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ZERO-NONZERO PATTERNS FOR NILPOTENT MATRICES OVER
FINITE FIELDS∗
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Abstract. Fix a field F. A zero-nonzero pattern A is said to be potentially nilpotent over F

if there exists a matrix with entries in F with zero-nonzero pattern A that allows nilpotence. In

this paper an investigation is initiated into which zero-nonzero patterns are potentially nilpotent

over F with a special emphasis on the case that F = Zp is a finite field. A necessary condition on

F is observed for a pattern to be potentially nilpotent when the associated digraph has m loops

but no small k-cycles, 2 ≤ k ≤ m − 1. As part of this investigation, methods are developed, using

the tools of algebraic geometry and commutative algebra, to eliminate zero-nonzero patterns A as

being potentially nilpotent over any field F. These techniques are then used to classify all irreducible

zero-nonzero patterns of order two and three that are potentially nilpotent over Zp for each prime p.
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1. Introduction. A zero-nonzero (znz) pattern A is a square matrix whose en-
tries come from the set {∗, 0} where ∗ denotes a nonzero entry. Fix a field F. We
then set

Q(A,F) = {A ∈Mn(F) | (A)i,j �= 0 ⇔ (A)i,j = ∗ for all i, j}.
The set Q(A,F), sometimes denoted Q(A) when F is known, is usually called the
qualitative class of A. An element A ∈ Q(A,F) is called a matrix realization of A.
A znz-pattern A is said to be potentially nilpotent over F if there exists a matrix
A ∈ Q(A,F) such that Ak = 0 for some positive integer k. In this paper we study
the question of what patterns A are potentially nilpotent over a field F. Although
we will present some results for arbitrary fields, we are particularly interested in the
case that F is a finite field.

One motivation to study this question is to provide a step in understanding
spectrally arbitrary patterns in the context of fields other than R. An n × n znz-
pattern A is a spectrally arbitrary pattern (SAP) if given any monic polynomial p(x) of
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degree n with coefficients in F, there exists a matrix A ∈ Q(A,F) whose characteristic
polynomial is p(x). Note that every SAP is potentially nilpotent. There is a growing
body of literature (see, for example, [2, 5, 7, 18, 19] and their references) interested
in identifying SAPs when F = R (with much focus on sign patterns: patterns whose
entries come from the set {+,−, 0}). Recently, work has begun on the problem of
identifying SAPs over finite fields [1] and over C [21].

We now cursorily survey the problem of identifying potentially nilpotent patterns
over F = R. Determining when a sign pattern is potentially nilpotent was listed as
an open problem in [9]. Potentially nilpotent star sign patterns were introduced in
[20] and fully characterized in [17]. Potentially nilpotent sign patterns of order up
to 3 were characterized in [10]. Included in [10] is an investigation of sign patterns
that allow nilpotence of index 2, where the index of matrix A is the smallest integer
k such that Ak = 0; this was later extended to index 3 in [11] (see also [3]). In [18],
it was shown that all potentially nilpotent full sign patterns (i.e. patterns with no
zero entries) are also SAPs. Consequently, recent work [15] presents constructions of
potentially nilpotent full sign patterns. Much work in determining when a pattern is
potentially nilpotent occurs in the literature on SAPs. Identifying potentially nilpo-
tent patterns over R is in part an important subproblem in the study of SAPs due
to a technique developed in [8], usually referred to as the Nilpotent-Jacobi Method.
Roughly speaking, if A is a nilpotent realization over R of a pattern A, then one can
determine if A is spectrally arbitrary by evaluating the entries of A in a Jacobian
matrix constructed from A. Note that this technique requires the Implicit Func-
tion Theorem, which holds over R, so one should not expect a generalization of this
approach to finite fields.

We begin in Section 2 by reviewing some basic results concerning nilpotent ma-
trices over a field F. Many of the results that are known to hold in R continue to hold
over an arbitrary field.

In Section 3 we introduce some techniques to eliminate certain patterns as being
potentially nilpotent over a field. We use some tools from commutative algebra and
algebraic geometry to carry out this program. Starting with a znz-pattern A with
nonzero entries at (i1, j1), . . . , (it, jt), we define an ideal IA in a polynomial ring
RA = F[zi1,j1 , . . . , zit,jt ] over the field F. In Theorem 3.2 we show that A is potentially
nilpotent over a field F if and only if a certain subset of the affine variety defined by IA
is nonempty. With this characterization, we can use the technique of ideal saturation
(see Definition 3.4) to determine if a given pattern is not potentially nilpotent:

Theorem 3.5. Let F be any field and A a znz-pattern. Let J = (zi1,j1 · · · zit,jt) be the
ideal generated by the product of the variables of RA. If 1 ∈ IA : J∞, then A is not
potentially nilpotent over any extension of F.
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Since many computer algebra programs can compute the saturation of ideals,
Theorem 3.5 promises to be a useful tool for future experimentation. In the last
part of Section 3 we review the basics of Gröbner bases, and show how Gröbner
bases can also be used to eliminate znz-patterns as being potentially nilpotent (see
Example 3.13).

As an aside, we hope that our results, along with the work of Shader [19] and
Kaphle [13], will highlight the usefulness of techniques from commutative algebra and
algebraic geometry in the study of SAPs. Shader uses a result about the number of
algebraically independent elements over the polynomial ring R[x1, . . . , xn] to prove
a lower bound on the number of nonzero entries in a SAP. Kaphle’s MSc thesis
uses Gröbner bases to eliminate sign patterns as being potentially nilpotent. Note
that one difference between our work and the work of Kaphle is that we use the
equations constructed from the characteristic polynomials when forming the Gröbner
basis, while Kaphle uses equations constructed from the traces of the matrices Ak for
k = 1, . . . , n.

