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Abstract. Suppose R is a Bezout domain. In this paper, some necessary and sufficient con-

ditions for the existence of the group inverse for square matrix over R are given, the conditions for

the existence of the group inverse of products of matrices are studied, and the equivalent conditions

for reverse order law of group inverse of product of matrices are obtained. Also the existence and

the representation of the group inverse for a class 2× 2 block matrices over R are studied, and some

well known relative results are generalized.
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1. Introduction. Research on generalized inverses of matrices over commuta-
tive rings, especially the condition for the regularity of a matrix, is abundant; see e.g.,
[1] and references therein. However, research on the generalized inverses of matrices
over non–commutative rings is relatively sparse; see [2], [4], [14], [15]. The purpose
of this paper is to study the group inverses of matrices over an important associative
ring – a Bezout domain, and generalize some results which are well known and given
at present.

If every finitely generated left (right) ideal in a non-zero ring R which has a unit
element 1 and no zero divisors is principal, then R is called a Bezout domain. Integral
rings, non-commutative principal ideal domains, division rings, polynomial rings in
an indeterminate over field, valuation rings and so on are Bezout domains; see [9],
[11].

Let R be a Bezout domain, we denote the right R–module of n-dimensional
column vector and left R–module of n-dimensional row vector by Rn

r and Rn
l , respec-

tively. Let Rm×n be the set of all m×n matrices over R. For a matrix A ∈ Rn×n, we
denote the right R–module which is generated by the columns, left R–module which
is generated by the rows, and right nullspace of A by Rr(A), Rl(A), and Nr(A),
respectively. The dimension of Rr(A) and Rl(A) is called the column rank and row
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rank of A, respectively. It is well known that the row rank of A is equal to its column
rank, then their common value is called the rank of A, which is denoted by rankA;
see [9], [11]. A matrix is said to be nonsingular if it is neither 0 nor a left or right
zero-divisor. We say that A# is the group inverse of A if A# is a common solution
of the matrix equations: AXA = A, XAX = X , AX = XA. It is well known that if
A# exists then A# is unique.

We have two important results of matrices over R, presented in the following
lemmas; see [11].

Lemma 1.1. A ring R is a Bezout domain if and only if every non-zero matrix

A over R has a factorization A = P

[
∆ 0
0 0

]
Q, where P, Q are invertible matrices

over R, ∆ ∈ Rk×k and rank(A) = k.

Lemma 1.2. Let R be a Bezout domain, A ∈ Rn×n. Then A is an idempo-
tent matrix if and only if there exists invertible matrix p ∈ Rn×n such that A =

P

[
Ir 0
0 0

]
P−1.

This paper is divided into four sections. In the second section, we study the
existence of the group inverse for matrix A, obtaining several equivalent conditions,
as well as the existence and representation of the group inverse for 2× 2 block upper
triangular matrix. This generalizes the relative results in papers [4] and [13]. In
the third section, we study the group inverses of products of two matrices, obtain
the condition for the reverse order law of group inverses, and generalize the relative
results in paper [5]. In the fourth section, we study the existence and representation
of the group inverse for a class 2×2 block matrices, generalizing the relative results in
paper [2]. All results we obtain are new even for commutative principal ideal domains.

2. The Existence of the Group Inverse.

Theorem 2.1. Suppose A ∈ Rn×n. Then the following conditions are equivalent:

(i) A# exists .
(ii) Rr(A) = Rr(A2).
(iii) Rl(A) = Rl(A2).
(iv) There exist invertible matrices D ∈ Rr×r and N ∈ Rn×n such that A =

N

[
D 0
0 0

]
N−1.

Proof. (i)⇒ (ii) It follows from the definition of the group inverse and A# exists
that A = A2A#. Hence Rr(A) ⊆ Rr(A2). On the other hand Rr(A) ⊇ Rr(A2) is
obvious. Then Rr(A) = Rr(A2).
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(i)⇒ (iii) The proof is similar to (i)⇒ (ii).

