

DESCRIPTION OF ALL SOLUTIONS OF A LINEAR COMPLEMENTARITY PROBLEM*

JIRI ROHN[†]

Abstract. Description of all solutions of an $n \times n$ linear complementarity problem $x^+ = Mx^- + q$ in terms of 2^n matrices and their Moore-Penrose inverses is given. The result is applied to describe all solutions of the absolute value equation Ax + B|x| = b.

Key words. Linear complementarity problem, Moore-Penrose inverse, Verified solution, Absolute value equation.

AMS subject classifications. 90C33.

1. Introduction. In this paper we consider a linear complementarity problem (LCP) in the form

$$x^{+} = Mx^{-} + q, \tag{1.1}$$

where $M \in \mathbb{R}^{n \times n}$, $q \in \mathbb{R}^n$; for $x = (x_i)_{i=1}^n$ the vectors x^+ and x^- are defined by $x^+ = (\max(x_i, 0))_{i=1}^n, x^- = (\max(-x_i, 0))_{i=1}^n$, so that $x^+ \ge 0, x^- \ge 0, (x^+)^T x^- = 0$,

$$x = x^{+} - x^{-} \tag{1.2}$$

and

$$|x| = x^+ + x^-, (1.3)$$

where $|x| = (|x_i|)_{i=1}^n$. The linear complementarity problem has been much studied in the last forty years, as evidenced in the monographs by Cottle, Pang and Stone [2], Murty [4] and Schäfer [7]. The traditional approach, as demonstrated e.g., in Lemke's algorithm [3], looks for *some* solution of (1.1). On the contrary, we are interested here in the description of *all* solutions of (1.1). This is done in full generality in Theorem 2.2 of Section 2, where the Moore-Penrose inverses of 2^n matrices F_z are employed for this purpose. In Proposition 2.4 we show that the description essentially simplifies

^{*}Received by the editors February 5, 2009. Accepted for publication April 18, 2009. Handling Editor: Raphael Loewy.

[†]Institute of Computer Science, Czech Academy of Sciences, Prague, and School of Business Administration, Anglo-American University, Prague, Czech Republic (rohn@cs.cas.cz). Supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201/08/J020, and by the Institutional Research Plan AV0Z10300504.

if all the matrices F_z are nonsingular, in which case the LCP (1.1) has at most 2^n solutions. Section 3 contains a 10×10 example which has exactly $2^{10} = 1024$ solutions. In Section 4 we show how the main ideas behind the proof of Theorem 2.2 can be used for the description of all solutions of the absolute value equation Ax + B|x| = b (see Theorem 4.1).

We use the following notation. I is the unit matrix and $e = (1, ..., 1)^T$ is the vector of all ones. $Z_n = \{z \mid |z| = e\}$ is the set of all ± 1 -vectors in \mathbb{R}^n , so that its cardinality is 2^n . For each $z \in Z_n$ we denote

$$T_{z} = \operatorname{diag}(z_{1}, \dots, z_{n}) = \begin{pmatrix} z_{1} & 0 & \dots & 0 \\ 0 & z_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & z_{n} \end{pmatrix}.$$

For a matrix F, F^{\dagger} denotes its Moore-Penrose inverse (see [1], [5]). We shall utilize its property

$$FF^{\dagger}F = F. \tag{1.4}$$

2. Main result. The core of our approach consists in reformulating the LCP (1.1) as an absolute value equation.

PROPOSITION 2.1. A vector $x \in \mathbb{R}^n$ is a solution of the linear complementarity problem (1.1) if and only if it solves the equation

$$\frac{1}{2}(I+M)x + \frac{1}{2}(I-M)|x| = q.$$
(2.1)

Proof. Let x solve (1.1). From (1.2) and (1.3) we have $x^+ = \frac{1}{2}(|x| + x)$ and $x^- = \frac{1}{2}(|x| - x)$, which, when substituted into (1.1), gives (2.1). Conversely, (2.1) in the light of (1.2) and (1.3) implies (1.1). \Box

Let us denote the solution set of the LCP (1.1) by X, i.e.,

$$X = \{ x \mid x^+ = Mx^- + q \}.$$

Our main result below gives a description of the solution set in the general case. It builds on the ideas of Penrose's description of the solution set of a system of linear equations [6].