In Section 4 we introduce a necessary condition for a znz-pattern A to be nilpotent
over a field F. Precisely, we look at znz-patterns A where A is irreducible and the
digraph D(A) has no 2-cycles (see Section 2). When F = R, if A has at least two
nonzero entries on the diagonal and A is potentially nilpotent, then it is known (see
[7]) that D(A) must to have a 2-cycle. We explore the fact that this is no longer
true over an arbitrary field: what is important is that the polynomial x3 − 1 factors
completely over F. In fact, we prove a more general result:

Theorem 4.4. Let A be a znz-pattern with m ≥ 2 nonzero entries on the diagonal, and
suppose that D(A) has no k-cycles with 2 ≤ k ≤ m− 1. If A is potentially nilpotent
over F, then the polynomial xm − 1 factors into m linear forms over F.

Our paper culminates with Section 5 which uses the above techniques to classify
all potentially nilpotent patterns of order at most three when F = Zp is the finite
field with p elements, where p is a prime (see Theorems 5.1 and 5.3). One interesting
by-product of this classification is the discovery that A may be potentially nilpotent
in a field F, but a superpattern of A, that is, a znz-pattern A′ such that (A′)i,j �= 0
whenever (A)i,j �= 0, might not be potentially nilpotent over the same field F.

2. Basic Properties. In this section, we review some of the needed properties
of znz-pattern matrices and summarize some of the basic properties of potentially
nilpotent matrices over F. Some of these results were known when F = R; we consider
the more general case. We continue to use the notation from the introduction.

When referring to elements of the field F, we shall use 1F to denote the multiplica-
tive identity of F, but abuse notation slightly and write 0 for the additive identity 0F.
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For any positive integer n ∈ Z, we write nF to denote (1F + · · ·+ 1F) (n times). Then
−nF will denote the additive inverse of nF in F, and n−1

F
denotes the multiplicative

inverse (provided nF �= 0).

Given an n×n znz-pattern A, we can construct a digraph D(A) = (V,E) on the
vertex set V = [n] := {1, . . . , n}, whose edge set consists of the arcs (i, j) whenever
(A)i,j �= 0. We call the edge (i, i) a loop; loops correspond to the nonzero entries on
the diagonal of A. A simple cycle γ of length k, also called a k-cycle, is a sequence
of k distinct vertices {i1, . . . , ik} such that (i1, i2), (i2, i3), . . . , (ik−1, ik), (ik, i1) ∈ E.
We sometimes denote a k-cycle γ by (i1, i2, . . . , ik), and denote its length by |γ| = k.
Furthermore, we say two cycles γ1 and γ2 are disjoint if they have no vertices in
common.

Suppose that A ∈ Q(A,F) is a realization of A. The characteristic polynomial
of A can be described in terms of the cycles of D(A). Precisely, suppose that γ =
(i1, . . . , ik) is a k-cycle. We let

∏
(γ) = ai1,i2ai2,i3 · · · aik,i1 where ai,j = (A)i,j . Then

the characteristic polynomial of A has the form

pA(x) = xn + r1x
n−1 + r2x

n−2 + · · · + rn−1x+ rn

with

ri = (−1)i
∑ [(

(−1)|γ1|−1
∏

(γ1)
)
· · ·

(
(−1)|γp|−1

∏
(γp)

)]
.

where the sum is over all pairwise disjoint cycles γ1, . . . , γp such that |γ1|+· · ·+|γp| = i.

A znz-pattern A of order n ≥ 2 is reducible if there exists some integer 1 ≤ r ≤
n− 1 and a permutation matrix P such that

PAPT =
[ A1 A2

0r,n−r A3

]
.

Otherwise, a znz-pattern A is called irreducible. Equivalently, a znz-pattern A is
irreducible if and only if the associated digraph D(A) is strongly connected, that is,
there is a directed path between any pair of distinct vertices. The Frobenius normal
form of A is a permutation similar block upper triangular matrix whose diagonal
blocks are irreducible. The diagonal blocks are called the irreducible components of
A.

The final lemma of this section summarizes some of the results we will need in
the later sections.

Lemma 2.1. Fix a field F and a znz-pattern A.
(a) Suppose that A is reducible with irreducible components A1, . . . ,At. Then A

is potentially nilpotent over F if and only if each znz-pattern Ai is potentially
nilpotent.
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(b) If A is potentially nilpotent over F, then so is AT, the transpose of A.
(c) If A is a nilpotent realization of A, then the characteristic polynomial of A

is pA(x) = xn.

3. Eliminating potentially nilpotent candidates via ideal saturation.
Let F be any field. Using some tools and techniques from commutative algebra and
algebraic geometry, we will show that a znz-pattern A is potentially nilpotent over F

if and only if a certain geometric set is nonempty. As an application, we develop an
algebraic method to eliminate certain znz-patterns A as being potentially nilpotent
over F. We also explain how to use Gröbner bases to show that some patterns are not
potentially nilpotent. While we will endeavor to keep this material as self-contained
as possible, further background material can be found in the book of Cox, Little, and
O’Shea [6].

We begin with some notation. Fix a znz-pattern A, and let SA = {(i, j) | (A)i,j �=
0} be the locations of the nonzero elements in A. We then define the polynomial ring

RA := F[zi,j | (i, j) ∈ SA] = F[zi1,j1 , . . . , zit,jt ]

in t = |SA| variables over the field F. Associate to A the matrix MA where

(MA)i,j :=
{
zi,j if (A)i,j �= 0
0 if (A)i,j = 0.

Note that MA is not a realization of A since the entries of MA are variables. The
characteristic polynomial of MA then has the form

pMA(x) = xn − F1x
n−1 + F2x

n−2 + · · · + (−1)n−1Fn−1x+ (−1)nFn

where each coefficient Fi = Fi(zi1,j1 , . . . , zit,jt) is a polynomial in RA. We then use
the n coefficients of the characteristic polynomial to define an ideal of RA. Precisely,
let

IA := (F1, . . . , Fn) ⊆ RA.

In fact, IA is a homogeneous ideal since for each Fi �= 0, the polynomial Fi is a
homogeneous polynomial of degree i; recall that a polynomial G is homogeneous if
each term of G has the same degree. To see this fact, note that each term of Fi

corresponds to a composite cycle of length i in the directed graph D(A) (see the
formula in Section 2), from which it follows that Fi is homogeneous. Hence, every
znz-pattern A induces a homogeneous ideal IA.

