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FURTHER RESULTS ON THE CRAIG-SAKAMOTO EQUATION∗
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Abstract. In this paper, necessary and sufficient conditions are stated for the Craig-Sakamoto

equation det(I − sA − tB) = det(I − sA)det(I − tB) to hold for all scalars s, t ∈ C. Moreover,

spectral properties for matrices A and B that satisfy this equation are investigated.
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1. Introduction. Let Mn(C) be the set of n×n matrices with elements in C.

For A and B ∈Mn(C), the equation

det(I − sA− tB) = det(I − sA) det(I − tB)(1.1)

for all scalars s, t ∈ C is known as the Craig-Sakamoto (CS) equation. Matrices A
and B satisfying (1.1) are said to have the CS property. The CS equation is encoun-
tered in multivariate statisticts [1] and has drawn the interest of several researchers.
Specifically, O. Taussky proved in [6] that the CS equation is equivalent to AB = O
when A, B are normal matrices. Several proofs of this result in [1] are known, most
recently by Olkin in [5] and by Li in [2]. Moreover, Matsuura in [4] refined Olkin’s
method using another type of determinantal result. The present author, together
with M. Tsatsomeros and P. Psarrakos investigated in [3] the CS equation for gen-
eral matrices and in relation to the eigenspaces of A,B and sA + tB. Being more
specific, if σ(X) denotes the spectrum for a matrix X, mX(λ) the algebraic multi-
plicity of λ ∈ σ(X), and EX(λ) = Nul ((X − λI)µ) , where µ = indλ(X) is the size
of the largest Jordan block associated with λ in the Jordan canonical form of X, the
following three propositions were shown in [3]:

Proposition 1.1. For n× n matrices A and B, the following statements are
equivalent:

I. The CS equation holds.
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II. For every s, t ∈ C, σ(sA ⊕ tB) = σ ((sA+ tB)⊕On) , where On denotes
the n× n zero matrix.

III. σ(sA + tB) = { sµi + tνi : µi ∈ σ(A), νi ∈ σ(B) } , where the pairing of
eigenvalues requires either µi = 0 or νi = 0.

Proposition 1.2. Let n×n matrices A, B satisfy the Craig-Sakamoto equation.
Then,

I. mA(0) +mB(0) ≥ n.
II. If A is nonsingular, then B must be nilpotent.
III. If λ = 0 is a semisimple eigenvalue of A and B, then rank(A)+rank(B) ≤ n.

Proposition 1.3. Let λ = 0 be a semisimple eigenvalue of n× n matrices A
and B such that BEA(0) ⊂ EA(0). Then the following are equivalent.

I. The CS equation holds.
II. C

n = EA(0) + EB(0).
III. AB = O.

The remaining results in [3] are based on the basic assumption that λ = 0 is a
semisimple eigenvalue of A and B. Relaxing this restriction, we shall attempt here
to investigate the CS equation by focusing on the factorization of the two variable
polynomial f(s, t) = det(I − sA− tB).

In section 2, considering the determinants in (1.1), new necessary and sufficient
conditions for CS to hold are stated. The first criterion refers to the coefficients of
the polynomials in (1.1). The second criterion refers to certain determinants defined
via the rows of A and B. In section 3, the main result is related to the algebraic
multiplicity of the eigenvalue λ = 0 of A and B and sufficient conditions such that
mA(0) +mB(0) = n are presented

2. Criteria for CS property. In this section we consider the polynomial in
two variables

f(s, t) = det(I − sA− tB) =
n∑

p, q = 0

p + q ≤ n

mpq s
p tq.(2.1)

By denoting x =
[
1 s s2 · · · sn ]T and y =

[
1 t t2 · · · tn ]T , (2.1) can

be written as

f(s, t) = xTMy,

where M = [mpq]
n
p,q=0 is an (n+ 1)× (n+ 1) matrix, with m00 = 1.
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Proposition 2.1. Let A, B ∈ Mn(C). The CS equation holds for the pair of
matrices A and B if and only if rankM = 1.

