
ELA

LINEAR ALGEBRA AND THE SUMS OF POWERS OF INTEGERS∗
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Abstract. A general framework based on linear algebra is presented to obtain old and new

polynomial expressions for the sums of powers of integers. This framework uses changes of polynomial

basis, infinite lower triangular matrices and finite differences.
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1. Introduction. Polynomial formulas to evaluate the sums of powers of inte-
gers

K∑
k=1

kn = 1n + 2n + 3n + · · ·+Kn

has a long history. In the antic Greece, Archimedes (287BC − 212BC) obtained
expressions for n = 1 and n = 2, and during the apex of Arab mathematical sci-
ence, in the eleven century, Al-Haytham (965-1038), known in the West has Alhazen,
obtained formulas for n = 3 and n = 4 [4, 8]. Later several mathematicians consid-
ered this problem: Faulhaber (1631), Pascal (1636), Fermat (1654), Bernoulli (1713),
Euler (1755), Jacobi (1824), etc. The most celebrated results were obtained by J.
Faulhaber [10, 12, 20, 7, 14, 13] and J. Bernoulli [19, 14]. The reader interested by
the history of this problem could look at the preceding references and the following
[2, 6, 9, 15, 18, 19, 21].

In this paper we present a unified approach for obtaining polynomial formulas for
the sums of powers of integers. The method is based on finite differences and changes
of basis for polynomial subspaces. The main result is the following theorem proved
in Section 2.

Theorem 1.1. Let Bp =
{
pi(x)

}+∞
i=0

be any family of polynomials such that the
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polynomial pi(x) is of degree i. For any fixed real number τ and any integer n ≥ 0
there exist constants

{
αn,j(τ)

}n

j=−1
such that

K∑
k=1

kn =
n∑

j=−1

αn,j(τ)pj+1(K + τ)(1.1)

where

αn,−1(τ) = −
n∑

j=0

αn,j(τ)pj+1(τ) = −
n∑

j=0

αn,j(τ)pj+1(τ − 1).(1.2)

Well known examples of formulas that we can obtain from this result are the
Bernoulli’s polynomial expression [19, 14] (see Section 3), and the Faulhaber’s poly-
nomial expressions [10] (see Section 4.3).

In the last section the method is extended to obtain polynomial expressions for
the l-fold

Σ(l)
K0
Kn

1 =
K1∑

kl=K0

kl∑
kl−1=K0

· · ·
k3∑

k2=K0

k2∑
k1=K0

kn
1

︸ ︷︷ ︸
l summations

(1.3)

Finally, let us observe that the method worked out in this paper is also suitable
for implementation in a computer algebra system.

2. A general method for
∑K

k=1 k
n. Let Bp =

{
pi(x)

}+∞
i=0

be a family of poly-
nomials where pi(x) is of degree i for i ≥ 0. Let ∆τ be the finite difference operator
defined for any fixed τ ∈ R and for any function F (x) by

∆τF (x) = F (x+ τ)− F (x+ τ − 1).

The method is based on the following two elementary results.

Lemma 2.1. For any integer K0 ≤ K1 we have

K1∑
k=K0

∆τF (x+ k) = F (x+K1 + τ)− F (x+K0 + τ − 1).(2.1)

Lemma 2.2. For any integer i ≥ 0, if pi(x) is a polynomial of degree i, then
qi(x) = ∆τpi+1(x) is a polynomial of degree i.
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As a consequence of Lemma 2.2, for any integer n ≥ 0 the sets Bn
s =

{
ei(x) =

xi
}n

i=0
, and Bn

q =
{
qi(x) = ∆τpi+1(x)

}n

i=0
are bases for the set Pn of polynomials of

degree at most n, and

Pn = Lin
{
ei(x)|i = 0, ..., n

}
= Lin

{
qi(x)|i = 0, ..., n

}
.(2.2)

Let −→
E (x) = (e0(x), e1(x), e2(x), · · ·)t and −→

Q(x) = (q0(x), q1(x), q2(x), · · ·)t then
from (2.2) we obtain

−→
E (x) =M−→

Q(x) and −→
Q(x) = N−→

E (x)(2.3)

where M and N are two infinite lower triangular matrices given by

M =
(
αi,j(τ)

)
i = 0, 1, ...
j = 0, 1, ...

=



α0,0(τ) 0 · · ·
α1,0(τ) α1,1(τ) 0 · · ·
α2,0(τ) α2,1(τ) α2,2(τ) 0 · · ·

...
...