Example 3.1. We illustrate the above notation with the following znz-pattern

A =


∗ ∗ 0
∗ 0 ∗
0 ∗ ∗


 .
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The associated matrix is

MA =


z1,1 z1,2 0
z2,1 0 z2,3

0 z3,2 z3,3




where the zi,j ’s are indeterminates in the polynomial ring

RA = F[z1,1, z1,2, z2,1, z2,3, z3,2, z3,3].

The ideal IA is then generated by three homogeneous polynomials:

IA = (z1,1 + z3,3, z1,2z2,1 + z2,3z3,2 + z1,1z3,3, z1,1z2,3z3,2 + z1,2z2,1z3,3).

For each a = (ai1,j1 , . . . , ait,jt) ∈ Ft, let MA(a) denote the matrix obtained by
replacing each zik,jk

with aik,jk
. The characteristic polynomial of MA(a) will have

the form:

pMA(a)(x) = xn − F1(a)xn−1 + F2(a)xn−2 + · · · + (−1)n−1Fn−1(a)x+ (−1)nFn(a).

If A is potentially nilpotent over F, then there exists an a ∈ F
t with all ai,j �= 0

such that MA(a) is a nilpotent matrix. In particular, the characteristic polynomial
of MA(a) must be xn by Lemma 2.1 (c), which, in turn, implies that Fi(a) = 0 for
i = 1, . . . , n. Thus, one can determine if a znz-pattern A is potentially nilpotent over
F if one understands the affine variety described by IA; the affine variety1 defined by
IA is the set

V (IA) = {a ∈ F
t | G(a) = 0 for all G ∈ IA}

= {a ∈ F
t | F1(a) = · · · = Fn(a) = 0}.

The set V (IA) contains all the elements a ∈ Ft such that the matrix MA(a) is nilpo-
tent. Thus, if A is potentially nilpotent over F and MA(a) is a realization of A
that is nilpotent, then a ∈ V (IA). However, the converse is not necessarily true.
Indeed, if b ∈ V (IA), then while MA(b) still has a characteristic polynomial of xn,
the matrix MA(b) may not be a realization of A. As a simple example, note that
0 = (0, . . . , 0) ∈ V (IA), (since each Fi is homogeneous, and thus Fi(0) = 0 for all i),
but MA(0) is the zero-matrix, which is not a realization of A.

For each indeterminate zi,j ∈ RA, let V (zi,j) denote the associated affine variety,
that is, V (zi,j) = {a ∈ F

t | ai,j = 0}. With this notation, we can determine if a
znz-pattern A is potentially nilpotent over F:

1What we call an affine variety is sometimes called an algebraic set. We decided to follow [6].
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Theorem 3.2. Fix a field F and a znz-pattern A. Then A is potentially nilpotent
over F if and only if

V (IA) \
t⋃

k=1

V (zik,jk
) �= ∅.

Proof. If A is potentially nilpotent over F, then there exists an a ∈ Ft such that
MA(a) is nilpotent. But that implies that a ∈ V (IA). Furthermore, since MA(a) is a
realization of A, aik,jk

�= 0 for k = 1, . . . , t, or in other words, a �∈ V (zik,jk
) for each

k. This proves the first direction.

For the reverse direction, if a ∈ V (IA)\⋃t
k=1 V (zik,jk

), then MA(a) is a nilpotent
matrix, and furthermore, since aik,jk

�= 0 for all k, this matrix is also a realization of
A.

As a consequence of Theorem 3.2, to determine if A is potentially nilpotent over
F, it suffices to show that the set V (IA)\⋃t

k=1 V (zik,jk
) is non-empty. Unfortunately,

this can be a highly non-trivial problem. However we can use this reformulation to
describe an algebraic method to determine if the set V (IA) \⋃t

k=1 V (zik,jk
) is empty,

thus providing a means to determine if A is not potentially nilpotent over F.

We begin with a simple lemma. A monomial of RA is any polynomial of the form
m = zb1

i1,j1
zb2

i2,j2
· · · zbt

it,jt
with each bi ∈ Z≥0.

Lemma 3.3. Fix a field F and a znz-pattern A. Suppose that there exists a
monomial m = zb1

i1,j1
zb2

i2,j2
· · · zbt

it,jt
∈ IA. Then A is not potentially nilpotent over F.

Proof. For any a ∈ V (IA), we must have m(a) = ab1
i1,j1

· · ·abt

it,jt
= 0 because

m ∈ IA. But this means that aik,jk
= 0 for some k = 1, . . . , n, and thus, a ∈ V (zik,jk

).
Now apply Theorem 3.2.

The colon operation and the saturation of ideals are two required algebraic in-
gredients:

Definition 3.4. Let I and J be ideals of a ring R. Then I : J denotes the ideal

I : J = {g ∈ R | gJ ⊆ I}.

The saturation of I with respect to J , denoted I : J∞, is the ideal

I : J∞ = {g ∈ R | gJ i ⊆ I for some integer i ≥ 0}.

Alternatively, I : J∞ = (· · · (((I : J) : J) : J) · · · ).
We come to one of the main results of this section.
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Theorem 3.5. Fix a field F and a znz-pattern A. If RA = F[zi1,j1 , . . . , zit,jt ],
then let mA :=

∏t
k=1 zik,jk

and let J = (mA) be the ideal generated by mA. Then

(a) V (IA) \ ⋃t
k=1 V (zik,jk

) ⊆ V (IA : J∞) ⊆ V (IA : J);
(b) if 1 ∈ IA : J∞, then A is not potentially nilpotent over F, or any field

extension of F;
(c) if 1 ∈ IA : J , then A is not potentially nilpotent over F, or any field extension

of F.

Proof. Statement (a) is a well-known result via the algebraic geometry dictionary.
For completeness, we include a short proof in this context. Suppose that a ∈ V (IA) \⋃t

k=1 V (zik,jk
), and thus, aik,jk

�= 0 for k = 1, . . . , t. Suppose that G ∈ IA : J∞.
Thus, there exists an integer i such that GJ i ⊆ IA. But because J i = (mi

A), this
implies that Gmi

A ∈ IA. Since a ∈ V (IA), we have (Gmi
A)(a) = G(a)mi

A(a) = 0.
But since each aik,jk

�= 0, we have mi
A(a) = ai

i1,j1 · · · ai
it,jt

�= 0, and hence G(a) = 0,
or equivalently, a ∈ V (IA : J∞). The second inclusion containment follows from the
fact that IA : J ⊆ IA : J∞.

