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GENERALIZED PASCAL TRIANGLES AND TOEPLITZ MATRICES∗

A. R. MOGHADDAMFAR† AND S. M. H. POOYA‡

Abstract. The purpose of this article is to study determinants of matrices which are known as

generalized Pascal triangles (see R. Bacher. Determinants of matrices related to the Pascal triangle.

J. Théor. Nombres Bordeaux, 14:19–41, 2002). This article presents a factorization by expressing

such a matrix as a product of a unipotent lower triangular matrix, a Toeplitz matrix, and a unipotent

upper triangular matrix. The determinant of a generalized Pascal matrix equals thus the determinant

of a Toeplitz matrix. This equality allows for the evaluation of a few determinants of generalized

Pascal matrices associated with certain sequences. In particular, families of quasi-Pascal matrices

are obtained whose leading principal minors generate any arbitrary linear subsequences (Fnr+s)n≥1

or (Lnr+s)n≥1 of the Fibonacci or Lucas sequence. New matrices are constructed whose entries are

given by certain linear non-homogeneous recurrence relations, and the leading principal minors of

which form the Fibonacci sequence.

Key words. Determinant, Matrix factorization, Generalized Pascal triangle, Generalized sym-

metric (skymmetric) Pascal triangle, Toeplitz matrix, Recursive relation, Fibonacci (Lucas, Catalan)

sequence, Golden ratio.
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1. Introduction. Let P (∞) be the infinite symmetric matrix with entries Pi,j =(
i+j

i

)
for i, j ≥ 0. The matrix P (∞) is hence the famous Pascal triangle yielding the

binomial coefficients. The entries of P (∞) satisfy the recurrence relation Pi,j =
Pi−1,j + Pi,j−1. Indeed, this matrix has the following form:

P (∞) =




1 1 1 1 1 . . .

1 2 3 4 5 . . .

1 3 6 10 15 . . .

1 4 10 20 35 . . .

1 5 15 35 70 . . .
...

...
...

...
...

. . .
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One can easily verify that (see [2, 6]):

P (∞) = L(∞) · L(∞)t,(1.1)

where L(∞) is the infinite unipotent lower triangular matrix

L(∞) = (Li,j)i,j≥0 =




1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

...
...

...
...

. . .




(1.2)

with entries Li,j =
(

i
j

)
. We denote by L(n) the finite submatrix of L(∞) with entries

Li,j , 0 ≤ i, j ≤ n− 1.

To introduce our result, we first present some notation and definitions. We recall
that a matrix T (∞) = (ti,j)i,j≥0 is said to be Toeplitz if ti,j = tk,l whenever i− j =
k − l. Let α = (αi)i≥0 and β = (βi)i≥0 be two sequences with α0 = β0. We shall
denote by Tα,β(∞) = (ti,j)i,j≥0 the Toeplitz matrix with ti,0 = αi and t0,j = βj. We
also denote by Tα,β(n) the submatrix of Tα,β(∞) consisting of the entries in its first
n rows and columns.

We come now back to the (1.1). In fact, one can rewrite it as follows:

P (∞) = L(∞) · I · L(∞)t,

where matrix I (identity matrix) is a particular case of a Toeplitz matrix.

In [1], Bacher considers determinants of matrices generalizing the Pascal triangle
P (∞). He introduces generalized Pascal triangles as follows. Let α = (αi)i≥0 and
β = (βi)i≥0 be two sequences starting with a common first term α0 = β0 = γ.
Then, the generalized Pascal triangle associated with α and β, is the infinite matrix
Pα,β(∞) = (Pi,j)i,j≥0 with entries Pi,0 = αi, P0,j = βj (i, j ≥ 0) and

Pi,j = Pi−1,j + Pi,j−1, for i, j ≥ 1.

We denote by Pα,β(n) the finite submatrix of Pα,β(∞) with entries Pi,j , 0 ≤ i, j ≤
n − 1. An explicit formula for entry Pi,j of Pα,β(n) is also given by the following
formula (see [1]):

Pi,j = γ

(
i + j

j

)
+
( i∑

s=1

(αs − αs−1)
(
i + j − s

j

))
+
( j∑

t=1

(βt − βt−1)
(
i + j − t

i

))
.
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For an arbitrary sequence α = (αi)i≥0, we define the sequences α̂ = (α̂i)i≥0 and
α̌ = (α̌i)i≥0 as follows:

α̂i =
i∑

k=0

(−1)i+k

(
i

k

)
αk and α̌i =

i∑
k=0

(
i

k

)
αk.(1.3)

With these definitions we can now state our main result. Indeed, the purpose
of this article is to obtain a factorization of the generalized Pascal triangle Pα,β(n)
associated with the arbitrary sequences α and β, as a product of a unipotent lower
triangular matrix L(n), a Toeplitz matrix Tα̂,β̂(n) and a unipotent upper triangular
matrix U(n) (see Theorem 3.1), that is

Pα,β(n) = L(n) · Tα̂,β̂(n) · U(n).

Similarly, we show that

Tα,β(n) = L(n)−1 · Pα̌,β̌(n) · U(n)−1.

In fact, we obtain a connection between generalized Pascal triangles and Toeplitz
matrices. In view of these factorizations, we can easily see that

det(Pα,β(n)) = det(Tα̂,β̂(n)).

Finally, we present several applications of Theorem 3.1 to some other determinant
evaluations.

We conclude the introduction with notation and terminology to be used through-
out the article. For convenience, we will let

√−1 denote the complex number i ∈ C.
By �x	 we denote the integer part of x, i.e., the greatest integer that is less than or
equal to x. We also denote by 
x� the smallest integer greater than or equal to x.
Given a matrix A, we denote by Ri(A) and Cj(A) the row i and the column j of A,
respectively. We use the notation At for the transpose of A.

In general, an n× n matrix of the following form:

[
A B

C Pα,β(n− k)

] (
resp.

[
A B

C Tα,β(n− k)

])

where A, B and C are arbitrary matrices of order k × k, k × (n− k) and (n− k) × k,
respectively, is called a quasi-Pascal (resp. quasi-Toeplitz) matrix.