Proof. Let A and B have the CS property. Then the equation (1.1) can be
formulated as

xTMy = xT a bT y,(2.2)

where

a =
[
1 an−1 · · · a0

]T
, b =

[
1 bn−1 · · · b0

]T
and ai, bi are the coefficients of the characteristic polynomials

det(λI −A) = λn + an−1λ
n−1 + . . .+ a0, det(λI −B) = λn + bn−1λ

n−1 + . . .+ b0.

Hence, by (2.2), for all distinct s1, s2, . . . , sn+1 and all distinct t1, t2, . . . , tn+1 we
have that

V T
(
M − a bT )W = O,(2.3)

where

V =


1 · · · 1
s1 · · · sn+1

...
...

sn1 · · · snn+1

 , W =


1 · · · 1
t1 · · · tn+1

...
...

tn1 · · · tnn+1

 .

By (2.3), due to the invertibility of V and W, we have that M = a bT , i.e., rankM =
1.

Conversely, if rankM = 1, then M = k !T , where the vectors k, ! ∈ Cn+1.

Therefore,

f(s, t) = xTMy = xTk !T y = k(s)!(t),

where k(s) and !(t) are polynomials. Since, f(0, 0) = 1 = k(0)!(0), and

det(I − sA) = f(s, 0) = k(s)!(0),
det(I − tB) = f(0, t) = k(0)!(t),

we have

f(s, t) = k(s)!(0)k(0)!(t) = det(I − sA) det(I − tB).
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Example 2.2. Consider the matrices

A =

 0 0 0
0 1− γ 1
0 0 1− γ

 , B =

 0 γ 0
1/γ 0 0
0 0 0

 .
We have

f(s, t) = det(I − sA− tB) = 1 + 2(γ − 1)s+ (γ − 1)2s2 − t2 + (1− γ)t2s

= xT


1 0 1 0

2(γ − 1) 0 1− γ 0
(γ − 1)2 0 0 0

0 0 0 0

 y
and

det(I − sA) = (1 + (γ − 1)s)2 , det(I − tB) = 1− t2.

By Proposition 2.1 we recognize that A, B have the CS property if and only if γ = 1.

In the following we denote by C
(
ai1,..., ip

bj1,..., jq

)
the determinant of order p+ q (≤

n) defined by the i1, . . . , ip rows of A and j1, . . . , jq rows of B; all indices are assume
to be in increasing order. For example, when i1 < i2 < j1 < i3 < · · · < jq < · · · < ip,
then

C

(
ai1,..., ip

bj1,..., jq

)
= det



ai1i1 ai1i2 ai1j1 ai1i3 · · · ai1jq · · · ai1ip

ai2i1 ai2i2 ai2j1 ai2i3 · · · ai2jq · · · ai2ip

bj1i1 bj1i2 bj1j1 bj1i3 · · · bj1jq · · · bj1ip

ai3i1 ai3i2 ai3j1 ai3i3
...

...
. . .

...

bjqi1 bjqi2 bjqjq

...
...

...
. . .

aipi1 aipi2 · · · aipip


.

Recall that the coefficient of λn−ρ in the characteristic polynomial det(λI−sA−
tB) is equal to (−1)ρ times the sum of all principal minors of order ρ of sA + tB.
Using the multilinearity of the determinant, we can thus deduce that for ρ = p+ q,
this coefficient is

(−1)p+q
∑

1≤i1≤i2≤···≤ip+q≤n

det [s ai�ih
+ t bi�ih

]p+q
�,h=1 =(2.4)
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= (−1)p+q
∑

1≤i1≤i2≤···≤ip+q≤n

sp+q det [ ai�ih
]p+q
�,h=1

+sp+q−1 t

p+q∑
k=1

C

(
ai1,..., ik−1,ik+1,...,ip+q

bik

)

+ sp+q−2 t2
p+q∑

k, τ = 1

k �= τ

C

(
ai1,..., ik−1,ik+1,...,iτ−1,iτ+1,...,ip+q

bik,iτ

)

· · ·+ tp+qdet [ bi�ih
]p+q
�,h=1).

