SOME RESULTS ON GROUP INVERSES OF BLOCK MATRICES OVER SKEW FIELDS*

CHANGJIANG BU^{\dagger}, JIEMEI ZHAO ${ }^{\dagger}$, AND KUIZE ZHANG ${ }^{\dagger}$

Abstract

In this paper, necessary and sufficient conditions are given for the existence of the group inverse of the block matrix $\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$ over any skew field, where A, B are both square and $\operatorname{rank}(B) \geq \operatorname{rank}(A)$. The representation of this group inverse and some relative additive results are also given.

Key words. Skew, Block matrix, Group inverse.

AMS subject classifications. 15A09.

1. Introduction. Let K be a skew field and $K^{n \times n}$ be the set of all matrices over K. For $A \in K^{n \times n}$, the matrix $X \in K^{n \times n}$ is said to be the group inverse of A, if

$$
A X A=A, X A X=X, A X=X A .
$$

We then write $X=A^{\sharp}$. It is well known that if A^{\sharp} exists, it is unique; see [16].
Research on representations of the group inverse of block matrices is an important effort in generalized inverse theory of matrices; see [14] and [13]. Indeed, generalized inverses are useful tools in areas such as special matrix theory, singular differential and difference equations and graph theory; see [5], [9] [11], [12] and [15]. For example, in [9] it is shown that the adjacency matrix of a bipartite graph can be written in the form of $\left(\begin{array}{cc}0 & B \\ C & 0\end{array}\right)$, and necessary and sufficient conditions are given for the existence and representation of the group inverse of a block matrix $\left(\begin{array}{cc}0 & B \\ C & 0\end{array}\right)$.

In 1979, Campbell and Meyer proposed the problem of finding an explicit representation for the Drazin (group) inverse of a 2×2 block matrix $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ in terms of its sub-blocks, where A and D are required to be square matrices; see [5]. In [10] a condition for the existence of the group inverse of $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ is given under the as-

[^0]sumption that A and $\left(I+C A^{-2} B\right)$ are both invertible over any field; however, the representation of the group inverse is not given. The representation of the group inverse of a block matrix $\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$ over skew fields has been given in 2001; see [6]. The representation of the Drazin (group) inverse of a block matrix of the form $\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)(A$ is square, 0 is square null matrix) has not been given since it was proposed as a problem by Campbell in 1983; see [4]. However, there are some references in the literature about representations of the Drazin (group) inverse of the block matrices $\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$ under certain conditions. Some results are on matrices over the field of complex numbers, e.g., in [8]; or when $A=B=I_{n}$ in [7]; or when $A, B, C \in\left\{P, P^{*}, P P^{*}\right\}, P^{2}=P$ and P^{*} is the conjugate transpose of P. Some results are over skew fields, e.g., in [1], when $A=I_{n}$ and $\operatorname{rank}(C B)^{2}=\operatorname{rank}(B)=\operatorname{rank}(C)$; in [3] when $A=B, A^{2}=A$. In addition, in [2] results are given on the group inverse of the product of two matrices over a skew field, as well as some related properties.

In this paper, we mainly give necessary and sufficient conditions for the existence and the representation of the group inverse of a block matrix $\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$ or $\left(\begin{array}{cc}A & B \\ A & 0\end{array}\right)$, where $A, B \in K^{n \times n}, \operatorname{rank}(B) \geq \operatorname{rank}(A)$. We also give a sufficient condition for $A B$ to be similar to $B A$.

Letting $A \in K^{m \times n}$, the order of the maximum invertible sub-block of A is said to be the rank of A, denoted by $\operatorname{rank}(A)$; see [17]. Let $A, B \in K^{n \times n}$. If there is an invertible matrix $P \in K^{n \times n}$ such that $B=P A P^{-1}$, then A and B are similar; see [17].

2. Some Lemmas.

Lemma 2.1. Let $A, B \in K^{n \times n}$. If $\operatorname{rank}(A)=r, \operatorname{rank}(B)=\operatorname{rank}(A B)=$ $\operatorname{rank}(B A)$, then there are invertible matrices $P, Q \in K^{n \times n}$ such that

$$
A=P\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) Q, B=Q^{-1}\left(\begin{array}{cc}
B_{1} & B_{1} X \\
Y B_{1} & Y B_{1} X
\end{array}\right) P^{-1}
$$

where $B_{1} \in K^{r \times r}, X \in K^{r \times(n-r)}$, and $Y \in K^{(n-r) \times r}$.
Proof. Since $\operatorname{rank}(A)=r$, there are nonsingular matrices $P, Q \in K^{n \times n}$ such that