Throughout this article we assume that:
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F = (Fi)i≥0 = (0, 1, 1, 2, 3, 5, 8, . . . ,Fi, . . .) (Fibonacci numbers),

F∗ = (Fi)i≥1 = (1, 1, 2, 3, 5, 8, . . . ,Fi, . . .) (Fibonacci numbers �= 0),

L = (Li)i≥0 = (2, 1, 3, 4, 7, 11, 18, . . . ,Li, . . .) (Lucas numbers),

C = (Ci)i≥0 = (1, 1, 2, 5, 14, 42, 132, . . . , Ci, . . .) (Catalan numbers),

I = (Ii)i≥0 = (0!, 1!, 2!, 3!, 4!, 5!, 6!, . . . , Ii = i!, . . .)

I∗ = (Ii)i≥1 = (1!, 2!, 3!, 4!, 5!, 6!, . . . , Ii = i!, . . .)

The rest of this article is organized as follows. In Section 2, we derive some
preparatory results. In Section 3, we prove the main result (Theorem 3.1). Section 4
deals with applications of Theorem 3.1. In Section 5, we present two matrices whose
entries are recursively defined, and we show that the leading principal minor sequence
of these matrices is the sequence F∗ = (Fi)i≥1.

2. Preliminary Results. As we mentioned in the Introduction, if α = (αi)i≥0

is an arbitrary sequence, then we define the sequences α̂ = (α̂i)i≥0 and α̌ = (α̌i)i≥0

as in (1.3). For certain sequences α the associated sequences α̂ and α̌ seem also to be
of interest since they have appeared elsewhere. In Tables 1 and 2, we have presented
some sequences α and the associated sequences α̂ and α̌.

Table 1. Some sequences α and associated sequences α̌.

α Reference α̌

(0, 1,−1, 2,−3, 5,−8, . . .) A039834 in [8] F
(1, 0, 1,−1, 2,−3, 5,−8, . . .) A039834 in [8] F∗

(2,−1, 3,−4, 7,−11, 18, . . .) A061084 in [8] L
(1, 0, 1, 1, 3, 6, 15, . . .) A005043 in [8] C
(1, 0, 1, 2, 9, 44, 265, . . .) A000166 in [8] I
(1, 1, 3, 11, 53, 309, 2119, . . .) A000255 in [8] I∗

Table 2. Some sequences α and associated sequences α̂.

α Reference α̂

(0, 1, 3, 8, 21, 55, 144, . . .) A001906 in [8] F
(1, 2, 5, 13, 34, 89, 233, . . .) A001519 in [8] F∗

(2, 3, 7, 18, 47, 123, 322, . . .) A005248 in [8] L
(1, 2, 5, 15, 51, 188, 731, . . .) A007317 in [8] C
(1, 2, 5, 16, 65, 326, 1957, . . .) A000522 in [8] I
(1, 3, 11, 49, 261, 1631, . . .) A001339 in [8] I∗
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As another nice example, consider α = Ri(L(∞)) where L is introduced as in
(1.2). Then, we have

α̌ = Ri(P (∞)).

Lemma 2.1. Let α be an arbitrary sequence. Then, we have ˆ̌α = ˇ̂α = α.

Proof. Suppose α = (αi)i≥0 and ˆ̌α = (ˆ̌αi)i≥0. Then, we have

ˆ̌αi =
∑i

k=0(−1)i+k
(

i
k

)
α̌k

=
∑i

k=0(−1)i+k
(

i
k

)∑k
s=0

(
k
s

)
αs

=
∑i

k=0

∑k
s=0(−1)i+k

(
i
k

)(
k
s

)
αs

= (−1)i
∑i

l=0 αl

∑i
h=l(−1)h

(
i
h

)(
h
l

)
= (−1)i

∑i
l=0 αl

∑i
h=l(−1)h

(
i
l

)(
i−l
h−l

)
= (−1)i

∑i
l=0 αl

(
i
l

)∑i
h=l(−1)h

(
i−l
h−l

)
.

But, if l < i, then we have
∑i

h=l(−1)h
(

i−l
h−l

)
= 0. Therefore, we obtain

ˆ̌αi = (−1)i
i∑

l=i

αl

(
i

l

) i∑
h=l

(−1)h

(
i− l

h− l

)
= αi,

and hence ˆ̌α = α.

The proof of second part is similar to the previous case.

Lemma 2.2. Let i, j be positive integers. Then, we have

i−j∑
k=0

(−1)k

(
i

k + j

)(
k + j

j

)
=

{
0 if i �= j,

1 if i = j.

The proof follows from the easy identity(
i

k + j

)(
k + j

j

)
=

(
i

j

)(
i− j

k

)
.

The following Lemma is a special case of a general result due to Krattenthaler
(see Theorem 1 in [9]).

Lemma 2.3. Let α = (αi)i≥0 and β = (βj)j≥0 be two geometric sequences with
αi = ρi and βj = σj. Then, we have

det(Pα,β(n)) = (ρ + σ − ρσ)n−1.
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3. Main Result. Now, we are in the position to state and prove the main result
of this article.

Theorem 3.1. Let α = (αi)i≥0 and β = (βi)i≥0 be two sequences starting with
a common first term α0 = β0 = γ. Then, we have

Pα,β(n) = L(n) · Tα̂,β̂(n) · U(n),(3.1)

and

Tα,β(n) = L(n)−1 · Pα̌,β̌(n) · U(n)−1,(3.2)

where L(n) = (Li,j)0≤i,j<n is a lower triangular matrix with

Li,j =

{
0 if i < j(
i
j

)
if i ≥ j,

and U(n) = L(n)t. In particular, we have det(Pα,β(n)) = det(Tα̂,β̂(n)).