(iv) ⇒ (i) Let X = N

[
D−1 0
0 0

]
N−1. It follows from the definition of the

group inverse that X = A#.

(ii) ⇒ (iv) By Lemma 1.1, we can find invertible matrices Q, P ∈ Rn×n such

that A = P

[
∆ 0
0 0

]
Q, where ∆ is a r × r matrix with rank∆ = r. Since Rr(A) =

Rr(A2), we may write A = A2X for some matrix X . Let QP =
[

P1 P2

P3 P4

]
, X =

P

[
X1 X2

X3 X4

]
P−1, where P1, X1 ∈ Rr×r. Then

A = P

[
∆P1 ∆P2

0 0

]
P−1, and

A2X = P

[
∆P1∆P1X1 +∆P1∆P2X3 ∆P1∆P1X2 +∆P1∆P2X4

0 0

]
P−1.

Hence

∆P1∆P1X1 +∆P1∆P2X3 = ∆P1, ∆P1∆P1X2 +∆P1∆P2X4 = ∆P2,

P1∆P1X1 + P1∆P2X3 = P1, and P1∆P1X2 + P1∆P2X4 = P2.

It follows that there exists matrix Z such that
[

P1 P2

]
Z = I from invertibility of

the matrices QP , then[
P1∆P1X1 + P1∆P2X3 P1∆P1X2 + P1∆P2X4

]
Z = I, and

P1∆
[

P1X1 + P2X3 P1X2 + P2X4

]
Z = I.

Hence P1 and ∆ are invertible matrices. Namely ∆P1 is an invertible matrix. Let

N = P

[
I −P−1

1 P2

0 I

]
and D = ∆P1, then A = N

[
D 0
0 0

]
N−1 .

(iii)⇒ (iv) The proof is similar to (ii)⇒ (iv).

Remark 2.2. If R is a skew field, then Rr(A) = Rr(A2) if and only if rank(A) =
rank(A2). However, if R is a general Bezout domain, then Rr(A) = Rr(A2) and
rank(A) = rank(A2) are not equivalent, e.g. if R is a ring of integral number, let

A =
[
1 1
1 1

]
, then A2 =

[
2 2
2 2

]
. It is obvious that rank(A) = rank(A2), but

Rr(A) �= Rr(A2).
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Theorem 2.3. Suppose M =
[

A B

0 C

]
∈ Rn×n, A ∈ Rm×m. Then:

(1) M# exists if and only if A#, and C# exist and (I −AA#)B(I −CC#) = 0.

(2) If M# exists, then M# =
[

A# X

0 C#

]
, where X = (A#)2B(I − CC#) +

(I − AA#)B(C#)2 − A#BC#.

Proof. (1) (′if′) Let Y =
[

A# X

0 C#

]
, where X = (A#)2B(I − CC#) + (I −

AA#)B(C#)2 − A#BC#. It follows from the existence of A# and C#, and (I −
AA#)B(I − CC#) = 0 that MY M = M , Y MY = Y , and MY = Y M . Therefore
M# exists.

(′only if′) It follows from the existence of M# and Theorem 2.1(ii) that Rr(M) =
Rr(M2). Thus, for any x1 ∈ Rm

r , x2 ∈ Rn−m
r , there exists y1 ∈ Rm

r , y2 ∈ Rn−m
r ,

such that: [
A B

0 C

] [
x1

x2

]
=

[
A2 AB +BC

0 C2

] [
y1

y2

]
.

Hence Cx2 = C2y2. This means Rr(C) ⊆ Rr(C2). Rr(C) ⊇ Rr(C2) is obvious.
Hence Rr(C) = Rr(C2). Again applying Theorem 2.1(ii), we know C# exists. By
Theorem 2.1(iii), for any u1 ∈ Rm

l , u2 ∈ Rn−m
l there exists z1 ∈ Rm

l , z2 ∈ Rn−m
l

such that

[
u1 u2

] [
A B

0 C

]
=

[
z1 z2

] [
A2 AB +BC

0 C2

]
.