To prove (b), suppose that 1 ∈ IA : J∞. It then follows that there exists an i

such that J i ⊆ IA, and hence mi
A ∈ IA. But then we get the desired conclusion by

Lemma 3.3. In any extension of F, we will continue to have mi
A ∈ IA. Statement (c)

follows directly from (b) since we will have 1 ∈ IA : J ⊆ IA : J∞.

Remark 3.6. Many computer algebra systems allow one to compute the sat-
uration of an ideal, thus making Theorem 3.5 a practical tool. The computational
commutative algebra programs CoCoA [4] and Macaulay 2 [12] are two free programs
that can be used to compute the ideals I : J and I : J∞. On the second author’s web
page2 is a short introduction on how to use these programs to compute the examples
found below.

Some well-known necessary facts for nilpotent matrices are simple corollaries of
Theorem 3.5.

Corollary 3.7. Let A be znz-pattern. If A has only one nonzero entry on the
diagonal or only one transversal, then A is not potentially nilpotent over any field F.

Proof. In both cases, we show that one of the generators of IA must be a mono-
mial. If A has only one nonzero entry on the diagonal, say at position (i, i), then
the trace of MA is zi,i. But since F1 = trMA = zi,i, it immediately follows that
mA ∈ IA, and hence, 1 ∈ IA : (mA). Similarly, if A has only one transversal, the
determinant of MA, which equals Fn, has form zb1

i1,j1
zb2

i2,j2
· · · zbt

it,jt
where bk = 1 or 0.

It then follows that mA ∈ IA, or equivalently, 1 ∈ IA : (mA).

2http://flash.lakeheadu.ca/∼avantuyl/research/research.html
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We now provide some illustrative examples.

Example 3.8. Let A be the znz-pattern of Example 3.1. Let F be any field of
characteristic two. Because

IA = (z1,1 + z3,3, z1,2z2,1 + z2,3z3,2 + z1,1z3,3, z1,1z2,3z3,2 + z1,2z2,1z3,3),

the monomial z2
1,1z3,3 ∈ IA because

z1,2z2,1(z1,1 + z3,3) + z1,1(z1,2z2,1 + z2,3z3,2 + z1,1z3,3) + (z1,1z2,3z3,2 + z1,2z2,1z3,3)

= 2z1,2z2,1z1,1 + 2z1,1z2,3z3,2 + z2
1,1z3,3 + 2z1,2z2,1z3,3 = z2

1,1z3,3

since x + x = 0 for any x ∈ F. Thus A is not potentially nilpotent over any field of
extension of F. Note that when F = Z2 is the finite field with exactly two elements,
then one could use a direct calculation because there is only one choice for each zi,j ,
namely 1F. However, this method shows that A is not potentially nilpotent over any
extension of this field.

Example 3.9. It is possible that 1 ∈ IA : J∞, but 1 �∈ IA : J . As an example,
consider the znz-pattern

A =


∗ 0 0

0 ∗ ∗
0 ∗ ∗


 .

We can see immediately that A is not potentially nilpotent over any field F since any
realization A of A will have the nonzero eigenvalue of a1,1. However, this cannot be
deduced from IA : J . For example, if F = Z2, then we use CoCoA or Macaulay 2 to
find IA : J =

(z1,1 + z2,2 + z3,3,−z1,1z2,2 + z2,3z3,2 − z1,1z3,3 − z2,2z3,3,−z1,1z2,3z3,2 + z1,1z2,2z3,3) : (mA)

= (z1,1 + z2,2 + z3,3, z2
2,2 + z2

3,3, z2,3z3,2 + z2,2z3,3).

However, a computer algebra system will reveal that 1 ∈ IA : J∞, thus showing that
A is not potentially nilpotent over F.

Example 3.10. Using the saturation of ideals also lends itself to sign patterns.
Consider the signed pattern

A =




− − − 0 0
+ + + 0 0
0 0 0 − −
0 − 0 0 −
− 0 0 0 0



.
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The pattern A is the pattern G5 studied in [14]. We then consider the matrix

MA =




−z1,1 −z1,2 −z1,3 0 0
z2,1 z2,2 z2,3 0 0
0 0 0 −z3,4 −z3,5

0 −z4,2 0 0 −z4,5

−z5,1 0 0 0 0



.

We define IA as above. Letting F = R, we find that 1 ∈ IA : (mA)∞ using CoCoA.
This sign pattern A, therefore, is not potentially nilpotent over R, as first discovered
in [14]; in fact G5 is part of a much larger family of non-potentially nilpotent patterns.

As we will show below, the converse of Theorem 3.5 (b) does not hold. To show
that A is not potentially nilpotent, we apply the theory of Gröbner bases. Roughly
speaking, a Gröbner basis of IA is a “good” choice of generators of IA which can allow
one to describe the affine variety V (IA).

We now recall the needed definitions. We fix a monomial ordering > on the
monomials of RA, that is, (1) > is a total ordering on the set of monomials, (2) > is
compatible with multiplication (ifm1 > m2, then for any monomialm, mm1 > mm2),
and (3) > is also a well-ordering. Of particular importance is the lex monomial
ordering, that is,

za1
i1,j1

za2
i2,j2

· · · zat

it,jt
> zb1

i1,j1
zb2

i2,j2
· · · zbt

it,jt

if and only if the first nonzero entry of the t-tuple (a1 − b1, . . . , at − bt) is positive.

For any polynomial F =
∑
cαmα ∈ RA where mα are monomials and cα ∈ F,

the leading term of F , denoted LT>(F ) is the largest monomial term cαmα in F with
respect to >.

Definition 3.11. A subset {G1, . . . , Gs} of an ideal I is a Gröbner basis of
I with respect to a monomial ordering > if for all F ∈ I, LT>(F ) is divisible by
LT>(Gi) for some i.