$$
A=P\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) Q, B=Q^{-1}\left(\begin{array}{cc}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right) P^{-1}
$$

where $B_{1} \in K^{r \times r}, B_{2} \in K^{r \times(n-r)}, B_{3} \in K^{(n-r) \times r}$, and $B_{4} \in K^{(n-r) \times(n-r)}$. From $\operatorname{rank}(B)=\operatorname{rank}(A B)$, we have

$$
B_{3}=Y B_{1}, B_{4}=Y B_{2}, Y \in K^{(n-r) \times r}
$$

Since $\operatorname{rank}(B)=\operatorname{rank}(B A)$, we obtain

$$
B_{2}=B_{1} X, \quad B_{4}=B_{3} X, \quad X \in K^{r \times(n-r)} .
$$

So

$$
B=Q^{-1}\left(\begin{array}{cc}
B_{1} & B_{1} X \\
Y B_{1} & Y B_{1} X
\end{array}\right) P^{-1}
$$

Lemma 2.2. [6] Let $A \in K^{r \times r}, B \in K^{(n-r) \times r}, M=\left(\begin{array}{cc}A & 0 \\ B & 0\end{array}\right) \in K^{n \times n}$. Then the group inverse of M exists if and only if the group inverse of A exists and $\operatorname{rank}(A)=\operatorname{rank}\binom{A}{B}$. If the group inverse of M exists, then

$$
M^{\sharp}=\left(\begin{array}{cc}
A^{\sharp} & 0 \\
B\left(A^{\sharp}\right)^{2} & 0
\end{array}\right) .
$$

Lemma 2.3. [6] Let $A \in K^{r \times r}, B \in K^{r \times(n-r)}, M=\left(\begin{array}{cc}A & B \\ 0 & 0\end{array}\right) \in K^{n \times n}$. Then the group inverse of M exists if and only if the group inverse of A exists and $\operatorname{rank}(A)=\operatorname{rank}\left(\begin{array}{ll}A & B\end{array}\right)$. If the group inverse of M exists, then

$$
M^{\sharp}=\left(\begin{array}{cc}
A^{\sharp} & \left(A^{\sharp}\right)^{2} B \\
0 & 0
\end{array}\right) .
$$

Lemma 2.4. [2] Let $A \in K^{m \times n}, B \in K^{n \times m}$. If $\operatorname{rank}(A)=\operatorname{rank}(B A), \operatorname{rank}(B)$ $=\operatorname{rank}(A B)$, then the group inverse of $A B$ and $B A$ exist.

Lemma 2.5. Let $A, B \in K^{n \times n}$. If $\operatorname{rank}(A)=\operatorname{rank}(B)=\operatorname{rank}(A B)=$ $\operatorname{rank}(B A)$, then the following conclusions hold:
(i) $A B(A B)^{\sharp} A=A$,
(ii) $A(B A)^{\sharp} B A=A$,
(iii) $B A(B A)^{\sharp} B=B$,
(iv) $B(A B)^{\sharp} A=B A(B A)^{\sharp}$,
(v) $A(B A)^{\sharp}=(A B)^{\sharp} A$.

Proof. Suppose $\operatorname{rank}(A)=r$. By Lemma 2.1, we have

$$
A=P\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) Q, B=Q^{-1}\left(\begin{array}{cc}
B_{1} & B_{1} X \\
Y B_{1} & Y B_{1} X
\end{array}\right) P^{-1}
$$

where $B_{1} \in K^{r \times r}, X \in K^{r \times(n-r)}, Y \in K^{(n-r) \times r}$. Then

$$
A B=P\left(\begin{array}{cc}
B_{1} & B_{1} X \\
0 & 0
\end{array}\right) P^{-1}, B A=Q^{-1}\left(\begin{array}{cc}
B_{1} & 0 \\
Y B_{1} & 0
\end{array}\right) Q
$$

Since $\operatorname{rank}(A)=\operatorname{rank}(B)$, we have that B_{1} is invertible. By using Lemma 2.2 and Lemma 2.3, we get

$$
(A B)^{\sharp}=P\left(\begin{array}{cc}
B_{1}^{-1} & B_{1}^{-1} X \\
0 & 0
\end{array}\right) P^{-1},(B A)^{\sharp}=Q^{-1}\left(\begin{array}{cc}
B_{1}^{-1} & 0 \\
Y B_{1}^{-1} & 0
\end{array}\right) Q .
$$