...
. . . . . .




and

N =
(
βi,j(τ)

)
i = 0, 1, ...
j = 0, 1, ...

=



β0,0(τ) 0 · · ·
β1,0(τ) β1,1(τ) 0 · · ·
β2,0(τ) β2,1(τ) β2,2(τ) 0 · · ·

...
...

...
. . . . . .


 .

These matrices are invertible and MN = I = NM .

From (2.3) and (2.1), we obtain

K1∑
k=K0

en(x+ k) =
n∑

j=0

αn,j(τ)
[
pj+1(x +K1 + τ)− pj+1(x+K0 + τ − 1)

]
,(2.4)

and if we set x = 0, K0 ≤ K1 = K, and K0 = 0 or 1, then we have a proof of
Theorem 1.1.

We suggest two methods for computing the scalars αi,j(τ)’s. The first method is
by direct inversion of the infinite lower triangular matrix N while the second method
uses the derivative of qn(x).

For the first method, we consider the system MN = I and we obtain

αi,j(τ) =




1
βi,i(τ) for j = i,

− 1
βj,j(τ)

∑i
l=j+1 αi,l(τ)βl,j(τ) for j = i− 1, ..., 0,
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or we consider the system NM = I and we have

αi,j(τ) =

{
− 1

βi,i(τ)

∑i−1
l=j βi,l(τ)αl,j(τ) for j = 0, ..., i− 1,

1
βi,i(τ) for j = i.

The second method proceeds as follows. Since p(1)n+1(x) is a polynomial of degree
n, we can write

p
(1)
n+1(x) =

n∑
j=0

γn,j−1pj(x),

and

q(1)n (x) = ∆τp
(1)
n+1(x) =

n∑
j=1

γn,j−1∆τpj(x) =
n−1∑
j=0

γn,jqj(x).

Using the matrix notation, we have

−→
Q

(1)
(x) = Γ−→Q(x)(2.5)

where Γ is the infinite lower triangular matrix

Γ =
(
γi,j

)
i = 0, 1, ...
j = 0, 1, ...

=




0 · · ·
γ1,0 0 · · ·
γ2,0 γ2,1 0 · · ·
γ3,0 γ3,1 γ3,2 0 · · ·
...

...
...

. . .
. . .


 .

Moreover, we also have

−→
E

(1)
(x) = DP−→E (x),(2.6)

where the infinite diagonal matrices D and P are defined by

D =




0 0
0 1 0

0 2 0
0 3 0

. . . . . . . . .


 and P =




0
1 0
0 1 0

0 1 0
. . . . . . . . .


 .

Hence from −→
E

(1)
(x) =M−→

Q
(1)
(x), (2.5) and (2.6), it follows that DPM =MΓ.
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We obtain recursively each line of M by solving the system{
DPM =MΓ,−→
E (ξ) =M−→

Q(ξ),

where ξ is any arbitrary value for x. This leads to : α0,0(τ) 
= 0, and for i ≥ 1 we
have

αi,j(τ) =




i
γ i,i−1

αi−1,i−1(τ) for j = i,

1
γ j,j−1

[
iαi−1,j(τ) −

∑i
l=j+1 αi,l(τ)γl,j−1

]
for j = i− 1, ..., 1,

ei(ξ)−
Pi

j=1 αi,j(τ)qj(ξ)

q0(ξ) for j = 0.

3. Bernoulli’s polynomial formula. Let Bp =
{
pi(x) = ei(x)

}+∞
i=0

and τ = 0.
We will use the notation αi,j(τ) = αi,j and βi,j(τ) = βi,j . We have

qn(x) = en+1(x)− en+1(x− 1) =
n∑

j=0

(
n+ 1
j

)
(−1)n−jej(x),(3.1)

hence βn,j =
(
n+ 1
j

)
(−1)n−j for j = 0, ..., n, and

N =




1 0 · · ·
−1 2 0 · · ·
1 −3 3 0 · · ·

−1 4 −6 4 0 · · ·
...

...
...

...
. . . . . .


 .

To compute M we use (2.5), and since q(1)n (x) = (n + 1)qn−1(x) for n ≥ 1, we
have

Γ =




0
2 0
0 3 0

0 4 0
. . .

. . .
. . .


 = (I +D)P.