We then make use of the following two properties of Gröbner bases.

Theorem 3.12. Let R = F[zi1,j1 , . . . , zit,jt ]. Let > be the lex monomial ordering
with the property that zi1,j1 > · · · > zit,jt . Let I be an ideal of R, and suppose that
{G1, . . . , Gs} is a Gröbner basis of I with respect to >. Then

(a) I = (G1, . . . , Gs), that is, the Gröbner basis generates I;
(b) Let Il = I ∩F[zil+1,jl+1 , . . . , zit,jt ]. Then Il is the lth elimination ideal, and a

Gröbner basis for Il is {G1, . . . , Gs} ∩ F[zil+1,jl+1 , . . . , zit,jt ].

Proof. Statement (a) is [6, Chapter 2, §5, Corollary 2], while (b) is known as the
Elimination Theorem [6, Chapter 3, §1, Theorem 2].
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To make use of the above theorem to describe the affine variety V (I), one first
finds a Gröbner basis {G1, . . . , Gs} for I with respect to the lex monomial order. The-
orem 3.12(b) implies that we can partition the Gi’s so that the first set are polynomi-
als in the variables {zi1,j1 , . . . , zit,jt}, the second set are polynomials in the variables
{zi2,j2 , . . . , zit,jt}, and so on, i.e., the number of variables is eliminated as you move
through the partitions. In some (but not all) cases, one or more of the Gi’s may only
contain one variable. We can then find roots of these polynomials (either explicitly
or numerically), and then using these solutions, find roots to the other polynomials.

We illustrate how to use Gröbner bases to eliminate some znz-patterns A as being
potentially nilpotent over F. We will study the following pattern in more detail in
the next section.

Example 3.13. We consider the znz-pattern

A =


∗ ∗ 0

0 ∗ ∗
∗ 0 ∗




and let F = R. In this case, the generators of the ideal IA are

IA = (z1,1 + z2,2 + z3,3, z1,1z2,2 + z1,1z3,3 + z2,2z3,3, z1,2z2,3z3,1 + z,1z2,2z3,3).

We can use a computer algebra program to check that IA : (z1,1z1,2z2,2z2,3z3,1z3,3)∞ �=
(1). Thus Theorem 3.5 does not tell us if A is not potentially nilpotent over R.

We use either CoCoA or Macaulay 2 to find a Gröbner basis for IA:

{z1,1 + z2,2 + z3,3, z1,2z2,3z3,1 + z3
3,3, z2

2,2 + z2,2z3,3 + z2
3,3}.

Notice that the last polynomial contains the fewest number of variables. If A was
potentially nilpotent, then there exists a = (a1,1, a1,2, a2,2, a2,3, a3,1, a3,3) ∈ R6 such
that MA(a) is nilpotent, and specifically, a is a zero of all three polynomials in the
Gröbner basis. Note a3,3 must be a nonzero real number. But for any nonzero real
number a ∈ R, the last polynomial from the Gröbner basis implies that a2,2 will then
have to satisfy

z2
2,2 + az2,2 + a2 = 0 ⇔ z2,2 = a

(−1 ±√−3
2

)
.

But then for every nonzero choice of a ∈ R, a2,2 �∈ R. Hence, A is not potentially nilpo-
tent over R. Observe that this example shows that the converse of Theorem 3.5(b) is
false.

4. Digraphs without k-cycles with k small: a necessary condition. Let
D(A) be the digraph associated to a znz-pattern A. It is known that if A is potentially
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nilpotent over F = R, and if D(A) has at least two loops, then D(A) must have a
2-cycle. See, for example, [7, Lemma 3.2] which considers the signed case, but the
proof also holds in the non-signed case. When F �= R, then this necessary condition
need not hold:

Example 4.1. Let A be the pattern of Example 3.13. The associated graph
D(A) has three loops but no two cycles, so [7, Lemma 3.2] implies that A is not
potentially nilpotent over R. However, A is potentially nilpotent over other fields:
Bodine [1] has observed that A is SAP (hence potentially nilpotent) over certain
finite fields and Yielding [21] has observed that A is SAP over C. For example, A is
potentially nilpotent over F = Z7 as demonstrated with the realization

 4F 1F 0
0 2F 1F

−1F 0 1F


 .

Our goal in this section is to explore the role of small cycles in nilpotence. More
precisely, we provide a necessary condition on F for a znz-pattern A to be potentially
nilpotent over F if D(A) has loops, but no k-cycles of small size. We begin by recalling
the definition of the roots of unity and one result concerning these numbers.

Definition 4.2. Fix a field F. We say that F contains all the mth roots of unity
if all of the m roots of the polynomial xm−1F = (x−1F)(xm−1 +xm−2 + · · ·+x+1F)
belong to F, that is, xm − 1F factors into m linear forms over F.

Lemma 4.3. Fix a field F and integer m ≥ 2. Suppose that there is a solution
(a1, . . . , am) ∈ Fm to the m− 1 elementary symmetric polynomial equations

z1 + z2 + · · · + zm = 0

z1z2 + · · · + zm−1zm = 0
...

z1z2 · · · zm−1 + · · · + z2z3 · · · zm = 0

with all aj �= 0. Then F contains all the mth roots of unity.

Proof. If (a1, . . . , am) is such a solution, then (a1a
−1
m , . . . , ama

−1
m ) is also a solu-

tion. Thus, we can assume am = 1F. Hence, substituting (a1, . . . , am−1, 1F) into the
above equations and rearranging gives:

a1 + a2 + · · · + am−1 = −1F

a1a2 + · · · + am−2am−1 = 1F

...

a1a2 · · ·am−1 = (−1F)m−1.
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We claim that a1, . . . , am−1 are the remaining mth roots of unity. Indeed,

(x− a1)(x− a2) · · · (x− am−1) = xm−1 − (a1 + a2 + · · ·am−1)xm−2

+(a1a2 + · · · + am−2am−1)xm−3

+ · · · + (−1)m−2(a1 · · · am−2 + · · · + a2 · · · am−1)x

+(−1)m−1a1 · · · am−1

= xm−1 + xm−2 + · · · + x+ 1F.