THEOREM 2.2. For any $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$ the solution set X of (1.1) is given by

$$X = \{ F_z^{\dagger} q + G_z y \mid T_z G_z y \ge -T_z F_z^{\dagger} q, H_z q = 0, y \in \mathbb{R}^n, z \in Z_n \},$$
(2.2)

Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 18, pp. 246-252, April 2009

J. Rohn

where

$$F_z = \frac{1}{2}((I+M) + (I-M)T_z), \qquad (2.3)$$

$$G_z = I - F_z^{\dagger} F_z, \tag{2.4}$$

$$H_z = I - F_z F_z^{\dagger} \tag{2.5}$$

for each $z \in Z_n$.

Proof. Let x solve (1.1), then, by Proposition 2.1, it also solves (2.1). Set $z_i = 1$ if $x_i \ge 0$ and $z_i = -1$ otherwise (i = 1, ..., n), then $z \in Z_n$ and $T_z x = (z_i x_i)_{i=1}^n = (|x_i|)_{i=1}^n = |x| \ge 0$. Substituting $|x| = T_z x$ into (2.1), we get that x satisfies

$$\frac{1}{2}((I+M) + (I-M)T_z)x = q, \qquad (2.6)$$

i.e.,

$$F_z x = q, \tag{2.7}$$

where F_z is given by (2.3). Then

$$H_z q = (I - F_z F_z^{\dagger}) q = (I - F_z F_z^{\dagger}) F_z x = (F_z - F_z F_z^{\dagger} F_z) x = 0$$
(2.8)

because of (1.4). Now set $y = x - F_z^{\dagger} q$, then we have

$$F_z y = F_z x - F_z F_z^\dagger q = q - F_z F_z^\dagger q = H_z q = 0$$

by (2.8), therefore x can be written as

$$x = F_z^{\dagger}q + y = F_z^{\dagger}q + (I - F_z^{\dagger}F_z)y = F_z^{\dagger}q + G_z y,$$

and $T_z x \geq 0$ implies that y satisfies

$$T_z G_z y \ge -T_z F_z^{\dagger} q.$$

In this way we have proved that

$$X \subseteq \{ \, F_z^\dagger q + G_z y \mid T_z G_z y \geq -T_z F_z^\dagger q, \, H_z q = 0, \, y \in \mathbb{R}^n, \, z \in Z_n \, \}$$

holds. To prove the converse inclusion, let x be of the form $x = F_z^{\dagger}q + G_z y$ for some $y \in \mathbb{R}^n$ and $z \in Z_n$ satisfying $T_z G_z y \ge -T_z F_z^{\dagger}q$ and $H_z q = 0$. Then

$$F_z x = F_z F_z^{\dagger} q + F_z G_z y = q - H_z q + (F_z - F_z F_z^{\dagger} F_z) y = q$$

and

$$T_z x = T_z F_z^{\dagger} q + T_z G_z y \ge 0,$$

Description of All Solutions of a Linear Complementarity Problem

hence x solves (2.6) and since $T_z x = |x|$, it satisfies (2.1) and thus also (1.1). This concludes the proof of (2.2).

Let us note that the columns of a matrix F_z can be expressed by

$$(F_z)_{\cdot j} = \begin{cases} I_{\cdot j} & \text{if } z_j = 1, \\ M_{\cdot j} & \text{if } z_j = -1 \end{cases} \qquad (j = 1, \dots, n).$$

Taking into account the singularity/nonsingularity of F_z , we can bring the description of X to a more complex, but also a more specific form.