Hence, we have established that for λ = 1, the coefficient mpq of the monomial sptq

in (2.1) is given by

mpq = (−1)p+q
∑

1≤i1≤i2≤...≤ip+q≤n

p+q∑
k1,...,kq=1

C

(
ai1,...,ip+q

bik1 ,..., ikq

)

= (−1)p+q
∑

1≤ i1,..., ip, j1,..., jq≤n

C

(
ai1,..., ip

bj1,..., jq

)
, m00 = 1.(2.5)

Note that in (2.5) the summands are constructed for all ordered subsets of p+ q
indices of i’s and j’s from {1, · · · , n}, corresponding to p rows of A and q rows of
B, respectively.

For example, for n× n matrices A and B the coefficients of t, st, s2 and s2t
are, respectively, equal to

m01 = −
X

1≤j≤n

C(bj) = − (b11 + b22 + · · · + bnn ) = −trB

m11 =
X

1≤i<j≤ n

C

 
ai

bj

!
=

nX
i, j = 1

i < j

 
det

"
aii aij

bji bjj

#
+ det

"
bii bij

aji ajj

#!

m20 =
X

1≤i,j≤n

C(aij) =
nX

i, j = 1

i < j

det

"
aii aij

aji ajj

#

and

m21 = −
X

1≤i≤ j≤ k≤ n

C

 
ai,j

bk

!
=

= −
X

1≤i≤ j≤ k≤n

0
B@det

2
64 aii aij aik

aji ajj ajk

bki bkj bkk

3
75+ det

2
64 aii aij aik

bji bjj bjk

aki akj akk

3
75 + det

2
64 bii bij bik

aji ajj ajk

aki akj akk

3
75
1
CA .
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Hence, the matrix M defined in (2.1) looks like



1 −∑C(bj) ∑
C(bj1,j2) · · ·

−∑C(ai)
∑
C

(
ai

bj

)
−∑C ( ai

bj1,j2

)
· · ·

∑
C (ai1,i2) −∑C ( ai1,i2

bj

)
...

...
...

... (−1)n∑C ( ai1,...,in−1

bj

)
0 · · ·

(−1)ndetA 0 0 · · ·

· · · (−1)n−1
∑
C(bj1,...,jn−1) (−1)ndetB

· · · (−1)n∑C ( ai

bj1,...,jn−1

)
0

...
...

...

· · · · · · 0

· · · · · · 0



.

The indicated zero entries in M correspond to the coefficients of monomials of f(s, t)
with degree ≥ n+1. These terms are not present in det(I−sA−tB), since by (2.5) the
order of the corresponding determinant is greater than n. The above formulation of
M provides a way of finding rankM without computing det(I−sA− tB) explicitly.
Therefore, using the criterion in Proposition 2.1, we induce the following necessary
and sufficient conditions.
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Proposition 2.3. The n× n matrices A and B have the CS property if and
only if ∑

C(ai1,...,ip)
∑
C(bj1,...,jq) =

∑
C

(
ai1,...,ip

bj1,...,jq

)
when p+ q ≤ n,

(2.6)

and
∑
C(ai1,...,ip)

∑
C(bj1,...,jq) = 0 when p+ q > n.

Example 2.4. Let A in (1.1) be a nilpotent matrix. Then,∑
C(ai) =

∑
C(ai,j) = · · · = detA = 0

and by Proposition 2.3,∑
C

(
ai1,...,ip

bj1,...,jq

)
= 0 ; p, q = 1, 2, . . . , n− 1.

In this case, M =

 1
0
0

 [ 1 bn−1 · · · b1 b0
]
.

We conclude this section with some remarks:

(1) Note that Proposition 2.3 gives an answer to the following problem:
For a given n× n matrix A identify the set

CS(A) = {B : A and B have the CS property};
see [3, Theorem 2.1]) and the discussion therein of matrix pairs with Property L.

