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Abstract. Let A be an n by n symmetric matrix with real entries. Using the l1-norm for vectors

and letting S+
1 = {x ∈ R

n|||x||1 = 1, x ≥ 0}, the matrix A is said to be interior if the quadratic form

xT Ax achieves its minimum on S+
1 in the interior. Necessary and sufficient conditions are provided

for a matrix to be interior. A copositive matrix is referred to as being exceptional if it is not the sum

of a positive semidefinite matrix and a nonnegative matrix. A method is provided for constructing

exceptional copositive matrices by completing a partial copositive matrix that has certain specified

overlapping copositive interior principal submatrices.
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1. Introduction. We will call a vector v = (v1, . . . , vn)T ∈ R
n nonnegative,

denoted v ≥ 0, if vi ≥ 0, for all i, 1 ≤ i ≤ n. Similarly, a matrix A ∈ R
n×n will

be called nonnegative, in the event that all its entries are nonnegative. A symmetric
matrix A ∈ R

n×n will be called positive semidefinite (positive definite) if xTAx ≥ 0
for all x ∈ R

n (xTAx > 0 for all x ∈ R
n, x �= 0). A symmetric matrix A ∈ R

n×n will
be called copositive (strictly copositive) if xTAx ≥ 0 for all x ∈ R

n, x ≥ 0 (xTAx > 0
for all x ∈ R

n, x ≥ 0, x �= 0). The vector in R
n of all ones will be denoted by e, so

that e = (1, 1, . . . , 1)T ∈ R
n. The matrix Eij ∈ R

n×n denotes the matrix with a 1 in
the (i, j) position and zeroes elsewhere, while ei ∈ R

n denotes the vector with a 1 in
the ith position and zeroes elsewhere. A symmetric matrix A ∈ R

n×n will be called
almost positive semidefinite (almost positive definite) if xTAx ≥ 0 for all x ∈ R

n such
that xT e = 0 (xTAx > 0 for all x ∈ R

n, x �= 0, such that xT e = 0)[13]. Note that
if a matrix is copositive then all its principal submatrices are copositive. We will say
that a matrix is partial copositive if it has some entries that are specified, and some
that are not, and for every principal submatrix which has all its entries specified,
this submatrix is copositive. It is easy to show that a 2 × 2 copositive matrix is
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either positive semidefinite or nonnegative. Diananda [7] showed that every 3× 3 or
4×4 copositive matrix is the sum of a positive semidefinite matrix and a nonnegative
matrix. We will call a copositive matrix exceptional if it is not the sum of a positive
semidefinite matrix and a nonnegative matrix. Thus, n × n exceptional copositive
matrices can only occur for n ≥ 5. Horn [8] gave an example of an exceptional matrix
(see Section 3 of this paper). By an extreme copositive matrix Q we mean that if
Q = Q1 + Q2, where Q1 and Q2 are copositive then Q1 = aQ, and Q2 = (1 − a)Q,
for some a such that 0 ≤ a ≤ 1.

We will denote the vector l1-norm [12] by ||x||1 =
∑n

i=1 |xi|, and by S+
1 the

portion of the unit 1-sphere S1 = {x ∈ R
n| ||x||1 = 1} in the nonnegative orthant,

thus S+
1 = {x ∈ R

n|||x||1 = 1, x ≥ 0}. Let A ∈ R
n×n be symmetric. The set

S+
1 is compact so a minimum for xTAx is achieved on this set. We will say that A

is interior if such a minimum, namely minx∈S+
1
xTAx, is achieved in the interior of

S+
1 . Note that A is not necessarily copositive in this definition, although A being

copositive is our primary interest. This definition does not preclude the possibility
that the minimum is also achieved on the boundary, just that it will be achieved in
the interior in any case. For example, with n = 3 and

A =


 1 −1 1
−1 1 −1
1 −1 1


 ,

the matrix A is interior, since the minimum of the quadratic form xTAx is achieved
in the interior of S+

1 at the vector 1
4 (1, 2, 1)

T . Although the minimum is also achieved
on the boundary at 1

2 (1, 1, 0)
T . For a symmetric matrix A ∈ R

n×n, if the minimum
of xTAx is not achieved in the interior of S+

1 then the minimum is achieved at a
vector u with some zero components. Let us call u′ ∈ R

k, where 1 ≤ k < n, the
vector consisting of the positive components of u, so that u′ is of the form u′ =
(ui1 , . . . , uik

)T , and is in the interior of S+
1

′
= {x′ ∈ R

k| ||x′||p = 1, x′ ≥ 0}, and
where i1, . . . , ik are determined by deleting the zero components of the minimizer u.
Then minx∈S+

1
xTAx = minx′∈S+

1
′ x′TA′x′, where A′ is the principal submatrix of A

obtained by deleting the ith row and column of A, for every i such that i �∈ {i1, . . . , ik}.
Thus A′ is an interior matrix.