Proof. First, we claim that

Pα,β(n) = L(n) ·Q(n),

where L(n) = (Li,j)0≤i,j<n is a lower triangular matrix with

Li,j =

{
0 if i < j(
i
j

)
if i ≥ j,

and Q(n) = (Qi,j)0≤i,j<n with Qi,0 = α̂i, Q0,i = βi and

Qi,j = Qi−1,j−1 + Qi,j−1, 1 ≤ i, j < n.(3.3)

For instance, when n = 4 the matrices L(4) and Q(4) are given by:

L(4) =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1


 ,

and

Q(4) =




γ β1 β2 β3

−γ + α1 α1 β1 + α1 β1 + β2 + α2

γ − 2α1 + α2 −α1 + α2 α2 β1 + α1 + α2

−γ + 3α1 − 3α2 + α3 α1 − 2α2 + α3 −α2 + α3 α3


 .
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Note that the entries of L(n) satisfying in the following recurrence

Li,j = Li−1,j−1 + Li−1,j , 1 ≤ i, j < n.(3.4)

For the proof of the claimed factorization we compute the (i, j)-th entry of L(n)·Q(n),
that is

(L(n) ·Q(n))i,j =
n∑

k=1

Li,kQk,j .

In fact, it suffices to show that

R0(L(n) ·Q(n)) = R0(Pα,β(n)),

C0(L(n) ·Q(n)) = C0(Pα,β(n))

and

(L(n) ·Q(n))i,j = (L(n) ·Q(n))i,j−1 + (L(n) ·Q(n))i−1,j ,(3.5)

for 1 ≤ i, j < n.

First, suppose that i = 0. Then, we obtain

(L(n) ·Q(n))0,j =
n−1∑
k=0

L0,kQk,j = L0,0Q0,j = βj ,

and so R0(L(n) ·Q(n)) = R0(Pα,β(n)) = (β0, β1, . . . , βn−1).

Next, suppose that i ≥ 1 and j = 0. In this case, we have

(L(n) ·Q(n))i,0 =
∑n−1

k=0 Li,kQk,0

=
∑i

k=0

{(
i
k

)∑k
l=0(−1)l+k

(
k
l

)
βl

}
=

∑i
j=0 βj

{∑i−j
t=0(−1)t

(
i

t+j

)(
t+j
j

)}
= βi, (by Lemma 2.2)

and so C0(L(n) ·Q(n)) = C0(Pα,β(n)) = (α0, α1, . . . , αn−1)t.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 564-588, August 2009

http://math.technion.ac.il/iic/ela



ELA

Generalized Pascal Triangles and Toeplitz Matrices 571

Finally, we must establish (3.5). Therefore, we assume that 1 ≤ i, j < n. In this
case, we have

(L(n) ·Q(n))i,j =
∑n−1

k=0 Li,kQk,j

= Li,0Q0,j +
∑n−1

k=1 Li,kQk,j

= Li,0Q0,j +
∑n−1

k=1 Li,k(Qk−1,j−1 + Qk,j−1) (by (3.3))

= Li,0Q0,j +
∑n−1

k=1 Li,kQk−1,j−1 +
∑n−1

k=1 Li,kQk,j−1

= Li,0Q0,j +
∑n−1

k=1 (Li−1,k−1 + Li−1,k)Qk−1,j−1

+
∑n−1

k=0 Li,kQk,j−1 − Li,0Q0,j−1 (by (3.4))

= Li,0Q0,j +
∑n−1

k=1 Li−1,k−1Qk−1,j−1

+
∑n−1

k=1 Li−1,k(Qk,j −Qk,j−1) + (L(n) ·Q(n))i,j−1

−Li,0Q0,j−1 (by (3.3))

= Li,0Q0,j +
∑n−2

k=0 Li−1,kQk,j−1 +
∑n−1

k=1 Li−1,kQk,j

−∑n−1
k=0 Li−1,kQk,j−1 + Li−1,0Q0,j−1 + (L(n) ·Q(n))i,j−1

−Li,0Q0,j−1

= Li,0Q0,j +
∑n−1

k=0 Li−1,kQk,j−1 +
∑n−1

k=0 Li−1,kQk,j

−Li−1,0Q0,j −
∑n−1

k=0 Li−1,kQk,j−1 + Li−1,0Q0,j−1

+(L(n) ·Q(n))i,j−1 − Li,0Q0,j−1 (note that Li−1,n−1 = 0)

= (Li,0 − Li−1,0)Q0,j + (L(n) ·Q(n))i−1,j

+(Li−1,0 − Li,0)Q0,j−1 + (L(n) ·Q(n))i,j−1

= (L(n) ·Q(n))i−1,j + (L(n) ·Q(n))i,j−1,

(note that Li,0 = Li−1,0 = 1)

which is (3.5).

Next, we claim that

Q(n) = Tα̂,β̂(n) · U(n),

where U(n) = L(n)t and Tα,β(n) = (Ti,j)0≤i,j<n with Ti,0 = α̂i, T0,j = β̂j , and

Ti,j = Ti−1,j−1, 1 ≤ i, j < n.

Note that, we have

Ui,j = Ui−1,j−1 + Ui,j−1, 1 ≤ i, j < n.(3.6)
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For instance, when n = 4 the matrices Tα̂,β̂(4) and U(4) are given by:

Tα̂,β̂(4) =

2
6664

γ −γ + β1 γ − 2β1 + β2 −γ + 3β1 − 3β2 + β3

−γ + α1 γ −γ + β1 γ − 2β1 + β2

γ − 2α1 + α2 −γ + α1 γ −γ + β1

−γ + 3α1 − 3α2 + α3 γ − 2α1 + α2 −γ + α1 γ

3
7775

and

U(4) =




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


 .