Then
(i) $A B(A B)^{\sharp} A=P\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right) Q=A$,
(ii) $A(B A)^{\sharp} B A=P\left(\begin{array}{rr}I_{r} & 0 \\ 0 & 0\end{array}\right) Q=A$,
(iii) $B A(B A)^{\sharp} B=Q^{-1}\left(\begin{array}{cc}B_{1} & B_{1} X \\ Y B_{1} & Y B_{1} X\end{array}\right) P^{-1}=B$,
(iv) $B(A B)^{\sharp} A=Q^{-1}\left(\begin{array}{cc}I_{r} & 0 \\ Y & 0\end{array}\right) Q=B A(B A)^{\sharp}$,
(v) $A(B A)^{\sharp}=P\left(\begin{array}{cc}B_{1}^{-1} & 0 \\ 0 & 0\end{array}\right) Q=(A B)^{\sharp} A$.

3. Conclusions.

Theorem 3.1. Let $M=\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right)$, where $A, B \in K^{n \times n}, \operatorname{rank}(B) \geq \operatorname{rank}(A)$ $=r$. Then
(i) The group inverse of M exists if and only if $\operatorname{rank}(A)=\operatorname{rank}(B)=\operatorname{rank}(A B)=$ $\operatorname{rank}(B A)$.
(ii) If the group inverse of M exists, then $M^{\sharp}=\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)$, where
$M_{11}=(A B)^{\sharp} A-(A B)^{\sharp} A^{2}(B A)^{\sharp} B$,
$M_{12}=(A B)^{\sharp} A$,
$M_{21}=(B A)^{\sharp} B-B(A B)^{\sharp} A^{2}(B A)^{\sharp}+B(A B)^{\sharp} A(A B)^{\sharp} A^{2}(B A)^{\sharp} B$,
$M_{22}=-B(A B)^{\sharp} A^{2}(B A)^{\sharp}$.

Proof. (i) It is obvious that the condition is sufficient. Now we show that the condition is necessary.

$$
\begin{gathered}
\operatorname{rank}(M)=\operatorname{rank}\left(\begin{array}{cc}
A & A \\
B & 0
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right)=\operatorname{rank}(A)+\operatorname{rank}(B), \\
\operatorname{rank}\left(M^{2}\right)=\operatorname{rank}\left(\begin{array}{cc}
A^{2}+A B & A^{2} \\
B A & B A
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cc}
A B & A^{2} \\
0 & B A
\end{array}\right) .
\end{gathered}
$$

Since the group inverse of M exists if and only if $\operatorname{rank}(M)=\operatorname{rank}\left(M^{2}\right)$, we have

$$
\begin{aligned}
\operatorname{rank}(A)+\operatorname{rank}(B) & =\operatorname{rank}\left(M^{2}\right) \\
& \leq \operatorname{rank}(A B)+\operatorname{rank}\binom{A^{2}}{B A} \\
& \leq \operatorname{rank}(A B)+\operatorname{rank}(A), \\
\operatorname{rank}(A)+\operatorname{rank}(B) & =\operatorname{rank}\left(M^{2}\right) \\
& \leq \operatorname{rank}\left(A B \quad A^{2}\right)+\operatorname{rank}(B A) \\
& \leq \operatorname{rank}(B A)+\operatorname{rank}(A) .
\end{aligned}
$$

Then $\operatorname{rank}(B) \leq \operatorname{rank}(A B)$, and $\operatorname{rank}(B) \leq \operatorname{rank}(B A)$. Therefore

$$
\operatorname{rank}(B)=\operatorname{rank}(A B)=\operatorname{rank}(B A)
$$

From $\operatorname{rank}(B)=\operatorname{rank}(A B) \leq \operatorname{rank}(A)$, and $\operatorname{rank}(A) \leq \operatorname{rank}(B)$, we have

$$
\operatorname{rank}(A)=\operatorname{rank}(B)
$$

Since $\operatorname{rank}(A)+\operatorname{rank}(B) \leq \operatorname{rank}\left(\begin{array}{cc}A B & A^{2}\end{array}\right)+\operatorname{rank}(B A)$, and $\operatorname{rank}\left(\begin{array}{cc}A B & A^{2}\end{array}\right) \leq$ $\operatorname{rank}(A)$, we get $\operatorname{rank}\left(\begin{array}{cc}A B & A^{2}\end{array}\right)=\operatorname{rank}(A)$. Thus

$$
\operatorname{rank}\left(\begin{array}{cc}
A B & A^{2}
\end{array}\right)=\operatorname{rank}(A B)
$$