Hence u1A = z1A
2. This means Rl(A) = Rl(A2), that is A# exists. It follows

from Theorem 2.1(iv) that A = P

[
D1 0
0 0

]
P−1 and C = Q−1

[
D2 0
0 0

]
Q, where

D1 ∈ Rs×s and D2 ∈ Rt×t are invertible matrices. Let

P−1BQ−1 =
[

B1 B2

B3 B4

]
, B4 ∈ R(m−s)×(n−m−t).

It is easy to see

(I − AA#)B(I − CC#) = P

[
0 0
0 I

]
P−1BQ−1

[
0 0
0 I

]
Q = P

[
0 0
0 B4

]
Q.

In order to prove the conclusion, we only need to prove B4 = 0. In fact,

M =
[

A B

0 C

]
=

[
P 0
0 Q−1

] 


D1 0 B1 B2

0 0 B3 B4

0 0 D2 0
0 0 0 0




[
P−1 0
0 Q

]
.
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¿From it we know M ∼




D1 0 B1 0
0 0 0 B4

0 0 D2 0
0 0 0 0


. Since M# exists, we have N# =

[
0 B4

0 0

]#

. Obviously, N2 = 0. Then N = N2N# = 0, and B4 = 0.

(2) It is obvious from the proof of (1).

Corollary 2.4. SupposeB1 ∈ Rm×m and M =
[

B1 B2

0 0

]
∈ Rn×n. Then

(1) M# exists if and only if B#
1 exists and Rr(B2) ⊂ Rr(B1).

(2) If M# exists, then M# =

[
B#

1 (B#
1 )

2B2

0 0

]
.

Proof. By Theorem 2.3(2), let C = 0. The result follows easily.

Corollary 2.5. SupposeB1 ∈ Rm×m and M =
[

B1 0
B2 0

]
∈ Rn×n. Then

(1) M# exists if and only if B#
1 exists and Rl(B2) ⊂ Rl(B1).

(2) If M# exists, then M# =

[
B#

1 0
B2(B

#
1 )

2 0

]
.

Proof. We can get the formula for the group inverse of
[

A 0
B C

]
by the same

proof of Theorem 2.3. Let C = 0. The result follows easily.

3. Group Inverses of Products of Two Matrices.

Theorem 3.1. Suppose A ∈ Rm×n, B ∈ Rn×m. Then the following conditions
are equivalent:

(1) (AB)# and (BA)# exist.
(2) Rr(AB) = Rr(ABA) and Rr(BA) = Rr(BAB).
(3) Rl(AB) = Rl(ABA) and Rl(BA) = Rl(BAB).

Proof. (1) ⇒ (2) It follows from the existence of (AB)# and Theorem2.1 that
Rr(AB) = Rr(ABAB). Rr(ABAB) ⊆ Rr(ABA) ⊆ Rr(AB) is obvious. Thus
Rr(AB) = Rr(ABA). Similarly Rr(BA) = Rr(BAB).

(2) ⇒ (1) From Rr(AB) = Rr(ABA) = ARr(BA) and Rr(BA) = Rr(BAB),
we have Rr(AB) = Rr(ABA) = Rr(ABAB). Thus (AB)#exists. Similarly (BA)#

exists.
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(1)⇔ (3) The proof is similar to (1)⇔ (2).

Corollary 3.2. Suppose A ∈ Rm×n, B ∈ Rn×m, and Rr(A) = Rr(ABA), then
(AB)# and (BA)# exist.

Proof. Since Rr(ABA) ⊆ Rr(AB) ⊆ Rr(A), and Rr(A) = Rr(ABA), we have
Rr(ABA) = Rr(AB) = Rr(A). Thus Rr(AB) = Rr(ABA). By Rr(ABA) = Rr(A),
we have Rr(BABA) = Rr(BA). Thus Rr(BA) = Rr(BAB). From Theorem 3.1, we
can prove immediately.

Corollary 3.3. Suppose A ∈ Rm×n, B ∈ Rn×m, and Rr(AB) = Rr(A),
Rr(BA) = Rr(B), then (AB)# and (BA)#exist.