Then solving the system{
DPM =M(I +D)P,−→
E (0) =M−→

Q(0)
(
or −→

E (1) =M−→
Q(1)

)
,
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leads to : α0,0 = 1, and for i ≥ 1

αi,j =
i

j + 1
αi−1,j−1

for j = 1, ..., i, and

αi,0 =
i∑

j=1

(−1)j+1αi,j = 1−
i∑

j=1

αi,j .(3.2)

From these relations we obtain

αi,j =
1

i+ 1

(
i+ 1
j + 1

)
αi−j,0(3.3)

for j = 0, ..., i.

Remark 3.1. From (3.2) and (3.3), if we set αi−j,0 = Bi, the Bi’s are the
Bernoulli’s numbers generated by : B0 = 1, and for i ≥ 1

i∑
j=0

(−1)j
(
i+ 1
j + 1

)
Bi−j = 0 or

1
i+ 1

i∑
j=0

(
i+ 1
j + 1

)
Bi−j = 1.(3.4)

For i ≥ 1, from (3.4) we get

2
i+ 1

� i
2 �∑

j=0

(
i+ 1
2j

)
B2j = 1,(3.5)

and

2
i+ 1

� i−1
2 �∑

j=0

(
i+ 1
2j + 1

)
B2j+1 = 1.(3.6)

Since B0 = 1, from (3.5) we obtain the B2j ’s for j ≥ 1. From (3.6) we have B1 = 1
2

and for i ≥ 3

� i−1
2 �∑

j=1

(
i+ 1
2j + 1

)
B2j+1 = 0,

which implies that B2j+1 = 0 for j ≥ 1.

In this case (1.1) leads to the following celebrated Bernoulli’s polynomial formula

K∑
k=1

kn =
1

n+ 1

n∑
i=0

(
n+ 1
i

)
BiK

n+1−i.

Expressions (3.3) and (3.2), used to compute recursively the coefficients, have already
been presented in [5, 9, 17, 3]. Several other proofs of this well known formula for the
sum of powers of integers appeared elsewhere [1, 6, 11, 12, 15, 16, 18, 21].
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∑
K = 1

2K
2 + 1

2K∑
K2 = 1

3K
3 + 1

2K
2 + 1

6K∑
K3 = 1

4K
4 + 1

2K
3 + 1

4K
2

∑
K4 = 1

5K
5 + 1

2K
4 + 1

3K
3 − 1

30K∑
K5 = 1

6K
6 + 1

2K
5 + 5

12K
4 − 1

12K
2

∑
K6 = 1

7K
7 + 1

2K
6 + 1

2K
5 − 1

6K
3 + 1

42K∑
K7 = 1

8K
8 + 1

2K
7 + 7

12K
6 − 7

24K
4 + 1

12K
2

∑
K8 = 1

9K
9 + 1

2K
8 + 2

3K
7 − 7

15K
5 + 2

9K
3 − 1

30K∑
K9 = 1

10K
10 + 1

2K
9 + 3

4K
8 − 7

10K
6 + 1

2K
4 − 3

20K
2

∑
K10 = 1

11K
11 + 1

2K
10 + 5

6K
9 − 1K7 + 1K5 − 1

2K
3 + 5

66K

Table 3.1

First 10 Bernoulli’s polynomial expressions for the sums of powers of integers.

4. Towards the Faulhaber’s polynomial formula. In this section we present
three formulas for the sums of powers of integers related by the bases we use to obtain
them. The last one is the Faulhaber’s polynomial formula. Throughout this section
τ = 1

2 .

4.1. A first intermediate polynomial formula. The first formula of this
section is very similar to the Bernoulli’s polynomial formula. Let Bp =

{
pi(x) =

ei(x)
}+∞

i=0
, and let us use the notation ui(x) = ∆1/2pi+1(x), ai,j = αi,j(1

2 ) and bi,j =
βi,j(1

2 ).

Let −→
U (x) = (u0(x), u1(x), u2(x), · · ·)t, and set −→

E (x) = M1
−→
U (x) and −→

U (x) =
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N1
−→
E (x) where

M1 =
(
ai,j

)
i = 0, 1, ...
j = 0, 1, ...

=



a0,0 0 · · ·
a1,0 a1,1 0 · · ·
a2,0 a2,1 a2,2 0 · · ·
...

...
...

. . . . . .




and

N1 =
(
bi,j

)
i = 0, 1, ...
j = 0, 1, ...

=



b0,0 0 · · ·
b1,0 b1,1 0 · · ·
b2,0 b2,1 b2,2 0 · · ·
...

