x2 x1y2 0

0 0 y0x1 y0y1 −x0 0 0 0
y2x3 y2y3 y1x2 −x1x2 0 0 0 0
x2x3 x2y3 −y1y2 x1y2 0 0 0 0

y3 −x3 0 0 0 0 0 0



.
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In each of these cases Zn is orthogonal and symmetric, and so involutory matrix, with
zero-pattern Λ#

n . In general, the construction can be best understood by considering
the infinite matrix

Z =

2
66666666666666666666664

· · ·
y4y5 x4y5

y2x3 x2x3 y3x4 −y3y4

y2x3 x2y3 −x3x4 x3y4

x0x2
1 x0x1y1 y0x1 y1x2 −y1y2

x0x1y1 x0y2
1 y0y1 −x1x2 x1y2

y0x1 y0y1 −x0

y2x3 y2y3 y1x2 −x1x2

x2x3 x2y3 −y1y2 x1y2

y4y5 y3y4 −x3x4

x4y5 −y3y4 x3y4

· · ·

3
77777777777777777777775

.

We remark here, however, that the set of n×n zero-patterns having exactly 4n−3
ones may contain many equivalence classes. In particular, for n = 6 the following
two non-symmetric matrices, and of course, their transpose are nonequivalent to the
pattern of Z6 above:



0 0 0 0 1 1
0 0 0 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0



,




0 0 0 0 1 1
0 1 1 1 1 1
0 1 1 1 1 1
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 0 0



.

It is easy to see that both matrices support unitaries.

4.5. Symmetric rational orthogonal matrices from hypercubes. The Ham-
ming distance between two words v, w ∈ {0, 1}n, denoted by d (v, w), is the number of
coordinates in which the words differ: d (v, w) :=

∑n
i=1 |vi − wi|. The n-dimensional

hypercube, denoted by Qn, is the graph defined as follows: V (Qn) = {0, 1}n; {v, w} ∈
E(Qn) if and only d(v, w) = 1. The adjacency matrix of Qn can be constructed
recursively:

M(Q1) =
(

0 1
1 0

)
, M(Qn) =

(
M(Qn−1) I

I M(Qn−1)

)
, for n ≥ 2.

It is simple to verify that the following matrices are real orthogonal:

M1 =
[

0 −1
1 0

]
, Mn = 1√

n

[
Mn−1 −I

I M−1
n−1

]
, for n ≥ 2.

Clearly, Mn = M(Qn).
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Proposition 4.8. For each n ≥ 2, there exist infinitely many symmetric matri-
ces Yn ∈ O2n(Q) such that Yn = M(Qn).

Proof. Let x1, x2, ... be indeterminates. We define the matrices Xn recursively by

X1 =
[

0 x1

x1 0

]
, Xn =

[
Xn−1 xnI

xnI −Xn−1

]
, for n ≥ 2.

Note that XT
n = Xn and one can easily verify by induction that

X2
n =

(
x2

1 + x2
2 + · · ·+ x2

n

)
I2n .

For a given n ≥ 1, we choose nonzero rational numbers α1, α2, ..., αn such that α2
1 +

α2
2 + · · · + α2

n = 1. Then if we set xk = αk (k = 1, 2, ..., n) in Xn, we obtain a
symmetric rational orthogonal matrix Yn with Yn = M(Qn).

4.6. Hessenberg rational orthogonal matrices. Let Hn be the lower trian-
gular n× n Hessenberg zero-pattern:

Hn =




1 1 1 1 · · · 1
1 1 1 1 1

0 1 1 1
...

0 1 1
. . . . . .

0 0 1



.

We consider here the corresponding symmetric zero-pattern SnHn, where

Sn =




0 1
1

· · ·
1 0




is the antidiagonal permutation matrix.

Proposition 4.9. There exist infinitely many Yn = Y T
n ∈ On(Q) with Yn =

SnHn.

Proof. Let a, b ∈ Q be nonzero and such that a2 + b2 = 1. We define recursively
the matrices Xn ∈ On(Q), n ≥ 2, by

X2 =
[

a −b

b a

]
;

Xn =
[

Xn−1 0
0 1

] [
In−2 0
0 X2

]
,
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for n ≥ 3. The matrices Yn = SnHn are symmetric and satisfy Yn = SnHn. Indeed,
we have

Y2 =
[

b a

a −b

]
, Y3 =


 0 b a

b a2 −ab

a −ab b2




Y4 =




0 0 b a

0 b a2 −ab

b a2 −a2b ab2

a −ab ab2 −b3


 , and Y5 =




0 0 0 b a

0 0 b a2 −ab

0 b a2 −a2b ab2

b a2 −a2b a2b2 −ab3

a −ab ab2 −ab3 b4


 .