(2) If a(s) = det(I − sA) and b(t) = det(I − tB), the higher order derivatives of
these polynomials at the origin are

1
p!
a(p)(0) =

∑
C(ai1,...,ip) ,

1
q!
b(q)(0) =

∑
C(bj1,...,jq),

and

1
p!q!

∂ p+qf(0, 0)
∂sp ∂tq

=
∑
C

(
ai1,...,ip

bj1,...,jq

)
.

Thus, considering Taylor series expansions for the polynomials in (1.1) and since

a(p)(0) b(q)(0) =
∂p+qf(0, 0)
∂sp ∂tq

, for p+ q ≤ n,

a(p)(0) b(q)(0) = 0, for p+ q > n,

we observe that the equations in (2.6) arise once more.
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3. Spectral results. In this section we will first obtain a result on the CS
property using basic polynomial theory. Recall that, by Proposition 1.2 II, the CS
equation holds only when at least one of the matrices A or B is singular.

Definition. The pair of matrices A, B ∈ Mn(C) is called r-complementary
in rows if the matrix N(i1, i2, · · · , ir) ∈ Mn(C) obtained from A by substituting
r rows ai1 , ai2 , . . . , air of A by the corresponding rows bi1 , bi2 , . . . , bir of B, is
nonsingular.

Note that when A, B are r-complementary and ImA ∩ ImB �= ∅, then n− r ≤
rank(B).

To illustrate the above definition, the pair of matrices

A =

 0 0 0
0 1 1
0 0 1

 , B =

 1 0 0
0 0 1
0 0 0


is 1-complementary in rows but not 2-complementary in rows, since detN(1) =

det

 b1a2
a3

 =

∣∣∣∣∣∣
1 0 0
0 1 1
0 0 1

∣∣∣∣∣∣ �= 0 and detN(1, 2) = det

 b1b2
a3

 =

∣∣∣∣∣∣
1 0 0
0 0 1
0 0 1

∣∣∣∣∣∣ = 0.

The pair Â, B, where

Â =

 0 1 0
0 0 1
0 0 0



is neither 1 nor 2−complementary in rows, on behalf of the fact that rank
[
Â

B

]
= 3.

Clearly, the 3rd row of A or Â can not be substituted.

Proposition 3.1. Let the pair of n×n singular matrices A, B be [n−mB(0)]-
complementary in rows and suppose that the number

θ =
∑

i1,...,in−mB(0)

detN(i1, i2, . . . , in−mB(0))(3.1)

is nonzero; the sum is taken over all possible combinations i1, . . . , in−mB(0) of n −
mB(0) of the indices 1, 2, . . . , n. If A and B satisfy the CS equation, then

mA(0) +mB(0) = n.
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Proof. Let rankB = b (< n). Then λ = 0 is an eigenvalue of B with algebraic
multiplicity mB(0) = m ≥ n− b. Denote

β(t) � det(tI −B) = tn + β1tn−1 + · · ·+ βn−mt
m,

where βk = (−1)k∑Bk , the summation being over all k× k principal minors Bk of
B. Then

det(tB − I) = (−1)n tn det(t−1I −B)
= (−1)n (1 + β1 t+ · · ·+ βn−m t

n−m
)
.

The polynomial β̃(t) = 1+β1 t+ · · ·+βn−m t
n−m has precisely n−m nonzero roots,

say t1, t2, · · · , tn−m, since β̃(0) = 1 �= 0. Moreover, by multilinearity of determinants
as functions of the rows, we have

det(sA + tB − I) =

= det

2
66664

sa11 sa12 . . . sa1n

sa21 sa22 . . . sa2n

...
...

san1 san2 . . . sann

3
77775

+det

2
66664

tb11 − 1 tb12 . . . tb1n

sa21 sa22 . . . sa2n

...
...

san1 san2 . . . sann

3
77775+ · · · + det

2
66664

sa11 . . . sa1n

...
...