Then there exists a matrix $U \in K^{n \times n}$ such that $A B U=A^{2}$. Then

$$
\operatorname{rank}\left(M^{2}\right)=\operatorname{rank}\left(\begin{array}{cc}
A B & 0 \\
0 & B A
\end{array}\right)=\operatorname{rank}(A B)+\operatorname{rank}(B A) .
$$

So we get

$$
\operatorname{rank}(A)=\operatorname{rank}(B)=\operatorname{rank}(A B)=\operatorname{rank}(B A)
$$

(ii) Let $X=\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)$. We will prove that the matrix X satisfies the conditions of the group inverse. Firstly, we compute

$$
\begin{gathered}
M X=\left(\begin{array}{cc}
A M_{11}+A M_{21} & A M_{12}+A M_{22} \\
B M_{11} & B M_{12}
\end{array}\right) \\
X M=\left(\begin{array}{cc}
M_{11} A+M_{12} B & M_{11} A \\
M_{21} A+M_{22} B & M_{21} A
\end{array}\right)
\end{gathered}
$$

Applying Lemma 2.5 (i), (ii), and (v), we have

$$
\begin{aligned}
A M_{11}+A M_{21}= & A(A B)^{\sharp} A-A(A B)^{\sharp} A^{2}(B A)^{\sharp} B+A(B A)^{\sharp} B-A B(A B)^{\sharp} A^{2}(B A)^{\sharp} \\
& +A B(A B)^{\sharp} A(A B)^{\sharp} A^{2}(B A)^{\sharp} B \\
= & A(B A)^{\sharp} B, \\
M_{11} A+M_{12} B= & (A B)^{\sharp} A^{2}-(A B)^{\sharp} A^{2}(B A)^{\sharp} B A+(A B)^{\sharp} A B \\
= & (A B)^{\sharp} A^{2}-(A B)^{\sharp} A^{2}+(A B)^{\sharp} A B \\
= & A(B A)^{\sharp} B .
\end{aligned}
$$

Using Lemma 2.5 (i), (ii), and (v), we get

$$
\begin{aligned}
A M_{12}+A M_{22} & =A(A B)^{\sharp} A-A B(A B)^{\sharp} A^{2}(B A)^{\sharp} \\
& =A(A B)^{\sharp} A-A^{2}(B A)^{\sharp} \\
& =0, \\
M_{11} A & =(A B)^{\sharp} A^{2}-(A B)^{\sharp} A^{2}(B A)^{\sharp} B A \\
& =(A B)^{\sharp} A^{2}-(A B)^{\sharp} A^{2} \\
& =0 .
\end{aligned}
$$

From Lemma 2.5 (ii), we obtain

$$
\begin{aligned}
B M_{11}= & B(A B)^{\sharp} A-B(A B)^{\sharp} A^{2}(B A)^{\sharp} B, \\
M_{21} A+M_{22} B= & (B A)^{\sharp} B A-B(A B)^{\sharp} A^{2}(B A)^{\sharp} A+B(A B)^{\sharp} A^{2}(B A)^{\sharp} A(B A)^{\sharp} B A \\
& -B(A B)^{\sharp} A^{2}(B A)^{\sharp} B \\
= & (B A)^{\sharp} B A-\left[B(A B)^{\sharp} A^{2}(B A)^{\sharp} A-B(A B)^{\sharp} A^{2}(B A)^{\sharp} A\right] \\
& -B(A B)^{\sharp} A^{2}(B A)^{\sharp} B \\
= & B(A B)^{\sharp} A-B(A B)^{\sharp} A^{2}(B A)^{\sharp} B .
\end{aligned}
$$

Using Lemma 2.5 (ii), we have

$$
\begin{aligned}
B M_{12} & =B(A B)^{\sharp} A, \\
M_{21} A & =(B A)^{\sharp} B A-B(A B)^{\sharp} A^{2}(B A)^{\sharp} A+B(A B)^{\sharp} A^{2}(B A)^{\sharp} A(B A)^{\sharp} B A \\
& =B(A B)^{\sharp} A .
\end{aligned}
$$

So

$$
M X=X M=\left(\begin{array}{cc}
A(B A)^{\sharp} B & 0 \\
B(A B)^{\sharp} A-B(A B)^{\sharp} A^{2}(B A)^{\sharp} B & B(A B)^{\sharp} A
\end{array}\right) .
$$