That is, a1, . . . , am−1 are the zeros of xm−1 + xm−2 + · · · + x + 1F. The conclusion
now follows.

Theorem 4.4. Let A be a znz-pattern with m ≥ 2 nonzero entries on the diago-
nal, and suppose that D(A) has no k-cycles with 2 ≤ k ≤ m − 1. If A is potentially
nilpotent over F, then F contains all the mth roots of unity.

Proof. After relabeling, we may assume that the nonzero diagonal entries of A
are at (1, 1), . . . , (m,m). To simplify notation, let zi denote the variable zi,i in the
polynomial ring RA. Because D(A) has no k-cycles with 2 ≤ k ≤ m− 1, this implies
that the first m− 1 generators of IA are:

F1 = z1 + z2 + · · · + zm

F2 = z1z2 + · · · + zm−1zm

...

Fm−1 = z1z2 · · · zm−1 + · · · + z2z3 · · · zm.

Let A ∈ Q(A) be a realization that is nilpotent. If a1,1, . . . , am,m are the nonzero
diagonal entries, then a = (a1,1, . . . , am,m) satisfies Fi(a) = 0 for i = 1, . . . ,m − 1.
Because aj,j �= 0 for 1 ≤ j ≤ m, Lemma 4.3 implies that the field F contains all the
mth roots of unity.

Corollary 4.5. Let A be a znz-pattern with m ≥ 2 nonzero entries on the
diagonal, and suppose that D(A) has no k-cycles with 2 ≤ k ≤ m. Then A is not
potentially nilpotent over any F.

Proof. We use the notation of the proof of Theorem 4.4. Because A has no k-cycle
with 2 ≤ k ≤ m, we have Fm = z1z2 · · · zm ∈ IA. Now apply Lemma 3.3.

Using the above theorem, we can give a infinite family An below of potentially
nilpotent znz-patterns. In [2], this family was demonstrated to fail to be potentially
nilpotent for F = R.

Theorem 4.6. Fix a field F, and for each n ≥ 3, let An denote the n × n
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znz-pattern

An =




∗ ∗ 0 · · · · · · 0

0 ∗ ∗ . . .
...

...
. . . . . . . . . . . .

...
...

. . . ∗ 0

0 0
. . . ∗ ∗

∗ 0 0 · · · 0 ∗




Then An is potentially nilpotent over F if and only if F contains all the nth roots of
unity.

Proof. The graph of D(A) is an n-cycle with a loop at each vertex. Thus, one
direction follows immediately from Theorem 4.4 since D(A) has n loops and no k-
cycles for 2 ≤ k ≤ n−1. For the converse direction, suppose that F contains all the nth

roots of unity: suppose xn−1F = (x− ζ1) · · · (x− ζn−1)(x−1F) with ζ1, . . . , ζn−1 ∈ F.
Then the matrix

An =




ζ1 1F 0 · · · · · · 0
0 ζ2 1F 0 0
...

. . . . . . . . . . . .
...

...
. . . . . . 0

0 0
. . . ζn−1 1F

−1F 0 0 · · · 0 1F




is a desired realization.

Corollary 4.7. Fix a prime p. If p ≡ 1 (mod n), then An is potentially
nilpotent over F = Zp.

Proof. When p ≡ 1 (mod n), then by [16, Theorem 2.4], the field Zp contains all
the nth roots of unity. Now apply the Theorem 4.6.

Example 4.8. Theorem 4.6 gives a new way to explain why the pattern A = A3

of Example 3.13 is not potentially nilpotent over R. Because D(A) has three loops,
but no two cycles, if A were potentially nilpotent over F, then F must contain all
the cube roots of unity. However, R does not have this property. But when F = Z7,
x3 − 1 factors into linear forms; hence the realization in Example 4.1.

5. Potentially nilpotent matrices of small order over finite fields. In
this section, we employ the tools of previous sections to classify all znz-patterns A
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that are potentially nilpotent over F of order two or three when F = Zp, with p a
prime number. As a consequence of Lemma 2.1, it suffices to classify all znz-patterns
of order two or three that are irreducible.

We begin with the 2 × 2 case by showing a much stronger result:

Theorem 5.1. Let F be any field. Then the znz-pattern

A =
[∗ ∗
∗ ∗

]

is the only irreducible 2 × 2 potentially nilpotent pattern over F.

Proof. The only irreducible 2 × 2 znz-patterns are[
0 ∗
∗ 0

]
,

[∗ ∗
∗ 0

]
,

[
0 ∗
∗ ∗

]
, and

[∗ ∗
∗ ∗

]
.

The first three patterns cannot be potentially nilpotent over F by Corollary 3.7. The
matrix [

1F 1F

−1F −1F

]
.

is a desired realization of A.

The following lemma is used to shorten some of the cases in the next theorem.

Lemma 5.2. Let A be an irreducible n×n znz-pattern. Let D(A) be the associated
digraph.

(a) If F = Z2 and D(A) has an odd number of loops, then A is not potentially
nilpotent over F.

(b) If F = Z2 and D(A) has exactly two loops and two 2-cycles, then A is not
potentially nilpotent over F = Z2.

(c) The only solutions to the equation x + y + z = 0 with x, y, z ∈ Z3 and x, y,
z nonzero are (1F, 1F, 1F) and (2F, 2F, 2F).

Proof. (a) Suppose that D(A) has loops at (i1, i1), . . . , (im, im) with m = 2k+ 1.
Then zi1,i1 + · · · + zim,im ∈ IA. When F = Z2, we must have zi,j = 1F for all (i, j).
But this would imply that 1F + · · · + 1F = mF = 0, which is false.

(b) Suppose that the diagonal entries of A are at (i1, i1) and (i2, i2) and the two
2-cycles are (i3, j3) and (i4, j4). Then the polynomial

F2 = zi1,i1zi2,i2 + zi3,j3zj3,i3 + zi4,j4zj4,i4 ∈ IA.
If F = Z2, then the only nonzero choice for zi,j is 1F. It then follows that F2 cannot
equal zero in F = Z2.
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(c) This statement follows from inspection.