PROPOSITION 2.3. For any $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$ the solution set X of (1.1) is given by

$$X = \{ F_z^{\dagger} q + G_z y \mid F_z \text{ singular}, T_z G_z y \ge -T_z F_z^{\dagger} q, \ H_z q = 0, \ y \in \mathbb{R}^n, \ z \in Z_n \} \cup \{ F_z^{-1} q \mid F_z \text{ nonsingular}, T_z F_z^{-1} q \ge 0, \ z \in Z_n \},$$
(2.9)

where F_z , G_z , H_z are as in Theorem 2.2.

Proof. If F_z is nonsingular for some $z \in Z_n$, then we have $F_z^{\dagger} = F_z^{-1}$, $G_z = 0$ and $H_z = 0$, hence (2.2) becomes (2.9).

In particular, if each matrix F_z , $z \in Z_n$, is nonsingular, we have the following simplified description of X.

PROPOSITION 2.4. Let $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$. If each F_z , $z \in Z_n$, is nonsingular, then

$$X = \{ F_z^{-1}q \mid T_z F_z^{-1}q \ge 0, \ z \in Z_n \}.$$
(2.10)

Hence, if each F_z , $z \in Z_n$, is nonsingular, then the linear complementarity problem (1.1) has a finite number of solutions (at most 2^n). It is easy to show that this upper bound can really be attained. Consider the LCP

$$x^+ = -x^- + e, (2.11)$$

which, in view of (1.3), is equivalent to

$$|x| = e.$$

This shows that the solution set X of (2.11) consists of all the ± 1 -vectors, i.e., $X = Z_n$. A less obvious example is given in the next section.

Finally we give a sufficient condition for (1.1) to have infinitely many solutions.

PROPOSITION 2.5. Let $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$. If $T_z F_z^{\dagger} q > 0$, $G_z \neq 0$ and $H_z q = 0$ for some $z \in Z_n$, then (1.1) has infinitely many solutions.

250

J. Rohn

Proof. Under the assumptions, the inequality $T_z G_z y \ge -T_z F_z^{\dagger} q$ has not only the solution y = 0, but also a whole neighborhood of it, hence by Theorem 2.2 there are infinitely many solutions to (1.1). \Box

3. Example. At the author's web page [10] there is a freely available verification software package VERSOFT written in MATLAB, currently consisting of more than 50 verification programs. One of them, called VERLCPALL, is dedicated to the present problem; it can be directly assessed at [9]. Its syntax is

[X,all]=verlcpall(M,q)

where M, q are the data of (1.1) and X is a matrix whose columns are interval vectors each of whom is guaranteed to contain a solution of (1.1). The parameter *all* satisfies all = 1 if it is verified that all solutions have been found, and all = -1 otherwise.

Consider the following example with random (but somewhat structured) data

```
>> n=10; M=-eye(n,n)+0.03*(2*rand(n,n)-1); M=round(100*M)
M =
```

-100	-1	-2	2	-1	3	2	-1	2	3
2	-99	2	1	2	1	-2	-1	1	1
0	0	-101	0	-1	2	3	-1	-2	3
-2	2	-1	-102	0	-3	-1	2	-2	-2
-1	3	2	1	-99	-1	-1	0	2	-2
-1	-1	0	-3	-2	-102	3	1	2	-1
3	0	2	0	0	0	-100	-1	1	2
1	-2	-3	-1	2	0	1	-101	-2	2
-1	1	-1	-2	0	3	1	1	-102	-2
-3	-2	0	0	2	-3	-2	-2	1	-97

```
>> q=rand(n,1); q=round(100*q)
```

96

Running the program gives the following result:

Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 18, pp. 246-252, April 2009

Description of All Solutions of a Linear Complementarity Problem

```
Elapsed time is 9.563235 seconds.
```