Proof. It follows from Rr(AB) = Rr(A), and Rr(BA) = Rr(B) that Rr(AB) =
ARr(B) = ARr(BA) = Rr(ABA). Similarly, Rr(BA) = Rr(BAB). ¿From Theorem
3.1, we can prove immediately.

Corollary 3.4. Suppose A ∈ Rm×n, B ∈ Rn×m, Rr(AB) = Rr(A) and (AB)#

exist, then (BA)# exist.

Proof. It follows from the existence of (AB)# thatRr(AB) = Rr(ABAB). Hence
Rr(AB) = Rr(ABA). From Rr(AB) = Rr(A) it follows that BRr(AB) = BRr(A).
Therefore Rr(BA) = Rr(BAB). Then we can obtain the existence of (BA)# from
Theorem 3.1 .

Lemma 3.5. Suppose A ∈ Rm×n, B ∈ Rn×m, then there exist invertible matrices
P ∈ Rm×m and Q ∈ Rn×n, such that

A = P

[
A1 0
0 0

]
Q, and B = Q−1




B1 B2 B3

0 0r−s 0
C1 C2 C3

0 0 0


P−1,

where A1 ∈ Rr×r, rankA = rankA1 = r, B1 ∈ Rs×s, C1 ∈ Rt×s.

Proof. By Lemma 1.1, we can find invertible matrices M ∈ Rm×m, N ∈ Rn×n

such that A = M

[
∆ 0
0 0

]
N , where ∆ ∈ Rr×r and rankA = r. We write B =

N−1

[
∆1

∆2

]
M−1, where ∆1 ∈ Rr×m, ∆1 = Q−1

1

[
E 0
0 0

]
P−1

1 , and E is a s × s

non-singular matrix over R. ∆2 = Q−1
2

[
F 0
0 0

]
P−1

2 , where F is a t× t non-singular

matrix over R. Let[
E 0
0 0

]
P−1

1 =
[

B1 B2 B3

0 0r−s 0

]
, and

[
F 0
0 0

]
P−1

2 =
[

C1 C2 C3

0 0 0

]
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where B1 ∈ Rs×s, and C1 ∈ Rt×s. Then

B = N−1

[
Q−1

1 0
0 Q−1

2

] 


B1 B2 B3

0 0r−s 0
C1 C2 C3

0 0 0


M−1, and

A = M

[
∆Q−1

1 0
0 0

] [
Q1 0
0 Q2

]
N.

Let M = P ,
[

Q1 0
0 Q2

]
N = Q, and ∆Q−1

1 = A1, then A1 ∈ Rr×r, rankA =

rankA1 = r, and

A = P

[
A1 0
0 0

]
, and B = Q−1




B1 B2 B3

0 0r−s 0
C1 C2 C3

0 0 0


 P−1.

Theorem 3.6. Suppose A, B ∈ Rn×n. Then from any two of the following
conditions, we can obtain the other one.

(1) (AB)# exists.
(2) (BA)# exists.
(3) AB ∼ BA.

Proof. (1), (2)⇒ (3) Let A and B be the form as in Lemma 3.5, then

AB = P


 A1

[
B1 B2

0 0

]
A1

[
B3

0

]
0 0


P−1, and

BA = Q−1




[
B1 B2

0 0

]
A1 0[

C1 C2

0 0

]
A1 0


Q.

¿From Corollary 2.4 and Corollary 2.5, we obtain the following:

(AB)# exists ⇔ (A1

[
B1 B2

0 0

]
)# exists, and

Rr(A1

[
B3

0

]
) ⊂ Rr(A1

[
B1 B2

0 0

]
),
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(BA)# exists ⇔ (
[

B1 B2

0 0

]
A1)#exists, and

Rl(
[

C1 C2

0 0

]
A1) ⊂ Rl(

[
B1 B2

0 0

]
A1).

Hence there exists E ∈ Rr×(n−r), F ∈ R(n−r)×r such that

A1

[
B3

0

]
= A1

[
B1 B2

0 0

]
E, and

[
C1 C2

0 0

]
A1 = F

[
B1 B2

0 0

]
A1.