...
...

. . . . . .


 .

We have

un(x) = en+1(x+
1
2
)− en+1(x − 1

2
)

=
n∑

j=0

(
n+ 1
j

)
(
1
2
)n+1−j [1 + (−1)n−j]ej(x),

=
�n

2 �∑
j=0

(
n+ 1
2j + 1

)
(
1
2
)2jen−2j(x),(4.1)

and hence

N1 =




1 0 · · ·
0

(
2
1

)
0 · · ·

1
22

(
3
3

)
0

(
3
1

)
0 · · ·

0 1
22

(
4
3

)
0

(
4
1

)
0 · · ·

1
24

(
5
5

)
0 1

22

(
5
3

)
0

(
5
1

)
0 · · ·

...
...

...
...

. . .
. . .

. . .




.

From (4.1), we not only have (2.2) but also

Lin{en−2i(x)|i = 0, ..., �n
2
} = Lin{un−2i(x)|i = 0, ..., �n

2
},
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and this observation implies that an,n−(2j+1) = 0 = bn,n−(2j+1) for j = 0, ..., �n−1
2 .

Therefore the sum of powers of integers (1.1) is given by

K∑
k=1

kn = an,−1 +
�n

2 �∑
j=0

an,n−2j(K +
1
2
)n+1−2j(4.2)

with (1.2) as

an,−1 = −
�n

2 �∑
j=0

(
1
2
)n+1−2jan,n−2j = (−1)n

�n
2 �∑

j=0

(
1
2
)n+1−2jan,n−2j.(4.3)

It follows that an,−1 = 0 for n even.

Using (2.5), and since q(1)n (x) = (n+ 1)qn−1(x) for n ≥ 1, we have

Γ = (I +D)P =




0
2 0
0 3 0

0 4 0
. . . . . . . . .


 .

Solving the system{
DPM1 =M1(I +D)P,−→
E (0) =M1

−→
U (0)

(
or −→

E (1) =M1
−→
U (1)

)
,

leads to : a0,0 = 1, and for i ≥ 1

ai,j =
i

j + 1
ai−1,j−1

for j = 1, ..., i, and

ai,0 = −
i∑

j=1

(
1
2
)j+1[1 + (−1)j]ai,j = − [1 + (−1)i]

2

i−1
2∑

j=0

(
1
2
)i−2jai,i−2j .(4.4)

Hence ai,0 = 0 for odd i. From these relations we obtain

ai,j =
1

i+ 1

(
i+ 1
j + 1

)
ai−j,0(4.5)

for j = 0, ..., i.
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Remark 4.1. As for the Bernoulli’s numbers, let us set ai,0 = Ai. Then from
(4.4) and (4.5), the Ai’s are generated by : A0 = 1 and for i ≥ 1

i
2∑

j=0

(
1
2
)2j

(
i+ 1
2j + 1

)
Ai−2j = 0.

Using x = 1
2 and x = − 1

2 in −→
E (x) =M1

−→
U (x) , we have

(1
2

)i

=
i∑

j=0

ai,j and
(
− 1

2

)i

=
i∑

j=0

(−1)jai,j

which leads to

(1
2

)i

=
� i

2 �∑
j=0

ai,i−2j and 0 =
� i−1

2 �∑
j=0

ai,i−(2j+1).

We also conclude from these relations that ai,i−(2j+1) = 0 and A2j+1 = 0 for any
j ≥ 0.

Finally, (4.2) becomes

K∑
k=1

kn =
�n+1

2 �∑
j=0

an,n−2j(K +
1
2
)n+1−2j .

where the an,n−2j ’s are given by (4.3), (4.4) and (4.5).

4.2. A second intermediate polynomial formula. Let Bp =
{
pi(x)

}+∞
i=0

where

pi(x) =



ei(x) for i = 0, 1,

ei(x)− 1
4ei−2(x) for i ≥ 2.

Let us use the notation vi(x) = ∆1/2pi+1(x), ci,j = αi,j(1
2 ) and di,j = βi,j(1

2 ).

Let −→
V (x) = (v0(x), v1(x), v2(x), · · ·)t, and set −→

E (x) = M2
−→
V (x) and −→

V (x) =
N2

−→
E (x) where the two lower triangular matrices are defined by

M2 =
(
ci,j

)
i = 0, 1, ...
j = 0, 1, ...