As before, the proof of the claim requires some calculations. If we have i = 0,
then

(Tα̂,β̂(n) · U(n))0,j =
∑n−1

k=0 T0,kUk,j

=
∑j

k=0

{(∑k
l=0(−1)l+k

(
k
l

)
βl

)(
j
k

)}
=

∑j
i=0 βi

{∑j−i
t=0(−1)t

(
j

t+i

)(
t+i
i

)}
= βj , (by Lemma 2.2)

which implies that R0(Tα̂,β̂(n) · U(n)) = R0(Q(n)) = (β0, β1, . . . , βn−1). If j = 0,
then we obtain

(Tα̂,β̂(n) · U(n))i,0 =
n−1∑
k=0

Ti,kUk,1 = Ti,0U0,0 = α̂i,

and so C0(Tα̂,β̂(n) · U(n)) = C0(Q(n)) = (α̂0, α̂1, . . . , α̂n−1)t. Finally, we assume
that 1 ≤ i, j < n− 1 and establish (3.3). Indeed, by calculations we observe that

(Tα̂,β̂(n) · U(n))i,j =
∑n−1

k=0 Ti,kUk,j

= Ti,0U0,j +
∑n−1

k=1 Ti,kUk,j

= Ti,0U0,j +
∑n−1

k=1 Ti,k(Uk−1,j−1 + Uk,j−1) (by (3.6))

= Ti,0U0,j +
∑n−1

k=1 Ti,kUk−1,j−1 +
∑n−1

k=1 Ti,kUk,j−1

= Ti,0U0,j +
∑n−1

k=1 Ti−1,k−1Uk−1,j−1 +
∑n−1

k=0 Ti,kUk,j−1

−Ti,0U0,j−1 (note that, Ti,k = Ti−1,k−1)

= Ti,0(U0,j − U0,j−1) +
∑n−1

k=0 Ti−1,kUk,j−1

+(Tα̂,β̂(n) · U(n))i,j−1 (note that Un−1,j−1 = 0)

= (Tα̂,β̂(n) · U(n))i−1,j−1 + (Tα̂,β̂(n) · U(n))i,j−1,
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which is (3.3). The proof of (3.1) is now complete.

To prove of (3.2), we observe that

L(n)−1 · Pα̌,β̌(n) · U(n)−1 = L(n)−1 · L(n) · T ˆ̌α,ˆ̌β
(n) · U(n) · U(n)−1 (by (3.1))

= T ˆ̌α,ˆ̌β
(n)

= Tα,β(n). (by Lemma 2.1)

The proof is complete.

4. Some Applications. Let A = (ai,j)i,j≥0 be an infinite matrix and let Dn

be the nth leading principal minor of A consisting of the entries in its first n rows
and columns. We will mainly be interested in the sequence of leading principal
minors (D1, D2, D3, . . .), especially, in the case that it forms a Fibonacci or Lucas
(sub)sequence.

4.1. Generalized Pascal Triangle Associated With an Arithmetic or
Geometric Sequence . It is of interest to evaluate the determinant of general-
ized Pascal triangle Pα,β(n), where one of the sequences α or β is an arithmetic or
geometric sequence.

Corollary 4.1. Let α = (αi)i≥0 be an arithmetic sequence with αi = a + id,
and let β = (βi)i≥0 be an arbitrary sequence with β0 = a. We set Dn = det(Pα,β(n)).
Then, we have

Dn =
n−1∑
k=0

(−d)kβ̂kDn−k−1,

with D0 = 1.

Proof. By Theorem 3.1, we deduce that Dn = det(Tα̂,β̂(n)), where α̂ = (α̂i)i≥0

with

α̂i =
∑i

k=0(−1)i+k
(

i
k

)
αk

=
∑i

k=0(−1)i+k
(

i
k

)(
β0 + kd

)
= β0

∑i
k=0(−1)i+k

(
i
k

)
+ d

∑i
k=0(−1)i+k

(
i
k

)
k

=




β0 if i = 0,

d if i = 1,

0 if i > 1.

Now, expanding through the first row of Tα̂,β̂(n), we obtain the result.
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Corollary 4.2. Let α = (αi)i≥0 be an arithmetic sequence with αi = a + id,
and let β = (βi)i≥0 be an alternating sequence with βi = (−1)ia. Then, we have

det(Pα,β(n)) = a(2d + a)n−1.

Proof. Let Dn = det(Pα,β(n)). By Corollary 4.1, we have

Dn =
n−1∑
k=0

(−d)kβ̂kDn−k−1 (n ≥ 1),

with D0 = 1. An easy calculation shows that

β̂k =
∑k

l=0(−1)k+l
(
k
l

)
βl

=
∑k

l=0(−1)k+l
(
k
l

)
(−1)la

= a(−1)k
∑k

l=0

(
k
l

)
= a(−2)k.

Hence, we have

Dn = a

n−1∑
k=0

(2d)kDn−k−1.

Now, replacing n by n− 1, we obtain

Dn−1 = a

n−2∑
k=0

(2d)k−1Dn−k−2,

and by calculation it follows that

Dn − 2dDn−1 = a
(∑n−1

k=0 (2d)
kDn−k−1 −

∑n−2
k=0 (2d)

k−1Dn−k−2

)
= a

(∑n−1
k=0 (2d)

kDn−k−1 −
∑n−1

k=1 (2d)
kDn−k−1

)
= aDn−1,

or equivalently

Dn = (2d + a)Dn−1.

But, this implies that Dn = a(2d + a)n−1.

Corollary 4.3. Let α = (αi)i≥0 be an arithmetic sequence with αi = id, and
let β = (βi)i≥0 be the square sequence, i.e., βi = i2. If Dn = det(Pα,β(n)), then we
have

Dn = −dDn−2 + 2d2Dn−3.(4.1)
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Proof. By Corollary 4.1, we get

Dn =
n−1∑
k=0

(−d)kβ̂kDn−k−1.

We claim that β̂0 = 0, β̂1 = 1, β̂2 = 2 and β̂k = 0 for k ≥ 3. Now, it is obvious that
our claim implies the validity of (4.1).

Clearly β̂0 = 0, β̂1 = 1 and β̂2 = 2. Now, we assume that k ≥ 3. In this case we
have

β̂k =
k∑

j=0

(−1)k+j

(
k

j

)
βj =

k∑
j=0

(−1)k+j

(
k

j

)
j2.

We define the functions f and g as follows:

f(x) = (1 − x)k =
k∑

j=0

(
k

j

)
(−x)j and g(x) = −xf ′(x).

Now, an easy calculation shows that

g′(x) = (1 − x)k−2 · (∗) =
k∑

j=0

(
k

j

)
j2(−x)j−1,

and putting x = 1, we get
k∑

j=0

(
k

j

)
j2(−1)j−1 = 0.