Then

AB = P

[
I −E

0 I

] 
 A1

[
B1 B2

0 0

]
0

0 0


 [

I E

0 I

]
P−1, and

BA = Q−1

[
I 0
F I

]


[
B1 B2

0 0

]
A1 0

0 0


[

I 0
−F I

]
Q.

Let
[

B1 B2

0 0

]
= R

[
D 0
0 0

]
S, for invertible matrices R, S, where D ∈ Rr1×r1

and rankD = r1. Then

A1

[
B1 B2

0 0

]
∼ SA1R

[
D 0
0 0

]
, and

[
B1 B2

0 0

]
A1 ∼

[
D 0
0 0

]
SA1R.

Let C = SA1R, C =
[

C4 C5

C6 C7

]
. Then rankC = r,

C

[
D 0
0 0

]
=

[
C4D 0
C6D 0

]
, and

[
D 0
0 0

]
C =

[
DC4 DC5

0 0

]
.

It follows from
(

A1

[
B1 B2

0 0

])#

exists that
(

C

[
D 0
0 0

])#

exist, then (C4D)#

exists, and Rl(C6D) ⊂ Rl(C4D), then C6D = GC4D for some matrix G. Hence

C

[
D 0
0 0

]
∼

[
C4D 0
0 0

]
, and rank(C4D) = r1.

Similarly, we can prove (DC4)# exists,[
D 0
0 0

]
C ∼

[
DC4 0
0 0

]
, and rank(DC4) = r1.

It follows from the definition of the group inverse and the existence of (C4D)#. Thus
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C4DXC4D = C4D ⇒ C4D(XC4D − I) = 0⇒ XC4D − I = 0⇒ XC4D = I

for matrix a X . Hence C4, and D are invertible matrices, and C4D ∼ DC4. Therefore
AB ∼ BA .

(1), (3)⇒ (2) and (2), (3)⇒ (1) are obvious.

Theorem 3.7. Suppose A, B ∈ Rn×n, and A# and B#exist. Then the following
conditions are equivalent:

(i) (AB)# exists and (AB)# = B#A#.
(ii) Rr(AB) = Rr(BA) and Nr(AB) = Nr(BA).
(iii) There exists a invertible P ∈ Rn×n such that{

A = P (A1 ⊕ · · · ⊕ At)P−1,

B = P (B1 ⊕ · · · ⊕ Bt)P−1,
where Ai = 0 or Ai is invertible for every i, Bi = 0 or Bi is invertible for
every i, the orders of Ai and Bi are equal for every i, and AjBj = 0 for j ≥
2.

Proof. (iii)⇒ (i) and (iii)⇒ (ii) can be obtained by a direct computation.

(i)⇒ (iii) We proceed by induction on n. If n = 1, the proof is obvious. Suppose
the lemma is true when k < n, where k ≥ 2; we will prove that it is true when k = n.
Without loss of generality, we assume 0 < rankA < n. It follows from Theorem
2.1(iv) and the existence of A# that

A = N

[
D 0
0 0

]
N−1, and A# = N

[
D−1 0
0 0

]
N−1(3.1)

for some invertible matricesN ∈ Rn×n, D ∈ Rr×r, where r = rankA. Let

B = N

[
B1 B2

B3 B4

]
N−1, and B# = N

[
C1 C2

C3 C4

]
N−1(3.2)

where B1, C1 ∈ Rr×r. Then

AB = N

[
DB1 DB2

0 0

]
N−1, and B#A# = N

[
C1D

−1 0
C3D

−1 0

]
N−1.