=



c0,0 0 · · ·
c1,0 c1,1 0 · · ·
c2,0 c2,1 c2,2 0 · · ·
...

...
...

. . . . . .
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∑
K = 1

2U
2 − 1

8∑
K2 = 1

3U
3 − 1

12U∑
K3 = 1

4U
4 − 1

8U
2 + 1

64∑
K4 = 1

5U
5 − 1

6U
3 + 7

240U∑
K5 = 1

6U
6 − 5

24U
4 + 7

96U
2 − 1

128∑
K6 = 1

7U
7 − 1

4U
5 + 7

48U
3 − 31

1344U∑
K7 = 1

8U
8 − 7

24U
6 + 49

192U
4 − 31

384U
2 + 17

2048∑
K8 = 1

9U
9 − 1

3U
7 + 49

120U
5 − 31

144U
3 + 127

3840U∑
K9 = 1

10U
10 − 3

8U
8 + 49

80U
6 − 31

64U
4 + 381

2560U
2 − 31

2048∑
K10 = 1

11U
11 − 5

12U
9 + 7

8U
7 − 31

32U
5 + 127

256U
3 − 2555

33792U

Table 4.1

First 10 Bernoulli’s like polynomial expressions for the sums of powers of integers, U = K + 1
2
.

and

N2 =
(
di,j

)
i = 0, 1, ...
j = 0, 1, ...

=



d0,0 0 · · ·
d1,0 d1,1 0 · · ·
d2,0 d2,1 d2,2 0 · · ·
...

...
...

. . .
. . .


 .

We have v0(x) = e0(x), v1(x) = 2e1(x), and for i ≥ 2

vi(x) = ui(x) − 1
4
ui−2(x)(4.6)

=
i∑

j=1

[(
i

j − 1

)
+

(
i− 1
j − 1

) ]
(
1
2
)i−j+1

[
1 + (−1)i−j

]
ej(x)

=
� i−1

2 �∑
j=0

[(
i

2j + 1

)
+

(
i− 1
2j

) ]
(
1
2
)2jei−2j(x).
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Hence

N2 =




1 0 · · ·
0 2 0 · · ·
0 0 3 0 · · ·
0 1

2 0 4 0 · · ·
0 0 7

4 0 5 0 · · ·
0 1

8 0 4 0 6 0 · · ·
...

. . . . . . . . . . . . . . . . . .



.

Then for n ≥ 1

Lin{en−2i(x)|i = 0, ..., �n− 1
2

} = Lin{vn−2i(x)|i = 0, ..., �n− 1
2

},

and cn,0 = 0 = dn,0 for n ≥ 1, and cn,n−(2j+1) = 0 = dn,n−(2j+1)cn,n−(2j+1) = 0 =
dn,n−(2j+1)for any j = 0, ..., �n−1

2 . It follows that (1.1) becomes

K∑
k=1

kn =



K(K + 1)

∑n−1
2

j=0 cn,n−2j(K + 1
2 )

n−1−2j for n odd,

K(K + 1)(K + 1
2 )

∑n
2 −1
j=0 cn,n−2j(K + 1

2 )
n−2−2j for n even.

Remark 4.2. From (4.6) we have −→
V (x) = (I − 1

4P
2)−→U (x). Then −→

E (x) =
M2(I− 1

4P
2)−→U (x). We also have−→E (x) =M1

−→
U (x). It follows thatM2(I− 1

4P
2) =M1.

But (I − 1
4P

2)−1 =
∑+∞

l=0 (
1
4 )

lP 2l, then M2 = M1(I − 1
4P

2)−1 = M1

∑+∞
l=0 (

1
4 )

lP 2l,
and

ci,i−2j =
j∑

l=0

(
1
4
)j−lai,i−2l

for j = 0, ..., � i
2.

4.3. Faulhaber’s polynomial formula. Let Bp =
{
pi(x)

}+∞
i=0

where

pi(x) = xi−2� i
2 �

[
(x− 1

2
)(x+

1
2
)
]� i

2 �.

Let us use the notation wi(x) = ∆1/2pi+1(x), fi,j = αi,j(1
2 ), and gi,j = βi,j(1

2 ).

Let −→
W (x) = (w0(x), w1(x), w2(x), · · ·)t, then −→

E (x) = MF
−→
W (x) and −→

W (x) =
NF

−→
E (x) where the two lower triangular matrices are defined by

MF =
(
fi,j

)
i = 0, 1, ...
j = 0, 1, ...