We say that two patterns are equivalent if they have the same digraph.

Theorem 5.3. Fix a prime p and an irreducible 3× 3 znz-pattern A. Then A is
potentially nilpotent over F = Zp if and only if, up to equivalence, A and p have one
of the following forms:

1. A =


0 ∗ 0
∗ 0 ∗
0 ∗ 0





∗ ∗ 0
∗ 0 ∗
∗ 0 ∗





0 ∗ 0
∗ ∗ ∗
∗ 0 ∗


 or


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ 0


, and p arbitrary.

2. A =


∗ ∗ 0
∗ 0 ∗
0 ∗ ∗





∗ ∗ ∗
∗ ∗ ∗
∗ 0 0





∗ ∗ ∗
∗ 0 ∗
∗ 0 ∗





∗ ∗ ∗
∗ ∗ ∗
∗ 0 ∗





0 ∗ ∗
∗ 0 ∗
∗ ∗ 0


 or


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


 ,

and p �= 2.

3. A =


∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗





∗ ∗ 0
∗ ∗ ∗
∗ 0 ∗


 or


0 ∗ ∗
∗ ∗ ∗
∗ 0 ∗


, and p �= 2 or 3.

4. A =


∗ ∗ 0

0 ∗ ∗
∗ 0 ∗


 , and F = Zp contains the cube roots of unity.

Proof. We do a case-by-case analysis, by considering all 3 × 3 irreducible znz-
patterns A. Recall that a pattern A is irreducible if and only if the digraph D(A) is
strongly connected. We break our proof into five cases, where each case corresponds to
one of the five non-isomorphic graphs on three vertices that is strongly connected and
with no loops. Each case is then broke into sub-cases, where each sub-case considers
the locations of the loops.

Case 1. The non-loop edges are (1, 2), (2, 3), and (3, 1).

In this case, we need to consider four znz-patterns:

A1,1 =


0 ∗ 0

0 0 ∗
∗ 0 0


 A1,2 =


∗ ∗ 0

0 0 ∗
∗ 0 0


 A1,3 =


∗ ∗ 0

0 ∗ ∗
∗ 0 0


 A1,4 =


∗ ∗ 0

0 ∗ ∗
∗ 0 ∗


 .

Patterns A1,1,A1,2, and A1,3 cannot be potentially nilpotent over any field F by
Corollary 3.7 since one of the generators of IA1,j for j = 1, 2, 3 will be a monomial.
On the other hand, A1,4 is potentially nilpotent over F if and only if the polynomial
x3 − 1F factors into linear forms in F = Zp. This is a special case of Theorem 4.6.

Case 2: The non-loop edges are (1, 2), (2, 1), (2, 3), and (3, 2).
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In this case, we need to consider six znz-patterns:

A2,1 =


0 ∗ 0
∗ 0 ∗
0 ∗ 0


 A2,2 =


∗ ∗ 0
∗ 0 ∗
0 ∗ 0


 A2,3 =


0 ∗ 0
∗ ∗ ∗
0 ∗ 0




A2,4 =


∗ ∗ 0
∗ ∗ ∗
0 ∗ 0


 A2,5 =


∗ ∗ 0
∗ 0 ∗
0 ∗ ∗


 A2,6 =


∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


 .

We can eliminate patterns A2,2,A2,3 and A2,4 as being potentially nilpotent over
any F by using Corollary 3.7. Pattern A2,1 is potentially nilpotent over any F since
1F,−1F ∈ F and


 0 1F 0

1F 0 1F

0 −1F 0




is a desired realization.

Using Theorem 3.5 and CoCoA, we can show that the pattern3 A2,5 is not po-
tentially nilpotent over F = Z2 (or alternatively, see Examples 3.1 and 3.8). If p �= 2,
then A is potentially nilpotent over F = Zp since


1F −2−1

F
0

1F 0 2−1
F

0 −1F −1F




is a desired realization.

The pattern A2,6 is not potentially nilpotent over F = Z2 by Lemma 5.2 (a).
Also, A2,6 is not potentially nilpotent over F = Z3. We can show this by calculating
the Gröbner basis of IA2,6 in the ring R = Z3[z1,1, z1,2, z2,1, z2,2, z2,3, z3,2, z3,3]:

{z1,1 + z2,2 + z3,3, z1,2z2,1 + z2
2,2 + z2,3z3,2 + z2,2z3,3 + z2

3,3, z2,2z2,3z3,2 − z2,3z3,2z3,3 + z3
3,3}.

Since z1,1 + z2,2 + z3,3 = 0, by Lemma 5.2 (c), we need only consider the cases that
z1,1 = z2,2 = z3,3 = 1F or they all equal 2F. In either case, solving for nonzero roots
of the last polynomial of the Gröbner basis we get z2,3z3,2 − z2,3z3,2 + 1F = 0 or
2Fz2,3z3,2−2Fz2,3z3,2 + 2F = 0, neither of which has a solution in Z3. So, this pattern
is not potentially nilpotent of Z3. On the other hand, if p �= 3, then


 2F 2F 0
−4F −3F 1F

0 1F 1F




3The pattern A2,5 is the antipodal tridiagonal pattern T3 studied in [8].
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is a desired realization.

Case 3. The non-loop edges are (1, 2), (2, 1), (2, 3), and (3, 1).

We now need to consider eight znz-patterns:

A3,1 =


0 ∗ 0
∗ 0 ∗
∗ 0 0


 A3,2 =


∗ ∗ 0
∗ 0 ∗
∗ 0 0


 A3,3 =


0 ∗ 0
∗ ∗ ∗
∗ 0 0


 A3,4 =


0 ∗ 0
∗ 0 ∗
∗ 0 ∗




A3,5 =


∗ ∗ 0
∗ ∗ ∗
∗ 0 0


 A3,6 =


∗ ∗ 0
∗ 0 ∗
∗ 0 ∗


 A3,7 =


0 ∗ 0
∗ ∗ ∗
∗ 0 ∗


 A3,8 =


∗ ∗ 0
∗ ∗ ∗
∗ 0 ∗


 .