Secondly,

$$
\begin{aligned}
M X M & =\left(\begin{array}{cc}
A & A \\
B & 0
\end{array}\right)\left(\begin{array}{cc}
A(B A)^{\sharp} B & 0 \\
B(A B)^{\sharp} A-B(A B)^{\sharp} A^{2}(B A)^{\sharp} B & B(A B)^{\sharp} A
\end{array}\right) \\
& =\left(\begin{array}{cc}
X_{11} & X_{12} \\
X_{21} & 0
\end{array}\right) .
\end{aligned}
$$

Applying Lemma 2.5 (i) and (iii), we compute

$$
\begin{aligned}
X_{11} & =A^{2}(B A)^{\sharp} B+A B(A B)^{\sharp} A-A B(A B)^{\sharp} A^{2}(B A)^{\sharp} B \\
& =A B(A B)^{\sharp} A \\
& =A, \\
X_{12} & =A B(A B)^{\sharp} A=A, \\
X_{21} & =B A(B A)^{\sharp} B=B .
\end{aligned}
$$

Hence

$$
M X M=\left(\begin{array}{cc}
A & A \\
B & 0
\end{array}\right)
$$

Finally,

$$
\begin{aligned}
X M X & =\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\left(\begin{array}{cc}
A(B A)^{\sharp} B & 0 \\
B(A B)^{\sharp} A-B(A B)^{\sharp} A^{2}(B A)^{\sharp} B & B(A B)^{\sharp} A
\end{array}\right) \\
& =\left(\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
Y_{11}= & (A B)^{\sharp} A^{2}(B A)^{\sharp} B-(A B)^{\sharp} A^{2}(B A)^{\sharp} B A(B A)^{\sharp} B+(A B)^{\sharp} A B(A B)^{\sharp} A \\
& -(A B)^{\sharp} A B(A B)^{\sharp} A^{2}(B A)^{\sharp} B \\
= & (A B)^{\sharp} A-(A B)^{\sharp} A^{2}(B A)^{\sharp} B \\
= & M_{11},
\end{aligned}
$$

and

$$
\begin{aligned}
Y_{12} & =M_{12} B(A B)^{\sharp} A \\
& =(A B)^{\sharp} A B(A B)^{\sharp} A \\
& =(A B)^{\sharp} A \\
& =M_{12} .
\end{aligned}
$$

We can easily get

$$
\begin{aligned}
Y_{21} & =M_{21} A(B A)^{\sharp} B+M_{22} B(A B)^{\sharp} A-M_{22} B(A B)^{\sharp} A^{2}(B A)^{\sharp} B \\
& =M_{21} ; \\
Y_{22} & =M_{22} B(A B)^{\sharp} A=M_{22} .
\end{aligned}
$$

So we have $X=M^{\sharp}$. \square
ThEOREM 3.2. Let $M=\left(\begin{array}{cc}A & B \\ A & 0\end{array}\right)$, where $A, B \in K^{n \times n}, \operatorname{rank}(B) \geq \operatorname{rank}(A)$ $=r$. Then
(i) The group inverse of M exists if and only if $\operatorname{rank}(A)=\operatorname{rank}(B)=\operatorname{rank}(A B)=$ $\operatorname{rank}(B A)$.
(ii) If the group inverse of M exists, then $M^{\sharp}=\left(\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right)$, where

$$
\begin{aligned}
& Z_{11}=(A B)^{\sharp} A-B(A B)^{\sharp} A^{2}(B A)^{\sharp}, \\
& Z_{12}=B(A B)^{\sharp}-(A B)^{\sharp} A^{2}(B A)^{\sharp} B+B(A B)^{\sharp} A^{2}(B A)^{\sharp} A(B A)^{\sharp} B, \\
& Z_{21}=(A B)^{\sharp} A, \\
& Z_{22}=-(A B)^{\sharp} A^{2}(B A)^{\sharp} B .
\end{aligned}
$$

Proof. Let $X=\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)$. By Lemma 2.5, we have

$$
M X=X M=\left(\begin{array}{cc}
B(A B)^{\sharp} A & A(B A)^{\sharp} B-B(A B)^{\sharp} A^{2}(B A)^{\sharp} B \\
0 & A(B A)^{\sharp} B
\end{array}\right) .
$$

Furthermore, we can prove $M X M=M, X M X=X$ easily. Thus, $X=M^{\sharp}$. \square
Theorem 3.3. Let $A, B \in K^{n \times n}$, if $\operatorname{rank}(B)=\operatorname{rank}(A B)=\operatorname{rank}(B A)$. Then $A B$ and $B A$ are similar.