=



f0,0 0 · · ·
f1,0 f1,1 0 · · ·
f2,0 f2,1 f2,2 0 · · ·
...

...
...

. . . . . .
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∑
K = 1

2V∑
K2 = 1

3UV∑
K3 = V [ 14U

2 − 1
16 ]∑

K4 = UV [15U
2 − 7

60 ]∑
K5 = V [ 16U

4 − 1
6U

2 + 1
32 ]∑

K6 = UV [17U
4 − 3

14U
2 + 31

336 ]∑
K7 = V [ 18U

6 − 25
96U

4 + 73
384U

2 − 17
512 ]∑

K8 = UV [19U
6 − 11

36U
4 + 239

720U
2 − 127

960 ]∑
K9 = V [ 1

10U
8 − 7

20U
6 + 21

40U
4 − 113

320U
2 + 31

512 ]∑
K10 = UV [ 1

11U
8 − 13

33U
6 + 205

264U
4 − 409

528U
2 + 2555

8448 ]

Table 4.2

First 10 intermediate polynomial expressions for the sums of powers of integers, V = K(K + 1).

and

NF =
(
gi,j

)
i = 0, 1, ...
j = 0, 1, ...

=



g0,0 0 · · ·
g1,0 g1,1 0 · · ·
g2,0 g2,1 g2,2 0 · · ·
...

...
...

. . . . . .




We have

w2k(x) =
� k

2 �∑
j=0

[(
k + 1
2j + 1

)
+

(
k

2j + 1

) ]
e2k−2j

and

w2k+1(x) =
� k

2 �∑
j=0

2
(
k + 1
2j + 1

)
e2k+1−2j .
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The matrix NF is

NF =




1 0 · · ·
0 2 0 · · ·
0 0 3 0 · · ·
0 0 0 4 0 · · ·
0 0 1 0 5 0 · · ·
0 0 0 2 0 6 0 · · ·
...

...
...

...
...

...
. . . . . .



.

Consequently for i ≥ 2

Lin
{
wi−2j(x)|j = 0, ..., � i

2
 − 1

}
= Lin

{
ei−2j(x)|j = 0, ..., � i

2
 − 1

}
,

and also

ei(x) =
� i

2 �−1∑
j=0

fi,i−2jwi−2j(x).(4.7)

Hence, for n ≥ 2, (1.1) becomes

K∑
k=1

kn =




[
K(K + 1)

]2 ∑n−3
2

j=0 fn,n−2j

[
K(K + 1)

]n−3
2 −j for n odd,

(K + 1
2 )K(K + 1)

∑n
2 −1
j=0 fn,n−2j

[
K(K + 1)

] n
2 −1−j for n even,

which is the Faulhaber’s polynomial expression for the sums of powers of integers.

To compute recursively the coefficients fi,i−2j , we observe that

w
(1)
2l+2(x) = (1 + 2(l + 1))w2l+1(x) +

l + 1
2
w2l−1(x),(4.8)

and

w
(1)
2l+1(x) = 2(l+ 1)w2l(x).(4.9)

Then, from (4.7)

(2l + 2)x2l+1 =
l∑

j=0

f2l+2,2l+2−2j

[
(1 + 2(l − j + 1))w2(l−j)+1(x)(4.10)

+
(l − j) + 1

2
w2(l−j)−1(x)

]
,(4.11)

and

(2l + 1)x2l =
l−1∑
j=0

f2l+1,2l+1−2j2(l − j + 1))w2(l−j)(x).(4.12)
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Then again using (4.7), (4.8) and (4.9), we obtain the recursive method : assume
f2,0 = 0 and f2,2 = 1

3 , for l ≥ 1 :
(a) to compute f2l+1,2l+1−2j from f2l,2l−2j we use the relation

f2l+1,2l+1−2j =
(2l + 1)

2(l + 1− j)f2l,2l−2j(4.13)

for j = 0, ..., l− 1;
(b) to compute f2l+2,2l+2−2j from f2l+1,2l+1−2j , we set f2l+2,2l+4 = 0 and f2l+1,1 = 0
and we use

f2l+2,2l+2−2j =
2(l + 1)

(2(l − j) + 3)

[
f2l+1,2l+1−2j − (l + 2− j)

4(l + 1)
f2l+2,2l+2−2(j−1)

]
(4.14)

for j = 0, ..., l.