Matrices A3,j for j = 1, . . . , 5 are not potentially nilpotent over any field by Corol-
lary 3.7. The matrices A3,6 and A3,7 are potentially nilpotent over any field F with
realizations 

−1F −1F 0
1F 0 1F

1F 0 1F


 and


 0 −1F 0

1F −1F 1F

1F 0 1F




respectively. Finally, the pattern A3,8 cannot be potentially nilpotent over Z2 by
Lemma 5.2 (a). Also, this pattern is not nilpotent over Z3; again, we use a Gröbner
basis of IA3,8 :

{z1,1 + z2,2 + z3,3, z1,2z2,3 + z2
2,2 + z2,2z3,3 + z2

3,3, z1,2z2,3z3,1 + z3
3,3,

z2
2,2z2,3z3,1 + z2,2z2,3z3,1z3,3 + z2,3z3,1z

2
3,3 − z2,1z

3
3,3}.

By Lemma 5.2 (c), the first polynomial implies z1,1 = z2,2 = z3,3 = 1F or 2F. In the
first case, the second polynomial reduces to z1,2z2,3 + 1F + 1F + 1F = z1,2z2,3 which is
nonzero in Z3. Similarly, in the second case, the second polynomial equation becomes
z1,2z2,3 + 4F + 4F + 4F = z1,2z2,3 �= 0. If p �= 2, 3, this pattern is potentially nilpotent
with realization 

−2F −1F 0
3F 1F 1F

1F 0 1F


 .

Case 4. The non-loop edges are (1, 2), (2, 1), (2, 3), (1, 3), and (3, 1).

We need to consider eight znz-patterns:

A4,1 =


0 ∗ ∗
∗ 0 ∗
∗ 0 0


 A4,2 =


∗ ∗ ∗
∗ 0 ∗
∗ 0 0


 A4,3 =


0 ∗ ∗
∗ ∗ ∗
∗ 0 0


 A4,4 =


0 ∗ ∗
∗ 0 ∗
∗ 0 ∗
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A4,5 =


∗ ∗ ∗
∗ ∗ ∗
∗ 0 0


 A4,6 =


∗ ∗ ∗
∗ 0 ∗
∗ 0 ∗


 A4,7 =


0 ∗ ∗
∗ ∗ ∗
∗ 0 ∗


 A4,8 =


∗ ∗ ∗
∗ ∗ ∗
∗ 0 ∗


 .

We can use Corollary 3.7 to eliminate the znz-patterns A4,j for j = 1, . . . , 4. The pat-
terns A4,j for j = 5, . . . , 8 fail to be potentially nilpotent over F = Z2 by Lemma 5.2.
Indeed, the first three are eliminated by part (b), while the last is eliminated by (a).

The matrices A4,5 and A4,6 are potentially nilpotent over any F = Zp with p �= 2
with realizations


1F 1F 1F

1F −1F −1F

2F 0 0


 and


 1F 1F 1F

1F 0 2−1
F

−2F 0 −1F


 respectively.

When p = 3, two of the polynomials in the Gröbner basis of IA4,7 are z1,2z2,1 +
z3,1z1,3 + z2

3,3 and z1,2z2,3z3,1 − z1,3z3,1z3,3 + z3
3,3. By Lemma 5.2 (c), the first poly-

nomial can only equal zero if z1,2z2,1 = z3,1z1,3 = z2
3,3 in Z3. Since z3,3 �= 0, we will

always have z2
3,3 = 1F in Z3. Hence z1,3z3,1 = 1 and the second polynomial reduces to

z1,2z2,3z3,1 �= 0 So, A4,7 is not potentially nilpotent over Z3. However, when p �= 3,
we have the realization


 0 −2F 1F

1F −1F 3F · 2−1
F

1F 0 1F


 .

The last pattern A4,8 is potentially nilpotent over Zp for any prime p ≥ 3 with
realization:


−2F −4F 1F

1F 1F 4−1
F

1F 0 1F


 .

Case 5. The non-loop edges are (1, 2), (2, 1), (3, 2), (2, 3), (1, 3), and (3, 1).

We now need to consider the remaining four irreducible znz-patterns:

A5,1 =


0 ∗ ∗
∗ 0 ∗
∗ ∗ 0


 A5,2 =


∗ ∗ ∗
∗ 0 ∗
∗ ∗ 0


 A5,3 =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ 0


 A5,4 =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


 .

Pattern A5,2 is not potentially nilpotent over any F by Corollary 3.7. Also, by
Lemma 5.2 (a), the pattern A5,4 is not potentially nilpotent over F = Z2.

For the pattern A5,1, we have z1,2z2,1 + z1,3z1,3 + z2,3z3,2 ∈ IA5,1 . This has no
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nonzero solution in Z2. When p �= 2, one can use the realization:

 0 −1F 1F

4F 0 2F

2F 1F 0


 .

The pattern A5,3 is potentially nilpotent over any F = Zp with realization:


 1F 1F 1F

−1F −1F −1F

1F 1F 0


 .

Finally, for any p ≥ 3, the pattern A5,4 is potentially nilpotent over F = Zp; indeed,
one such realization is


 1F 1F 1F

1F 1F 1F

−2F −2F −2F


 .

Remark 5.4. We point out three interesting facts that arise from this classifica-
tion. First, all the irreducible patterns that are not potentially nilpotent over any Zp

are in fact not potentially nilpotent over any field F. As a consequence, to determine
which irreducible patterns are potentially nilpotent over F = R, it suffices to consider
only the irreducible patterns that appear in the statement of Theorem 5.3. Moreover,
the realizations given in the proof of Theorem 5.3 show that all of these irreducible
patterns are potentially nilpotent over R except the pattern in Case 4. Second, if A is
potentially nilpotent over Zp, it does not necessarily follow that any superpattern of
A continues to be potentially nilpotent over Zp. And third, notice that none of the
cases in Case 4 are potentially nilpotent over Z2. This lends itself to a natural ques-
tion: what digraphs D(A) have the property that A fails to be potentially nilpotent
over some field F, regardless of the placement of the loops?
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