Now, by multiplying both sides by (−1)k+1, we obtain
k∑

j=0

(
k

j

)
j2(−1)k+j = 0,

as claimed.

Corollary 4.4. Let α = (αi)i≥0 and β = (βj)j≥0 be two geometric sequences
with αi = ρi and βj = σj. Then, we have

det(Tα,β(n)) = (1 − ρσ)n−1.

Proof. By Theorem 3.1, we have det(Tα,β(n)) = det(Pα̌,β̌(n)). On the other
hand, straightforward computations show that α̌ = (α̌i)i≥0 with α̌i = (1 + ρ)i and
similarly β̌ = (β̌j)j≥0 with β̌j = (1 + σ)j . By applying Lemma 2.3, we conclude the
assertion.
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4.2. Certain Generalized Pascal Triangles.

Proposition 4.5. Let a, b, c ∈ C and let n be a positive integer. Let α = (αi)i≥0

and β = (βj)j≥0 be two sequences with αi = (2i − 1)a + c and βj = (2j − 1)b + c.
Then, we have

det(Pα,β(n)) =




� 1
n	c if a = b = c,[
c + a(n− 1)

]
(c− a)n−1 if a = b �= c,

b
b−a (c− a)n + a

b−a (c− b)n if a �= b.

Proof. By Theorem 3.1, we have det(Pα,β(n)) = det(Tα̂,β̂(n)). A straightforward
computation shows that

α̂ = (c, a, a, a, . . .) and β̂ = (c, b, b, b, . . .).

Therefore, in the notation of [7], we have Tα̂,β̂(n) = Mn(b, a, c), and since Mn(a, b, c) =
Mn(b, a, c)t we have

det(Tα̂,β̂(n)) = det(Mn(a, b, c)).

Now, the proof follows the lines in the proof of Theorem 2 in [7].

Proposition 4.6. Let a, b, c ∈ C and let n be a positive integer. Let α = (αi)i≥0

and β = (βj)j≥0 be two sequences with αi = 2i−1(ia + 2c) and βj = 2j−1(jb + 2c).
Then, we have

det(Pα,β(n)) = (−1)n+1(a + b)n−2
[
c(a + b) + (n− 1)ab

]
.

Proof. Again from Theorem 3.1, we have det(Pα,β(n)) = det(Tα̂,β̂(n)), where α̂

and β̂ are two arithmetic sequences as

α̂ = (α̂i)i≥0 = (c, c + a, c + 2a, . . . , c + ia, . . .)

and

β̂ = (β̂j)j≥0 = (c, c + b, c + 2b, . . . , c + jb, . . .).

Now we compute the determinant of Tα̂,β̂(n). To do this, we apply the following
elementary column operations:

Cj −→ Cj − Cj−1, j = n− 1, n− 2, . . . , 2;
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and we obtain the following quasi-Toeplitz matrix:


c b b . . . b

c + a

c + 2a
... Tλ,µ(n− 1)
c + (n− 1)a




,

where λ = (−a,−a,−a, . . .) and µ = (−a, b, b, . . .). Again, we subtract column j from
column j +1, j = n− 2, n− 3, . . . , 2. It is easy to see that, step by step, the rows and
columns are “emptied” until finally the determinant

det(Tα̂,β̂(n)) = det




c b 0 . . . 0
c + a −a

c + 2a −a (a + b)I(n−2)×(n−2)

...
...

c + (n− 2)a −a

c + (n− 1)a −a 0 . . . 0




,

is obtained. The proposition follows now immediately, by expanding the determinant
along the last row.

4.3. Fibonacci and Lucas Numbers as Leading Principal Minors of a
Quasi-Pascal Matrix . There are several infinite matrices for which the leading
principal minors form a Fibonacci or Lucas (sub)sequence. For instance, in [10], we
have presented a family of tridiagonal matrices with the following form:

Fλ(∞) =




1 λ0 0 0 0 · · ·
−λ−1

0 1 λ1 0 0 · · ·
0 −λ−1

1 1 λ2 0 · · ·
0 0 −λ−1

2 1
. . . · · ·

...
...

. . . . . . . . . · · ·




(4.2)

where λ = (λi)i≥0 with λi ∈ C
∗ = C\{0}. Indeed, the leading principal minors of

these matrices for every λ form the sequence
(Fn+1

)
n≥1

(Theorem 1 in [10]). Also,
for the special cases λ0 = λ1 = . . . ∈ {1,√−1}, see [3, 4] and [11]. In ([12], pp.
555–557), Strang presents the infinite tridiagonal (Toeplitz) matrices:

P = T(3,t,0,0,...),(3,t,0,0,...)(∞),(4.3)

where t = ±1, and it is easy to show that the leading principal minors of T form
the subsequence

(F2n+2

)
n≥1

from the Fibonacci sequence. As another example, the
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leading principal minors of the Toeplitz matrices:

Q = T(2,1,1,1,...),(2,t,0,0,...)(∞),(4.4)

where t = ±1, form the sequence
(Fn+2

)
n≥1

for t = 1 and the sequence
(F2n+1

)
n≥1

for t = −1 ([3], Examples 1, 2).

We can summarize the above results in the following proposition.

Proposition 4.7. ([3, 4, 11, 12]) Let n be a natural number, α = (αi)i≥0

and β = (βi)i≥0 be two sequences, and let Dn be the nth leading principal minor of
Tα,β(∞). Then, the following hold.

(1) If α = β = (1,
√−1, 0, 0, . . .), then Dn = Fn+1.

(2) If α = β = (3, t, 0, 0, 0, . . .) where t = ±1, then Dn = F2n+2.

(3) If α = (1,−1, 0, 0, . . .) and β = (1, 1, 0, 0, . . .), then Dn = Fn+1.

(4) If α = (2, 1, 1, 1, . . .) and β = (2,−1, 0, 0, . . .), then Dn = F2n+1.

(5) If α = (2, 1, 1, 1, . . .) and β = (2, 1, 0, 0, . . .), then Dn = Fn+2.