By Corollary 2.4 and (AB)# = B#A#, we have

[(DB1)#]2DB2 = 0, and C3 = 0.(3.3)

Again applying Corollary 2.4 and the existence of (AB)#, we have Rr(DB2) ⊂
Rr(DB1). Thus, DB2 = DB1X for some r × (n − r) matrix X, i.e., B2 = B1X .
Replacing B2 by B1X in (3.3), we have DB1X = 0. Hence

B2 = D−1(DB2) = D−1(DB1X) = 0(3.4)
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Combining (3.2), (3.3), and (3.4), we have
[

B1 0
B3 B4

]
=

[
C1 C2

0 C4

]#

. It follows

from Theorem 2.3 that B3 = 0. In summary,

A = N(D ⊕ 0)N−1, and B = N(B1 ⊕ B4)N−1.(3.5)

Again applying (AB)# = B#A#, we obtain (DB1)# = B#
1 D#, and (0B4)# = B#

4 0.
By the induction hypothesis, it is easy to see that (iii) holds.

(ii) ⇒ (iii) We proceed by induction on n. If n = 1, the proof is obvious.
Suppose the lemma is true when k < n, where k ≥ 2; we will prove that it is true
when k = n. We can assume that (3.1) and (3.2) hold. It follows from Rr(AB) =
Rr(BA) that B3D = 0, i.e., B3 = 0. Again applying Nr(AB) = Nr(BA), we have

Nr(
[

DB1 DB2

0 0

]
) = Nr(

[
B1D 0
0 0

]
). Noting

[
0
y

]
∈ Nr(

[
B1D 0
0 0

]
) for any

y ∈ Cn−r, we obtain
[
0
y

]
∈Nr(

[
DB1 DB2

0 0

]
), and hence DB2y = 0. That is

B2 = 0. In summary Equation (3.5) holds. Again applying (ii), we obtain that
Rr(DB1) = Rr(B1D), Nr(DB1) = Nr(B1D), Rr(0B4) = Rr(B40), and Nr(0B4) =
Nr(B40). By the induction hypothesis, it is easy to see that (iii) holds.

Corollary 3.8. Suppose A, B ∈ Rn×n, A# and B# exist, and AB = BA.
Then (AB)# exists and (AB)# = B#A#.

Corollary 3.9. Suppose A, B ∈ Rn×n, A# and B# exist. Then (AB)# exists
and (AB)# = B#A# if and only if (BA)# exists and (BA)# = A#B#.

4. Group Inverse for a Class 2× 2 Block Matrices. The group inverses of
block matrices have various applications in singular differential and difference equa-
tions, Markov chains, iterative methods; see [1], [3], [6], [7], [8], [10], [12], [13], [16],
[17]. We generalized the results of [2] to the Bezout domain in this section of the
paper.

Lemma 4.1. Let A, B ∈ Rn×n, if A2 = A, rankA = r, Rr(B) = Rr(BAB), then

there is an invertible matrix P ∈ Rn×n, such that B = P

[
B1 B1X

Y B1 Y B1X

]
P−1 and

B#
1 exists, where B1 ∈ Rr×r, X ∈ Rr×(n−r), Y ∈ R(n−r)×r.

Proof. Since A2 = A, by Lemma 1.2 there exists invertible matrix P ∈ Rn×n

such that A = P

[
Ir 0
0 0

]
P−1, B = P

[
B1 B2

B3 B4

]
P−1, where B1 ∈ Rr×r, B4 ∈

R(n−r)×(n−r). It follows from Rr(B) = Rr(BAB) that Rr(B) = Rr(BA). Then there

exists Z = P

[
Z1 X

Z3 Z4

]
P−1 ∈ Rn×n, where X ∈ Rr×(n−r), such that B = BAZ,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 600-612, October 2009

http://math.technion.ac.il/iic/ela



ELA

610 Chongguang Cao and Juyan Li

i.e., [
B1 B2

B3 B4

]
=

[
B1 0
B3 0

] [
Z1 X

Z3 Z4

]
=

[
B1Z1 B1X

B3Z1 B3X

]
,

then B2 = B1X , and B4 = B3X . It follows from Rr(B) = Rr(BAB) and Corollary

3.2 that (BA)# exists. By Corollary 2.5 and BA = P

[
B1 0
B3 0

]
P−1, we get that

B#
1 exists and Rl(B3) ⊂ Rl(B1). So there is a matrix Y ∈ R(n−r)×r, such that

B3 = Y B1. That is B = P

[
B1 B1X

Y B1 Y B1X

]
P−1.