Remark 4.3. Using the matrix notation, (4.8) and (4.9) lead to the lower trian-

gular matrix Γ such that −→W (1)
(x) = Γ−→W (x) and its nonzero elements are γi,i−1 = i+1

for i ≥ 1, and γ2l,2l−3 = l
4 for l ≥ 2. Solving the system DPMF = MFΓ, we obtain

(4.13) and (4.14).

The formula (4.13) was known by Faulhaber [10, 14] and appears also in [12, 20,
7, 15].

4.4. Other polynomial formulas. We could find other formulas trying with
other sets B. For example, take any integer m ≥ 2 and set pi(x) = ei(x) for i ≤ 0 and

pi(x) = xi−2� i
m �

[
(x− 1

2
)(x +

1
2
)
]� i

m �

for i ≥ 1. The value m = 2 corresponds to the Faulhaber’s case.

5. An extension of the method. In this section by repeating the application
of the difference operator we obtain expressions for l-fold summations of powers of
integers. Let us use the following notation for the l-fold summations

Σ(l)
K0

∆σ
τF (x+K1) =




∆σ
τF (x+K1) for l = 0,

ΣK1
kl=K0

· · ·Σk2
k1=K0

∆σ
τF (x+ k1) for l ≥ 1,

and

Σ(l)
K0
K0

1 =




1 for l = 0,

ΣK1
kl=K0

· · ·Σk2
k1=K0

1 for l ≥ 1,

for any nonnegative integer l.
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∑
K = 1

2V∑
K2 = 1

3UV∑
K3 = 1

4V
2

∑
K4 = UV [15V − 1

15 ]∑
K5 = V 2[16V − 1

12 ]∑
K6 = UV [17V

2 − 1
7V + 1

21 ]∑
K7 = V 2[18V

2 − 1
6V + 1

12 ]∑
K8 = UV [19V

3 − 2
9V

2 + 1
5V − 1

15 ]∑
K9 = V 2[ 1

10V
3 − 1

4V
2 + 3

10V − 3
20 ]∑

K10 = UV [ 1
11V

4 − 10
33V

3 + 17
33V

2 − 5
11V + 5

33 ]

Table 4.3

First 10 Faulhaber’s polynomial expressions for the sums of powers of integers.

Lemma 5.1. For any integers K0 ≤ K1 and σ ≥ 1 we have

ΣK1
k=K0

∆σ
τF (x + k) = ∆σ−1

τ F (x+K1 + τ)−∆σ−1
τ F (x+K0 + τ − 1).

More generally we have

Lemma 5.2. For any integers K0 ≤ K1 and 0 ≤ l ≤ σ we have

Σ(l)
K0
∆σ

τF (x+K1) = ∆σ−l
τ F (x+K1 + lτ)

−Σl−1
j=0

[
Σ(j)

K0
K0

1

]
∆σ−(l−j)

τ F (x+K0 + (l − j)τ − 1).

Lemma 5.3. For any integer i ≥ 0, if pi(x) is a polynomial of degree i, then
qi(x) = ∆σ

τ pi+σ(x) is a polynomial of degree i.

From Lemma 5.3 we have

Pn = Lin
{
ei(x)|i = 0, ..., n

}
= Lin

{
qi(x)|i = 0, ..., n

}
.
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Let −→E (x) = M
−→
Q(x) and −→

Q(x) = N
−→
E (x) where M and N are two lower triangular

matrices

M =
(
αi,j(τ, σ)

)
i = 0, 1, ...
j = 0, 1, ...

=



α0,0(τ, σ) 0 · · ·
α1,0(τ, σ) α1,1(τ, σ) 0 · · ·
α2,0(τ, σ) α2,1(τ, σ) α2,2(τ, σ) 0 · · ·

...
...

...
. . . . . .




and

N =
(
βi,j(τ, σ)

)
i = 0, 1, ...
j = 0, 1, ...

=



β0,0(τ, σ)) 0 · · ·
β1,0(τ, σ)) β1,1(τ, σ)) 0 · · ·
β2,0(τ, σ)) β2,1(τ, σ)) β2,2(τ, σ)) 0 · · ·

...
...

...
. . .

. . .


 ,

such that MN = I = NM . It follows that

ei(x) =
i∑

j=0

αi,j(τ, σ)qj(x) =
i∑

j=0

αi,j(τ, σ)∆σ
τ pj+σ(x),(5.1)

and

qi(x) =
i∑

j=0

βi,j(τ, σ)ej(x).