Let φ = 1+
√

5
2 , the golden ratio, and Φ = 1−√

5
2 , the golden ratio conjugate. The

recent article of Griffin, Stuart and Tsatsomeros [7] gives the following result:

Proposition 4.8. ([7], Lemma 7) For each positive integer n, let

P (n) = T(1,Φ,Φ,...),(1,φ,φ,...)(n), and Q(n) = T(0,−Φ,−Φ,...),(0,−φ,−φ,...)(n).

Then, we have

det(P (n)) = Fn+1, and det(Q(n)) = Fn−1.

Using Propositions 4.7, 4.8 and Theorem 3.1, we immediately deduce the following
corollary.

Corollary 4.9. Let n be a natural number, α = (αi)i≥0 and β = (βi)i≥0 be
two sequences, and let Dn be the nth leading principal minor of Pα,β(∞). Then, the
following hold.

(1) If αi = βi = 1 + i
√−1, then Dn = Fn+1.

(2) If αi = βi = 3 − i, then Dn = F2n+2.

(3) If αi = βi = 3 + i, then Dn = F2n+2.

(4) If αi = 1 − i and βi = 1 + i, then Dn = Fn+1.
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(5) If αi = 2i + 1 and βi = 2 − i, then Dn = F2n+1.

(6) If αi = 2i + 1 and βi = 2 + i, then Dn = Fn+2.

(7) If αi = (2i − 1)Φ + 1 and βi = (2i − 1)φ + 1, then Dn = Fn+1.

(8) If αi = (1 − 2i)Φ and βi = (1 − 2i)φ, then Dn = Fn−1.

In the sequel, we study together the sequences F and L, and, in order to unify
our treatment, we introduce the following useful notations. For ε ∈ {+,−} we let
Fε

n = Fn if ε = +; and Fε
n = Ln if ε = −.

Theorem 4.10. Let r be a non-negative integer and s be a positive integer.
Suppose that

φr,s =
⌈Fε

2r+s

Fε
r+s

⌉
and ψr,s =

√
φr,sFε

r+s −Fε
2r+s.

Then, the leading principal minors of the following infinite quasi-Pascal matrix:

P [r,s](∞) =




Fε
r+s ψr,s 0 0 . . .

ψr,s φr,s

√
(−1)r

√
(−1)r . . .

0
√

(−1)r

0
√

(−1)r Pα,α(∞)
...

...




where α = (αi)i≥0 is an arithmetic sequence with αi = F−
r + i

√
(−1)r, form the

subsequence {Fε
nr+s}∞n=1 from Fibonacci or Lucas sequences.

Proof. Cahill and Narayan in [5] introduce the following quasi-Toeplitz matrices:

T [r,s](∞) =




Fε
r+s ψr,s 0 0 . . .

ψr,s φr,s

√
(−1)r 0 . . .

0
√

(−1)r

0 0 Tβ,β(∞)
...

...




where β = (F−
r ,

√
(−1)r, 0, 0, . . .). Moreover, they show that

det(T [r,s](n)) = Fε
nr+s.(4.5)

Now, we decompose the matrix T [r,s](n) as follows:

T [r,s](n) = L̃(n)P [r,s](n)L̃(n)t,(4.6)
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where

L̃(n) = I2×2 ⊕ L−1(n− 2).

The proof of (4.6) is similar to the proof of Theorem 3.1 and we omit it here. Now,
using (4.5) and (4.6), we easily see that

det(P [r,s](n)) = Fε
nr+s,

and the proof of theorem is complete.

4.4. Generalized Pascal Triangle Associated With a Constant Se-
quence. In this subsection, we study the generalized Pascal triangle Pα,β(n), where
one of the sequences α or β is a constant sequence. The following result is another
consequence of Theorem 3.1.

Corollary 4.11. Let α = (αi)i≥0 and β = (βi)i≥0 be two sequences with
α0 = β0 = γ. If α or β is a constant sequence, then we have det(Pα,β(n)) = γn.

Proof. By Theorem 3.1, we have det(Pα,β(n)) = det(Tα̂,β̂(n)). But in both cases,
the Toeplitz matrix Tα̂,β̂(n) is a lower triangular matrix or an upper triangular one
with γ on its diagonal. This implies the corollary.

The generalized Pascal triangle Pα,α(∞) associated with the pair of identical
sequences α and α, is called the generalized symmetric Pascal triangle associated
with α and yields symmetric matrices Pα,α(n) by considering principal submatrices
consisting of the first n rows and columns of Pα,α(∞). For an arbitrary sequence
α = (αi)i≥0 with α0 = 0, we define α̃ = (α̃i)i≥0 where α̃i = (−1)iαi for all i. Then,
the generalized Pascal triangle Pα,α̃(∞) associated with the sequences α and α̃, is
called the generalized skymmetric Pascal triangle associated with α and α̃, and yields
skymmetric matrices Pα,α̃(n) by considering principal submatrices consisting of the
first n rows and columns of Pα,α̃(∞).

Example 4.12. Let n ≥ 2 be a natural number. Then, we have:

(i) The generalized symmetric Pascal triangle PF ,F(n) has determinant −2n−2.

(ii) The generalized skymmetric Pascal triangle PF ,F̃(n) has determinant 2n−2.

All assertions in this example follow from Theorem 3.1 of [1]. However, we will
reprove them independently.
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Proof. (i) Consider the generalized symmetric Pascal triangle

PF ,F(n) =




0 1 1 2 3 . . . Fn−1

1 2 3 5 8 . . . Fn+1

1 3 6 11 19 . . . .

2 5 11 22 41 . . . .

3 8 19 41 82 . . . .
...

...
...

...
...

. . . .

Fn−1 Fn+1 . . . . . . .




Now, we apply the following elementary row operations:

Ri −→ Ri − Ri−1 − Ri−2, i = n− 1, n− 2, . . . , 2.

It is easy to see that

det
(
PF ,F(n)

)
= det




0 1 1 2 3 . . . Fn−1

1 2 3 5 8 . . . Fn+1

0 0 2 4 8 . . . 2(Fn − 1)
0 0 2 6 14 . . . ∗
0 0 2 8 22 . . . ∗
...