Here, sols is the number of columns of X, i.e., the number of solutions found. We see that $sols = 1024 = 2^{10}$, and "all = 1" indicates that all the solutions have been found, all of them verified. The rather long computation time is due to the verification procedure involved. We have suppressed the output of X since it is a 10×1024 interval matrix. But we can look e.g., at the last solution:

```
>> X(:,1024)
intval ans =
Ε
  -0.32628969214138, -0.32628969214137]
Γ
  -0.24832082740008,
                      -0.24832082740006]
Γ
  -0.71247684314471,
                      -0.71247684314469]
Γ
  -0.38263062365052, -0.38263062365051]
Γ
  -0.52000025193934, -0.52000025193933]
Γ
 -0.31502584347121, -0.31502584347120]
Γ
  -0.12420810850764, -0.12420810850763]
Γ
  -0.82951280893732, -0.82951280893731]
Γ
  -0.84650089698698, -0.84650089698697]
[ 93.55847130433784, 93.55847130433789]
```

This interval vector is guaranteed to contain a solution of (1.1). Observe the high accuracy of the result.

4. The equation Ax+B|x| = b. The method employed in the proof of Theorem 2.2 can be extended to describe all solutions of the absolute value equation

$$Ax + B|x| = b \tag{4.1}$$

 $(A, B \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n)$, which is more general but less frequently used than (1.1). Denote

$$X_a = \{ x \mid Ax + B|x| = b \}.$$

Then we have this description.

THEOREM 4.1. For any $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ the solution set X_a of (4.1) is given by

$$X_{a} = \{ F_{z}^{\dagger}b + G_{z}y \mid T_{z}G_{z}y \geq -T_{z}F_{z}^{\dagger}b, H_{z}b = 0, y \in \mathbb{R}^{n}, z \in Z_{n} \},\$$

Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 18, pp. 246-252, April 2009

J. Rohn

where

$$\begin{split} F_z &= A + BT_z, \\ G_z &= I - F_z^\dagger F_z, \\ H_z &= I - F_z F_z^\dagger \end{split}$$

for each $z \in Z_n$.

Proof. If x solves (4.1), then it satisfies $(A + BT_z)x = b$, where z is the sign vector of x, hence

 $F_z x = b.$

The rest of the proof runs exactly as in Theorem 2.2 (with q replaced by b) because from (2.7) on, it does not depend on the actual form of F_z . \Box

We do not formulate here the analogues of Propositions 2.3, 2.4 and 2.5 as they are obvious. We note in passing that VERSOFT [10] also contains a program VER-ABSVALEQNALL for finding and verifying all solutions of (4.1); it works similarly to VERLCPALL and can be directly assessed at [8].

REFERENCES

- A. Ben-Israel and T. N. Greville. Generalized Inverses, Theory and Applications. Springer, New York, 2003.
- [2] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. Academic Press, Boston, 1992.
- [3] C. E. Lemke. Bimatrix equilibrium points and mathematical programming. Manag. Sci., 11:681-689, 1965.
- [4] K. G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin, 1988.
- [5] R. Penrose. A generalized inverse for matrices. Proc. Camb. Philos. Soc., 51:406–413, 1955.
- [6] R. Penrose. On best approximate solutions of linear matrix equations. Proc. Camb. Philos. Soc., 52:17–19, 1956.
- [7] U. Schäfer. Das lineare Komplementaritätsproblem, Eine Einführung (The Linear Complementarity Problem, An Introduction). Springer-Verlag, Berlin, 2008.
- [8] VERABSVALEQNALL: Verified all solutions of the equation Ax + B|x| = b, 2008. Available at http://www.cs.cas.cz/rohn/matlab/verabsvaleqnall.html.
- VERLCPALL: Verified all solutions of a linear complementarity problem, 2008. Available at http://www.cs.cas.cz/rohn/matlab/verlcpall.html.
- [10] VERSOFT: Verification software in MATLAB/INTLAB, 2009. Available at http://www.cs.cas.cz/rohn/matlab.