ON THE BRUALDI-LIU CONJECTURE FOR THE EVEN PERMANENT*

IAN M. WANLESS ${ }^{\dagger}$

Abstract

Counterexamples are given to Brualdi and Liu's conjectured even permanent analogue of the van der Waerden-Egorychev-Falikman Theorem.

Key words. Even permanent, Doubly stochastic, Permutation matrix.
AMS subject classifications. 15A15.

For an $n \times n$ matrix $M=\left[m_{i j}\right]$ consider the sum

$$
\sum_{\sigma} \prod_{i=1}^{n} m_{i \sigma(i)}
$$

If the sum is taken over all permutations σ of $[n]=\{1,2, \ldots, n\}$ then we get $\operatorname{per}(M)$, the permanent of M. If, however, we only take the sum over all even permutations σ of $[n]$ then we get $\operatorname{per}^{\mathrm{ev}}(M)$, the even permanent of M.

Let Ω_{n} denote the set of doubly stochastic matrices (non-negative matrices with row and column sums 1). It is well known that Ω_{n} consists of all matrices which can be written as a convex combination of permutation matrices of order n. By analogy we define $\Omega_{n}^{\text {ev }}$ to be the set of all matrices which can be written as a convex combination of even permutation matrices of order n.

The famous van der Waerden-Egorychev-Falikman Theorem states that $\operatorname{per}(M) \geq$ $n!/ n^{n}$ for all $M \in \Omega_{n}$ with equality iff every entry of M equals $1 / n$. Similarly, Brualdi and Liu [2] conjectured $\operatorname{per}^{\mathrm{ev}}(M) \geq \frac{1}{2} n!/ n^{n}$ for all $M \in \Omega_{n}^{\mathrm{ev}}$ with equality iff every entry of M equals $1 / n$. They claimed their conjecture was true for $n \leq 3$. We show below that their conjecture is false for $n \in\{4,5\}$, although we leave open the possibility that it is true for larger n. For background on all of the above, see Brualdi's new book [1].

Let

$$
C_{4}=\left[\begin{array}{llll}
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0
\end{array}\right]
$$

[^0]Then $C_{4} \in \Omega_{4}^{\mathrm{ev}}$ since

$$
C_{4}=\frac{1}{3}\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

To show that C_{4} is a counterexample we consider the more general problem of finding $\operatorname{per}^{\text {ev }}\left(C_{n}\right)$ where C_{n} is the $n \times n$ matrix with zeroes on the main diagonal and every other entry equal to $1 /(n-1)$. Clearly $\operatorname{per}\left(C_{n}\right)=D_{n} /(n-1)^{n}$ where

$$
D_{n}=n!\left(\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!} \cdots(-1)^{n} \frac{1}{n!}\right)
$$

is the number of derangements (fixed point free permutations) of [n]. Using the cards-decks-hands method of Wilf [4] it can be shown that $(1-x)^{-y} e^{-y x}$ is a generating function in which the coefficient of $\frac{1}{n!} x^{n} y^{k}$ is the number of derangements of $[n]$ with exactly k cycles. It can then be deduced that the number of even derangements is $\frac{1}{2}\left(D_{n}+(-1)^{n}(1-n)\right)$ (this result is probably well-known, certainly it is obtained in [3]). Hence

$$
\frac{\operatorname{per}^{\mathrm{ev}}\left(C_{n}\right)}{\frac{1}{2} n!/ n^{n}}=\frac{\left(D_{n}+(-1)^{n}(1-n)\right)}{n!}\left(\frac{n}{n-1}\right)^{n}>\left(\frac{1}{e}-\frac{1}{n(n-2)!}\right) \exp \left(1+\frac{1}{2 n}\right)>1
$$

for $n \geq 5$. It follows that C_{n} is not a counterexample to the Brualdi-Liu conjecture for any $n \geq 5$. However, $\operatorname{per}^{\mathrm{ev}}\left(C_{4}\right)=1 / 27<3 / 64$ so C_{4} is a counterexample.

Two further counterexamples arise from the following family of matrices. Let T_{n} denote the mean of the $(n-1)(n-2)$ permutation matrices corresponding to 3 -cycles which move the point 1 . For example,

$$
T_{5}=\left[\begin{array}{ccccc}
0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\
\frac{1}{4} & \frac{1}{12} & \frac{1}{2} & \frac{1}{12} & \frac{1}{12} \\
\frac{1}{4} & \frac{1}{12} & \frac{1}{12} & \frac{1}{2} & \frac{1}{12} \\
\frac{1}{4} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{2}
\end{array}\right]
$$

Then $T_{n} \in \Omega_{n}^{\mathrm{ev}}$ by construction. Now given that $\operatorname{per}^{\mathrm{ev}}\left(T_{4}\right)=5 / 108<3 / 64$ and $\operatorname{per}^{\mathrm{ev}}\left(T_{5}\right)=11 / 576<12 / 625$, both T_{4} and T_{5} are counterexamples to the BrualdiLiu conjecture. That the family $\left\{T_{n}\right\}$ contains no further counterexamples is easy to show. The permutation matrices corresponding to 3 -cycles alone contribute at least

$$
(n-1)(n-2) \frac{1}{(n-1)^{2}}\left(\frac{n-3}{n-1}\right)^{n-3} \frac{1}{(n-1)(n-2)}=\frac{(n-3)^{n-3}}{(n-1)^{n-1}} \sim \frac{1}{(e n)^{2}}
$$

to $\operatorname{per}^{\mathrm{ev}}\left(T_{n}\right)$.

REFERENCES

[1] R. A. Brualdi. Combinatorial matrix classes, Encyc. Math. Appl. 108, Cambridge University Press, 2006.
[2] R. A. Brualdi and B. Liu. The polytope of even doubly stochastic matrices. J. Combin. Theory Ser. A, 57:243-253, 1991.
[3] R. Mantaci and F. Rakotondrajao. Exceedingly deranging. Adv. in Appl. Math., 30:177-188, 2003.
[4] H. S. Wilf. Generatingfunctionology (2nd edn.), Academic Press, San Diego, 1994.

[^0]: *Received by the editors 1 January 2007. Accepted for publication 5 June 2008. Handling Editor: Richard A. Brualdi.
 ${ }^{\dagger}$ School of Mathematical Sciences, Monash University, Vic 3800 Australia (ian.wanless@sci.monash.edu.au). Research supported by ARC grant DP0662946.