...
...

...
...

. . . ∗
0 0 2 ∗ ∗ . . . ∗




= det




0 1 1 2 3 . . . Fn−1

1 2 3 5 8 . . . Fn+1

0 0
0 0
...

... Pλ,µ(n− 2)
0 0




where λ = (2, 2, 2, . . .) and µ = (2(F3 − 1), 2(F4 − 1), 2(F5 − 1), 2(F6 − 1), . . .). Now,
by Corollary 4.11, we get

det(PF ,F (n)) = det
(

0 1
1 2

)
· det

(
Pλ,µ(n− 2)

)
= −2n−2,

as desired.
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(ii) Here, we consider the generalized skymmetric Pascal triangle

PF ,F̃(n) =




0 −1 1 −2 3 . . . (−1)n−1Fn−1

1 0 1 −1 2 . . . .

1 1 2 1 3 . . . .

2 3 5 6 9 . . . .

3 6 11 17 26 . . . .
...

...
...

...
...

. . . .

Fn−1 . . . . . . . .




Similarly, we apply the following elementary column operations:

Cj −→ Cj + Cj−1 − Cj−2, j = n− 1, n− 2, . . . , 2;

and we obtain

det(PF ,F̃ (n)) = det




0 −1 0 0 0 . . . 0
1 0 0 0 0 . . . 0
1 1 2 2 2 . . . 2
2 3 6 8 10 . . . ∗
3 6 14 22 32 . . . ∗
...

...
...

...
...

. . . ∗
Fn−1 Fn+1 − 2 ∗ ∗ ∗ . . . ∗




= det




0 −1 0 0 0 . . . 0
1 0 0 0 0 . . . 0
1 1
2 3
...

... Pν,λ(n− 2)
Fn−1 Fn+1 − 2




where λ = (2, 2, 2, . . .). Again, by Corollary 4.11, we get

det(PF ,F̃(n)) = det
(

0 1
−1 0

)
· det

(
Pν,λ(n− 2)

)
= 2n−2,

as desired.

Example 4.13. Let n ≥ 2 be a natural number. Then, the generalized Pascal
triangle PF∗,I∗(n) has determinant (−1)n.
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Proof. Consider the following generalized Pascal triangle:

PF∗,I∗(n) =




1 2 6 24 120 . . . n!
1 3 9 33 153 . . . .

2 5 14 47 200 . . . .

3 8 22 69 269 . . . .

5 13 35 104 373 . . . .
...

...
...

...
...

. . . .

Fn−1 Fn+1 . . . . . . .




Again, we use the similar elementary row operations as Example 1(i):

Ri −→ Ri − Ri−1 − Ri−2, i = n− 1, n− 2, . . . , 2.

Therefore, we deduce that

det
(
PF∗,I∗(n)

)
= det




1 2 6 24 120 . . . n!
1 3 9 33 153 . . . ∗
0 0 −1 −10 −73 . . . ∗
0 0 −1 −11 −84 . . . ∗
0 0 −1 −12 −96 . . . ∗
0 0 −1 −13 −109 . . . ∗
...

...
...

...
...

. . . ∗
0 0 −1 ∗ ∗ . . . ∗




= det




1 2 6 24 120 . . . n!
1 3 9 33 153 . . . ∗
0 0
0 0
...

... Pλ,µ(n− 2)
0 0




where λ = (−1,−1,−1, . . .) and µ = (−1,−10,−73, . . .). Now, by Corollary 4.11, we
get

det
(
PF∗,I∗(n)

)
= det

(
1 2
1 3

)
· det

(
Pλ,µ(n− 2)

)
= (−1)n−2 = (−1)n,

as desired.

5. New Matrices Whose Leading Principal Minors Form the Fibonacci
Sequence. In this section, we present two matrices whose entries are recursively
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defined, and we show that the leading principal minor sequence of these matrices is
the sequence F∗ = (Fn)n≥1. It is worth mentioning that to construct these matrices
we use non-homogeneous recurrence relations.

Theorem 5.1. Let a, b ∈ C and let n be a natural number. Let (ri,j)i,j≥0 be the
doubly indexed sequence given by the recurrence

ri,j = ri,j−1 + ri−1,j + ai + bj,

for i, j ≥ 1, and the initial conditions ri,0 = r0,j = 1, i, j ≥ 0. Let

Dn = det(ri,j)0≤i,j≤n−1.

Then, Dn satisfies the following recursion:


D1 = 1,
D2 = 1 + a + b,

Dn = (1 + a + b)Dn−1 − abDn−2 (n ≥ 3).
(5.1)

In particular, we have Dn = Fn if and only if (a, b) ∈ {(1,−1), (−1, 1)}.
Proof. Let R(n) denote the matrix (ri,j)0≤i,j≤n−1. First, we claim that

R(n) = L(n) · T (n) · U(n),

where U(n) = L(n)t and

T (n) =




1
ω b

a ω b

a ω
. . .

. . .
. . . b

a ω




n×n

,

where ω = 1 + a + b. Now it is easy to see that Dn = det(T (n)) and by expansion
through the last row of T (n), we obtain (5.1).

In what follows, for convenience, we will let R = R(n), L = L(n), T = T (n) and
U = U(n). Now, for the proof of the claimed factorization we compute the (i, j)-entry
of L · T · U , that is

(L · T · U)i,j =
n−1∑
r=0

n−1∑
s=0

Li,rTr,sUs,j .(5.2)

In fact, so as to prove the theorem, we should establish

R0(L · T · U) = R0(R) = (1, 1, . . . , 1),
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C0(L · T · U) = C0(A) = (1, 1, . . . , 1),

and

(L · T · U)i,j = (L · T · U)i−1,j−1 + (L · T · U)i−1,j + ai + bj,(5.3)

for 1 ≤ i, j ≤ n− 1.

Let us do the required calculations. First, suppose that i = 0. Then, we have

(L · T · U)0,j =
n−1∑
r=0

n−1∑
s=0

L0,rTr,sUs,j =
n−1∑
s=0

T0,sUs,j = U0,j = 1,

and so R0(L · T · U) = R0(R) = (1, 1, . . . , 1).