san−1,1 . . . san−1,n

tbn1 . . . tbn,n−1 − 1

3
77775

+det

2
6666664

tb11 − 1 tb12 . . . tb1n

tb21 tb22 − 1 . . . tb2n

sa31 . . . sa3n

...
...

san1 san2 . . . sann

3
7777775

+ det

2
666666664

tb11 − 1 tb12 . . . tb1n

sa21 sa22 . . . sa2n

tb31 tb32 tb33 − 1 . . . tb3n

sa41 . . . sa4n

...
...

san1 . . . sann

3
777777775

+ · · · + det

2
66664

tb11 − 1 tb12 . . . tb1n

tb21 tb22 − 1 . . . tb2n

...
...

tbn1 tbn2 . . . tbnn − 1

3
77775

= (detA)sn + f1(t)sn−1 + · · ·+ fn−1(t)s+ det(tB − I),(3.2)
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where

f1(t) =
∑

i

detÂi, with Âi =



a11 · · · a1n

...
...

tbi1 · · · tbii − 1 · · · tbin
...

...
an1 · · · ann


.

Note that Âi arises from A when the i−row of A is substituted by the i−row of
tB − I. Also, in (3.2),

f2(t) =
∑
i,j

detÂij where Âij =



a11 · · · a1n

...
...

tbi1 · · · tbii − 1 · · · tbin
...

. . .
...

tbj1 · · · tbjj − 1 · · · tbjn

...
...

an1 · · · ann


;

i.e., Âij is obtained from A, substituting rows i and j by the corresponding rows
of tB − I. The summation in f2(t) is taken over all pairs of distinct indices i, j in
{1, 2, . . . , n}. Hence, by (3.2), the CS equation

(−1)n det(sA+ tB − I) = det(sA− I) det(tB − I), ∀ s, t

and for t = t1, t2, · · · , tn−m, we obtain

(detA)sn + f1(ti)sn−1 + · · ·+ fn−1(ti)s = 0, ∀ s, i = 1, 2, . . . , n−m.

Consequently,

detA = 0, f1(ti) = f2(ti) = · · · = fn−1(ti) = 0, for all i = 1, 2, . . . , n−m.(3.3)

Due to the pair A, B being [n −mB(0)]-complementary and the leading coefficient
of polynomial fn−m(t) being the nonzero θ, we have that deg(fn−m(t)) = n −m.
Moreover deg(fk(t)) ≤ n−m, for k = 1, 2, . . . , n−m− 1, and due to (3.3) we have

f1(t) = f2(t) = · · · = fn−m−1(t) = 0, ∀ t.

Recalling that Ak denotes a typical k×k principal submatrix of A, since f1(t) = 0,
we clearly have that

f1(0) =
∑
detAn−1 = 0.
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Similarly, since f2(t) = 0, · · · , fn−m−1(t) = 0 for all t, it follows, respectively, that

f2(0) =
∑
detAn−2 = 0, · · · , fn−m−1(0) =

∑
detAm+1 = 0.

Consequently,

δA(λ) = det(λI −A) = λn − fn−1(0)λn−1 + fn−2(0)λn−2 + · · ·+ (−1)ndetA
= λn − fn−1(0)λn−1 + fn−2(0)λn−2 + · · ·+ (−1)mfn−m(0)λn−m.(3.4)

In (3.4), fn−m(0) �= 0, since (−1)n−mcm = θt1t2 · · · tn−m. Thus, λ = 0 is an
eigenvalue of A with algebraic multiplicity n−mB(0), whereby we conclude

mA(0) +mB(0) = n.

Corollary 3.2. Let the pair of n×n singular and [n−mB(0)]-complementary
matrices A, B have the CS property. If the number θ in (3.1) is nonzero, the fol-
lowing hold:

I. If λ = 0 is a semisimple eigenvalue of A and B, then rankA+ rankB = n.
II. If λ = 0 is a semisimple eigenvalue of A, then rankA = mB(0).