From (5.1) and the Lemma 5.2 we have

Σ(l)
K0
(x+K1)n =

n∑
j=0

αn,j(τ, σ)Σ
(l)
K0

∆σ
τ pj+σ(x+K1).

If we set x = 0 and 1 = K0 ≤ K1 = K, the l-fold summation of powers of integers is

Σ(l)
1 K

n =
n∑

j=0

αn,j(τ, σ)Σ
(l)
1 ∆σ

τ pj+σ(K).

The scalars αi,j(τ, σ)’s can be computed recursively by inversion of the lower
triangular matrix N if this matrix is known or by the following procedure. Since
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p
(1)
n+σ(x) is a polynomial of degree n+ σ − 1, we have

p
(1)
n+σ(x) =

n+σ−1∑
j=0

γn,j−σpj(x).

Then

q(1)n (x) = ∆σ
τ p

(1)
n+σ(x) =

n+σ−1∑
j=σ

γn,j−σ∆σ
τ pj(x) =

n−1∑
j=0

γn,jqj(x),

and we write −→Q (1)
(x) = Γ−→Q(x) where Γ is a lower triangular matrix with zero values

on the diagonal. We also have −→
E

(1)
(x) = DP

−→
E (x). Using these identities with

−→
E

(1)
(x) =M−→

Q
(1)
(x), it follows that

DPM =MΓ.

Adding
−→
E (ξ) =M−→

Q(ξ)

for any fixed x = ξ, we can solve for M .

6. Examples. We present two families of formulas based on the general ap-
proach. The details are left to the reader.

6.1. A Bernoulli’s type example. Let Bp =
{
pi(x) = ei(x)

}+∞
i=0

, and let us

use the notation ui(x) = ∆σ
1/2pi+σ(x), a

(σ)
i,j = αi,j(1

2 , σ) and b
(σ)
i,j = βi,j(1

2 , σ). We
have

un(x) =
�n

2 �∑
j=0

b
(σ)
n,n−2jen−2j(x)

then

Lin{en−2i(x)|i = 0, ..., �n
2
} = Lin{un−2i(x)|i = 0, ..., �n

2
}.

It follows that

en(x) =
�n

2 �∑
j=0

a
(σ)
n,n−2jun−2j(x) =

�n
2 �∑

j=0

a
(σ)
n,n−2j∆

σ
1/2pn+σ−2j(x).

and

Σ(σ)
1 Kn =

�n
2 �∑

j=0

a
(σ)
n,n−2jΣ

(σ)
1 ∆σ

1/2pn+σ−2j(K).
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For example, let σ = 2 we have

Σ(2)
1 Kn =

�n
2 �∑

j=0

a
(2)
n,n−2j

[
(K + 1)n+2−2j − (K + 1)

]
.

6.2. A Faulhaber’s type example. Let Bp =
{
pi(x)

}+∞
i=0

with

pi(x) = xi−2� i
2 �

[
(x− σ 1

2
)(x + σ

1
2
)
]� i

2 �

for i ≥ 1. We use the notation wi(x) = ∆σ
1/2pi+σ(x), f

(σ)
i,j = αi,j(1

2 , σ), and g
(σ)
i,j =

βi,j(1
2 , σ). It is possible to show that

wi(x) =
� i−1

2 �∑
j=0

g
(σ)
i,i−2jei−2j(x)

with g(σ)
i,0 = 0 and f (σ)

i,0 = 0. Then

Lin
{
ei−2j(x)|j = 0, ..., � i− 1

2
} = Lin

{
wi−2j(x)|j = 0, ..., � i− 1

2
},

and we can write

en(x) =
�n−1

2 �∑
j=0

f
(σ)
n,n−2jwn−2j(x) =

�n−1
2 �∑

j=0

f
(σ)
n,n−2j∆

σ
1/2pn+σ−2j(x)

and obtain

Σ(σ)
1 Kn =

�n−1
2 �∑

j=0

f
(σ)
n,n−2jΣ

(σ)
1 ∆σ

1/2pn+σ−2j(K).

For example, for σ = 2 we have

Σ(2)
1 Kn =

�n−1
2 �∑

j=0

f
(2)
n,n−2jΣ

(2)
1 ∆2

1/2pn+2−2j(K)

=
�n−1

2 �∑
j=0

f
(2)
n,n−2j(K + 1)n−2�n

2 �
[
K(K + 2)

]�n
2 �+1−j

.
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