By induction on n one can prove that

Yn =

2
6666666666666666664

0 0 0 b a

0 0 b a2 −ab

0 0 b a2 −a2b ab2

b a2 −a2b a2b2 −ab3

· · ·
0 0 0 b a2 (−b)n−9 a2 (−b)n−8 a2 (−b)n−7 a2 (−b)n−6 a (−b)n−5

0 0 b a2 a2 (−b)n−8 a2 (−b)n−7 a2 (−b)n−6 a2 (−b)n−5 a (−b)n−4

0 b a2 −a2b a2 (−b)n−7 a2 (−b)n−6 a2 (−b)n−5 a2 (−b)n−4 a (−b)n−3

b a2 −a2b a2b2 a2 (−b)n−6 a2 (−b)n−5 a2 (−b)n−4 a2 (−b)n−3 a (−b)n−2

a −ab ab2 −ab3 a (−b)n−5 a (−b)n−4 a (−b)n−3 a (−b)n−2 (−b)n−1

3
7777777777777777775

.

Note that the trace of Yn is zero for n even and one for n odd.

5. Open problems. In addition to the conjectures formulated in the paper, we
state here some further open problems.

The first problem is of purely combinatorial nature.

Problem 5.1. Let X be an n×n zero-pattern and assume that XT is equivalent
to X. Is it true that X is equivalent to a symmetric pattern?

We have verified that the answer to the above problem is affirmative for n ≤ 5.

Problem 5.2. Are there symmetric rational orthogonal matrices with the follow-
ing zero-patterns:



1 0 1 1 1
0 1 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


 ,




1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 0 1
0 1 1 1 1


 ?
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As mentioned in Section 3, in spite of much effort we were not able to construct
such matrices. Below we give some examples of matrices with the same zero-pattern
as close as possible to be rational. For the first zero-patten we give two examples.
The first one minimizes the denominator:

1
4




2 0 2
√
3− 1 −√

3− 1
0 2 2 −√

3− 1
√
3− 1

2 2 0 2 2√
3− 1 −√

3− 1 2 0 2
−√

3− 1
√
3− 1 2 2 0




1

5,2

,

1
21




16 0 10 4
√
5

√
5

0 5 4 −4
√
5 8

√
5

10 4 0 −7
√
5 −4

√
5

4
√
5 −4

√
5 −7

√
5 0 6√

5 8
√
5 −4

√
5 6 0




1

5,2

.

We give four examples for the next zero-pattern. The first example minimizes the
square root, the second has the smallest denominator, the third minimizes the number
of square roots, and the last one contains the smallest prime number under square
root:

1
245




225 40 18
√
15 −14

√
15 0

40 45 −40
√
15 0 180

18
√
15 −40

√
15 0 175 6

√
15

−14
√
15 0 175 0 42

√
15

0 180 6
√
15 42

√
15 −25




1

12

,

1
108




98 28 7
√
22 −3

√
22 0

28 12 −20
√
22 0 44

7
√
22 −20

√
22 0 42

√
22

−3
√
22 0 42 0 21

√
22

0 44
√
22 21

√
22 −2




1

12

,

1
2527




2457 12
√
195 −420 380 0

12
√
195 343 80

√
195 0 −160

√
195

−420 80
√
195 0 2223 140

380 0 2223 0 1140
0 −160

√
195 140 1140 −273




1

12

,
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1
418241




403200 5460
√
17 −79040 74841 0

5460
√
17 110864 35511

√
17 0 −90972

√
17

−79040 35511
√
17 0 381780 38532

74841 0 381780 0 153520
0 −90972

√
17 153520 38532 −95823




1

12

.

In connection with Proposition 4.5, we raise the following special case of Conjec-
ture 3.1 as a separate interesting problem.

Problem 5.3. For even n, show that there exists X = XT ∈ On(Q) with
X = Jn − In. For odd n ≥ 3, show that there exists X = XT ∈ On(Q) with
X = ∆n,n−2 and Tr(X) = 1.

Many of the matrices in Section 2 and Section 3 have been constructed with the
help of a computer. It is natural to raise the following problem:

Problem 5.4. Determine the computational complexity of the following decision
problem:

• Given: A square (0, 1)-matrix M of size n.
• Task: Determine if M is the zero-pattern of a real orthogonal matrix.

The size of M gives the length of the input.
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