Proof. Suppose $\operatorname{rank}(A)=r$, using Lemma 2.1, there are invertible matrices $P, Q \in K^{n \times n}$ such that

$$
A=P\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) Q, B=Q^{-1}\left(\begin{array}{cc}
B_{1} & B_{1} X \\
Y B_{1} & Y B_{1} X
\end{array}\right) P^{-1}
$$

where $B_{1} \in K^{r \times r}, X \in K^{r \times(n-r)}, Y \in K^{(n-r) \times r}$. Hence

$$
\begin{aligned}
A B & =P\left(\begin{array}{cc}
B_{1} & B_{1} X \\
0 & 0
\end{array}\right) P^{-1} \\
& =P\left(\begin{array}{cc}
I_{r} & -X \\
0 & I_{n-r}
\end{array}\right)\left(\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I_{r} & X \\
0 & I_{n-r}
\end{array}\right) P^{-1} \\
B A & =Q^{-1}\left(\begin{array}{cc}
B_{1} & 0 \\
Y B_{1} & 0
\end{array}\right) Q \\
& =Q^{-1}\left(\begin{array}{cc}
I_{r} & 0 \\
Y & I_{n-r}
\end{array}\right)\left(\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I_{r} & 0 \\
-Y & I_{n-r}
\end{array}\right) Q
\end{aligned}
$$

So $A B$ and $B A$ are similar. \quad]

REFERENCES

[1] C. Bu. On group inverses of block matrices over skew fields. J. Math., 35:49-52, 2002.
[2] C. Bu and C. Cao. Group inverse of product of two matrices over skew field. J. Math. Study, 35:435-438, 2002.
[3] C. Bu, J. Zhao, and J. Zheng. Group inverse for a class 2×2 block matrices over skew fields. Appl. Math. Comput., 204:45-49, 2008.
[4] S.L. Campbell. The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra, 14:195-198, 1983.
[5] S.L. Campbell and C.D. Meyer. Generalized Inverses of Linear Transformations. Dover, New York, 1991 (Originally published: Pitman, London, 1979).
[6] C. Cao. Some results of group inverses for partitioned matrices over skew fields. Heilongjiang Daxue Ziran Kexue Xuebao (Chinese), 18:5-7, 2001.
[7] C. Cao and X. Tang. Representations of the group inverse of some 2×2 block matrices. Int. Math. Forum, 31:1511-1517, 2006.
[8] N. Castro-Gonzáles and E. Dopazo. Representations of the Drazin inverse for a class of block matrices. Linear Algebra Appl., 400:253-269, 2005.
[9] M. Catral, D.D. Olesky, and P. van den Driessche. Group inverses of matrices with path graphs. Electron. J. Linear Algebra, 17:219-233, 2008.
[10] X. Chen and R.E. Hartwig. The group inverse of a triangular matrix. Linear Algebra Appl., 237/238:97-108, 1996.
[11] G.H. Golub and C. Greif. On solving block-structured indefinite linear systems. SIAM J. Sci. Comput., 24:2076-2092, 2003.
[12] I.C.F. Ipsen. A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput., 23:1050-1051, 2001.
[13] K.P.S. Bhaskara Rao. The Theory of Generalized Inverses over Commutative Rings. TaylorFrancis, New York, 2002.
[14] G. Wang, Y. Wei, and S. Qian. Generalized Inverse Theory and Computations. Science Press, Beijing, 2003.
[15] Y. Wei and H. Diao. On group inverse of singular Toeplitz matrices. Linear Algebra Appl., 399:109-123, 2005.
[16] Wa-Jin Zhuang. Involutory functions and generalized inverses of matrices over an arbitrary skew fields. Northeast. Math. J., (Chinese) 1:57-65, 1987.
[17] W. Zhuang. The Guidance of Matrix Theory over Skew Fields (Chinese). Science Press, Beijing, 2006.

[^0]: *Received by the editors October 11, 2008. Accepted for publication February 20, 2009. Handling Editor: Ravindra B. Bapat.
 ${ }^{\dagger}$ Department of Applied Mathematics, College of Science, Harbin Engineering University, Harbin 150001, P. R. China (buchangjiang@hrbeu.edu.cn, zhaojiemei500@163.com, zkz0017@163.com). Supported by the Natural Science Foundation of Heilongjiang Province, No. 159110120002.