Next, assume that j = 0. In this case, we obtain

(L · T · U)i,0 =
n−1∑
r=0

n−1∑
s=0

Li,rTr,sUs,0 =
n−1∑
r=0

Li,rTr,0 = Li,0 = 1,

and hence we have C0(L · T · U) = C0(R) = (1, 1, . . . , 1).

Finally, we must establish (5.3). At the moment, let us assume that 1 ≤ i, j ≤
n− 1. In this case we have

(L · T · U)i,j =
n−1∑
r=0

n−1∑
s=0

Li,rTr,sUs,j

=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=0

n−1∑
s=1

Li,rTr,sUs,j

=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=0

n−1∑
s=1

Li,rTr,s

(
Us−1,j−1 + Us,j−1

)
(
by (3.6)

)
=

n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=0

n−1∑
s=1

Li,rTr,sUs−1,j−1

+
n−1∑
r=0

n−1∑
s=1

Li,rTr,sUs,j−1

=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=1

n−1∑
s=1

Li,rTr,sUs−1,j−1

+
n−1∑
r=0

n−1∑
s=0

Li,rTr,sUs,j−1

+
n−1∑
s=1

Li,0T0,sUs−1,j−1 −
n−1∑
r=0

Li,rTr,0U0,j−1
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=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=1

n−1∑
s=1

(
Li−1,r−1 + Li−1,r

)
Tr,sUs−1,j−1 + (L · T · U)i,j−1

+
n−1∑
s=1

Li,0T0,sUs−1,j−1 −
n−1∑
r=0

Li,rTr,0U0,j−1

(
by (3.4) and (5.2)

)

=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=1

n−1∑
s=1

Li−1,r−1Tr,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=1

Li−1,rTr,sUs−1,j−1

+(L · T · U)i,j−1 +
n−1∑
s=1

Li,0T0,sUs−1,j−1 −
n−1∑
r=0

Li,rTr,0U0,j−1

=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=2

n−1∑
s=2

Li−1,r−1Tr,sUs−1,j−1 +
n−1∑
r=1

Li−1,r−1Tr,1U0,j−1

+
n−1∑
s=2

Li−1,0T1,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=1

Li−1,rTr,sUs−1,j−1 + (L · T · U)i,j−1

+
n−1∑
s=1

Li,0T0,sUs−1,j−1 −
n−1∑
r=0

Li,rTr,0U0,j−1

=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=2

n−1∑
s=2

Li−1,r−1Tr,sUs−1,j−1 +
n−1∑
r=1

Li−1,r−1Tr,1U0,j−1

+
n−1∑
s=2

Li−1,0T1,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=1

Li−1,rTr,s

(
Us,j − Us,j−1

)

+(L · T · U)i,j−1 +
n−1∑
s=1

Li,0T0,sUs−1,j−1 −
n−1∑
r=0

Li,rTr,0U0,j−1

(
by (3.6)

)

=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=2

n−1∑
s=2

Li−1,r−1Tr−1,s−1Us−1,j−1

+
n−1∑
r=1

Li−1,r−1Tr,1U0,j−1 +
n−1∑
s=2

Li−1,0T1,sUs−1,j−1

+
n−1∑
r=1

n−1∑
s=1

Li−1,rTr,sUs,j −
n−1∑
r=1

n−1∑
s=1

Li−1,rTr,sUs,j−1

+(L · T · U)i,j−1 +
n−1∑
s=1

Li,0T0,sUs−1,j−1 −
n−1∑
r=0

Li,rTr,0U0,j−1

(
by the structure of T

)
=

n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=1

n−1∑
s=1

Li−1,rTr,sUs,j−1 +
n−1∑
r=1

Li−1,r−1Tr,1U0,j−1

+
n−1∑
s=2

Li−1,0T1,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=0

Li−1,rTr,sUs,j −
n−1∑
r=1

Li−1,rTr,0U0,j

−
n−1∑
r=1

n−1∑
s=1

Li−1,rTr,sUs,j−1 + (L · T · U)i,j−1 +
n−1∑
s=1

Li,0T0,sUs−1,j−1

−
n−1∑
r=0

Li,rTr,0U0,j−1

(
note that Li−1,n−1 = Un−1,j−1 = 0

)
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=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=1

Li−1,r−1Tr,1U0,j−1 +
n−1∑
s=2

Li−1,0T1,sUs−1,j−1

+
n−1∑
r=0

n−1∑
s=0

Li−1,rTr,sUs,j −
n−1∑
s=0

Li−1,0T0,sUs,j −
n−1∑
r=1

Li−1,rTr,0U0,j

+(L · T · U)i,j−1 +
n−1∑
s=1

Li,0T0,sUs−1,j−1 −
n−1∑
r=0

Li,rTr,0U0,j−1

=
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=1

Li−1,r−1Tr,1U0,j−1 +
n−1∑
s=2

Li−1,0T1,sUs−1,j−1

+(L · T · U)i−1,j −
n−1∑
s=0

Li−1,0T0,sUs,j −
n−1∑
r=1

Li−1,rTr,0U0,j

+(L · T · U)i,j−1 +
n−1∑
s=1

Li,0T0,sUs−1,j−1

−
n−1∑
r=0

Li,rTr,0U0,j−1

(
by (5.2)

)
= (L · T · U)i−1,j + (L · T · U)i,j−1 + Ψi,j,

where

Ψi,j =
n−1∑
r=0

Li,rTr,0U0,j +
n−1∑
r=1

Li−1,r−1Tr,1U0,j−1 +
n−1∑
s=2

Li−1,0T1,sUs−1,j−1

−
n−1∑
s=0

Li−1,0T0,sUs,j −
n−1∑
r=1

Li−1,rTr,0U0,j +
n−1∑
s=1

Li,0T0,sUs−1,j−1

−
n−1∑
r=0

Li,rTr,0U0,j−1.

But by an easy calculation one can show that

Ψi,j = ai + bj,

which implies the first part of theorem.

The second part of theorem is now obvious.
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