Proof. I. Clearly Proposition 3.1 holds and since

n− rankA ≤ mA(0) = n−mB(0),

we have rankA+ rankB ≥ mB(0)+ r ≥ n. Hence, by Proposition 1.2 III, we obtain

rankA+ rankB = n.

II. By the assumption and Proposition 3.1, rankA = n−mA(0) = mB(0).

To close this section, we present a property of the generalized eigenspaces of the
nonzero eigenvalues of A and B.

Proposition 3.3. Let zero be a semisimple eigenvalue of the n × n matrices
A and B and assume that EA(0) + EB(0) = C

n. If for some λ ∈ σ(A)\{0} (or
µ ∈ σ(B)\{0} ) we have that EA(λ) ⊆ EB(0) (resp., EB(µ) ⊆ EA(0) ), then

I. A, B have the CS property.
II. EA(λ) = EI−sA−tB(1− sλ) and EB(µ) = EI−sA−tB(1− tµ).

Proof. I. Since EA(λ) ⊆ EB(0), for every w = w1 + w2 ∈ Cn, where w1

belongs to the direct sum
⊕

λ EA(λ), w2 ∈ EA(0), we have BAw = BA(w1 +w2) =
BAw1 = 0. Thus, BA = 0 and consequently AEB(0) ⊆ EB(0). The assumption
EA(0) + EB(0) = Cn, as well as Proposition 1.3, lead to the statement I.
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II. Let λ ∈ σ(A)\{0} and xk ∈ EA(λ) be a generalized eigenvector of A of order
k, i.e., (A− λI)kxk = 0. By assumption, xk ∈ EB(0), and thus

(I − sA− tB)xk = (I − sA)xk = xk − s(λxk + xk−1 )

= (1− sλ)xk − sxk−1.

Hence, for the whole Jordan chain x1, . . . , xk, . . . , xτ of λ, we have

(I − sA− tB) [ x1 . . . xτ

]
=

=
[
x1 . . . xτ

]


1− sλ −s
0 1− sλ −s O
...

. . . . . .
1− sλ −s

0 0 1− sλ


τ×τ

.(3.5)

Moreover, by clause III in Proposition 1.1, sλ and tµ ∈ σ(sA+tB). The equivalence
of the CS equation and Cn = EA(0) +EB(0) in Proposition 1.3 and the assumption
EA(λ) ⊆ EB(0), lead to EB(µ) ⊆ EA(0). Hence, if y� ∈ EB(µ) is a generalized
eigenvector of order !, then y� ∈ EA(0) and

(I − sA− tB)y� = (I − tB)y� = y� − t(µy� + y�−1 )

= (1− tµ)y� − ty�−1.

Thus, for the whole Jordan chain y1, . . . , y�, . . . , yσ of µ, we obtain

(I − sA− tB) [ y1 . . . yσ
]
=

=
[
y1 . . . yσ

]


1− tµ −t
0 1− tµ −t O
...

. . . . . .
1− tµ −t

0 0 1− tµ


σ×σ

.(3.6)

The equaions in II for any s, t are now implied by (3.5) and (3.6), respectively.

Remark 3.4. For z ∈ EA(0)
⋂
EB(0), we have (I − sA − tB)z = z, ∀ s, t.

Therefore, by the above proposition, the Jordan canonical forms of I − sA− tB and
of the matrix

F = Iν

M
λA �=0

2
666664

1 − sλA −s O

1 − sλA

. . .

. . . −s

O 1 − sλA

3
777775
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M
µB �=0

2
666664

1 − tµB −t O

1 − tµB

. . .

. . . −t

O 1 − tµB

3
777775 ,

are similar.

Note that the order ν of the submatrix Iν of F coincides with the number of
linear independent eigenvectors corresponding to the eigenvalue λ = 1 of I−sA−tB.
These eigenvectors belong to EB(0)\EA(λ), EA(0)\EB(µ), and EA(0)

⋂
EB(0),

and ν is equal to

ν = n− (rankA+ rankB) = n−
dim ⋃

λ�=0

EA(λ) + dim
⋃
µ�=0

EB(µ)

 .
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