Lemma 4.2. Let A, B ∈ Rn×n. If A2 = A, rankA = r, Rr(B) = Rr(BAB),
then the following conclusions hold:

(i) (BA)#BAB = B;
(ii) A(AB)# = (AB)#, (BA)#A = (BA)#, (AB)#A = A(BA)#, (BA)#B =

B(AB)#;
(iii) (AB)#ABA(AB)# = (AB)#, A(BA)#(AB)#AB = (AB)#;
(iv) (BA)#BA(AB)#A = (BA)#, B(AB)#ABA = BA.

Proof. By Lemma 4.1. The proof is similar to Lemma 2.6 of [2].

Theorem 4.3. Suppose M =
[

A A

B O

]
, where A, B ∈ Rn×n, A2 = A,

rankA = r, then

(i) M# exists if and only if Rr(B) = Rr(BAB);
(ii) If M# exists, then M# =[

A − (AB)# + (AB)#A − (AB)#ABA A+ (AB)#A − (AB)#ABA

(BA)#B + (BA)#(AB)#AB − (BA)# −(BA)#

]

Proof. (i) It is easy to see that

Rr(M) =
{[

A A

B 0

] [
x1

x2

]
|∀x =

[
x1

x2

]}
, and

Rr(M2) =
{[

A+AB A

BA BA

] [
y1

y2

]
|∀y =

[
y1

y2

]}
.

(′only if ′) Let x1 ∈ Rn. It follows from the existence of M# that Rr(M) =
Rr(M2). So there exists y1, y2 ∈ Rn such that[

A A

B O

] [
x1

−x1

]
=

[
A A

B O

]2 [
y1

y2

]
=

[
A+AB A

BA BA

] [
y1

y2

]
.
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Then 0 = Ay1 +Ay2 + ABy1, and Bx1 = BA(y1 + y2), so Bx1 = −BABy1. That is
Rr(B) ⊆ Rr(BAB). Rr(B) ⊇ Rr(BAB) is obvious. Hence Rr(B) = Rr(BAB).

(′ if ′) Given any x1, x2 ∈ Rn. It follows fromRr(B) = Rr(BAB) that there exists
a ∈ Rn such that B(x1 −A(x1+x2)) = BABa; that is Bx1 = BA(x1+x2)+BABa.
Hence [

A A

B O

] [
x1

x2

]
=

[
A(x1 + x2)
Bx1

]
=

[
Ax1 +Ax2

BA(x1 + x2) +BABa

]

=
[
0 A

−BAB BA

] [ −a

x1 + x2

]
.

It follows from [
0 A

−BAB BA

]
= M2

[
I 0
−I − B I

]

that Rr(
[
0 A

−BAB BA

]
) = Rr(M2). That is Rr(M) ⊆ Rr(M2). Rr(M2) ⊆

Rr(M) is obvious. Hence Rr(M) = Rr(M2), implying M# exists.

(ii) By Lemma 4.1 and Lemma 4.2. The proof is similar to Theorem 3.1 of [2]

Corollary 4.4. Suppose M =
[

A B

A O

]
, where A, B ∈ Rn×n, A2 = A,

rankA = r, then

(i) M# exists if and only if Rl(B) = Rl(BAB);
(ii) If M# exists, then M# =

"
A − (BA)# + (AB)#A − (AB)#ABA (BA)#B + (BA)#(AB)#AB − (AB)#

A + (AB)#A − (AB)#ABA −(AB)#

#
.

Proof. It is similar to the proof of Theorem 4.3.

Theorem 4.5. If
[

A A

B O

]#

exists, where A, B ∈ Rn×n, A2 = A, rankA = r,

then AB ∼ BA.

Proof. The conclusion is obvious by Corollary 3.2, Theorem 3.6, and Theorem
4.3.

Remark 4.6. Theorem 4.3, Corollary 4.4, and Theorem 4.5 generalize Theorem
3.1, Corollary 1, and Corollary 2 of [2].
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