To be consistent with when n = 1 we will say that the matrix A = (a) is interior,
even though S+

1 = {1} has no interior or boundary. In this case, minx∈S+
1
xTAx =

minx=1 ax
2 = a. Note that for a 1 × 1 matrix A, being copositive and not strictly

copositive implies that A = (0). For another example, this time with n = 2, take

A =
[
2 1
1 1

]
. Then with x = [x1 x2 ]

T we have xTAx = x2
1 + (x1 + x2)2, so

minx∈S+
1
xTAx = 1 and the minimum is achieved at u = [ 0 1 ]T (in the notation of

the preceding paragraph) and A′ = (1) is an interior matrix and u′ = 1.
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In Section 2 we provide necessary and sufficient conditions for a matrix to be
interior. In Section 3 we employ interior principal submatrices to construct coposi-
tive matrices that are exceptional. In particular, we will show how to construct an
exceptional copositive matrix by performing a completion of a matrix that has certain
overlapping principal submatrices specified, which are copositive and interior. Section
4 contains examples that demonstrate this method of construction.

2. Interior matrices. Theorem 1 below minimizes the quadratic form on S+
1 .

A variation of Theorem 1 in which the quadratic form is maximized on S+
1 , and

xTAx has no maxima on the boundary, was proved by Sidorenko in [17], whose proof
relies on [5] and [6]. Our interest lies in minimizing the quadratic form because with
copositive matrices, which are not strictly copositive, the value of that minimum
on the nonnegative orthant is zero. We are also interested in the location of the
minimizer, which may move from the boundary to the interior, or vice versa, on
changing from maximizing to minimizing. Our proofs are self-contained and different
than Sidorenko’s.

Theorem 1. Let A ∈ R
n×n be symmetric. Then A is interior if and only if (i)

and (ii) hold.

(i) There exists u > 0, ||u||1 = 1, and µ ∈ R such that Au = µe;

(ii) yTAy ≥ 0 for all y ∈ R
n such that yT e = 0 (i.e. A is almost positive semidefinite).

If A is interior then µ = minx∈S+
1
xTAx = uTAu.

If (i) holds and yTAy > 0 for all y �= 0 such that yT e = 0 (i.e. A is almost positive
definite), then u > 0 is the only minimizer in S+

1 .

If A is interior and u is not the only minimizer in S+
1 then A is singular, and Ay = 0

for some y �= 0 such that yT e = 0.

Proof. Suppose that A is interior. Since there is a minimizer u for xTAx in
the interior of S+

1 we may use Lagrange Multipliers and minimize xTAx subject to
||x||1 = 1. Thus ∇(xTAx) = λ∇(

∑n
i=1 xi), when x = u, which implies 2(Au)i = λ,

or Au = µe, where µ = λ
2 . So (i) holds. Evidently, µ = minx∈S+

1
xTAx = uTAu.

Let y ∈ R
n be any y �= 0 be such that yT e = 0. Then for some c �= 0, u+ cy ≥ 0,

and since u is a minimizer we have (u+cy)T

||u+cy||1A
(u+cy)
||u+cy||1 ≥ uTAu. But ||u + cy||1 =

(u + cy)T e = 1, so we have uTAu + 2cyTAu + c2yTAy ≥ uTAu, or c2yTAy ≥ 0,
proving (ii).

Conversely, suppose (i) and (ii) hold. Let z be any vector in S+
1 . Since the vector

u together with a basis for {y|yT e = 0} spans R
n we can write z = νu + y, where
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ν ∈ R and yT e = 0. Also, zT e = 1 so ν = 1. Then zTAz = (u + y)TA(u + y) =
uTAu+ yTAy ≥ uTAu. Thus u is a minimizer in the interior of S+

1 . So A is interior.

Assume (i) and yTAy > 0 for all y �= 0 such that yT e = 0, and v is another
minimizer in S+

1 . Arguing as in the preceding paragraph, we can write v = νu + y,
for some ν ∈ R and some y such that yT e = 0, and again ν = 1. Note that y �= 0
since v �= u. Then vTAv = (u + y)TA(u + y) = uTAu + 2uTAy + yTAy = uTAu,
which implies yTAy = 0, contradicting our assumption.

To prove the final statement of the theorem suppose v is another minimizer in S+
1 .

wTAw ≥ µ for all w ∈ S+
1 implies wTAw ≥ µ(wT e)2 or wT (A − µeeT )w ≥ 0 for all

w ≥ 0, i.e. A− µeeT is copositive. Write v = u+ y, where y �= 0 and yT e = 0. Using
the result (for instance, Lemma 1 in [16]) which states that for copositive B ∈ Rn×n,
if x0 ≥ 0 and xT

0 Bx0 = 0, then Bx0 ≥ 0, we have (u + y)T (A− µeeT )(u + y) = 0, so
(A−µeeT )(u+y) ≥ 0, which implies A(u+y) ≥ µeeT (u+y) = µe. Then Au+Ay ≥ µe

implies Ay ≥ 0. If Ay �= 0 we would have uTAy > 0, but then µeT y > 0, which is not
possible, so Ay = 0.

Corollary 2. If A ∈ R
n×n is copositive interior then A is positive semidefinite.

Proof. In the notation of the theorem µ ≥ 0 and for any w ∈ R
n, we can

write w = νu + y, where yT e = 0 and ν ∈ R, so wTAw = (νu + y)TA(νu + y) =
ν2uTAu + yTAy ≥ 0.

Corollary 3. Let A ∈ R
n×n be symmetric. Then A has an almost positive

semidefinite principal submatrix A′ ∈ R
k×k, for some k, with 1 ≤ k ≤ n.

Proof. If A is not interior, as discussed in the introduction, it follows from Theo-
rem 1 that A has a principal submatrix A′ for which (i) and (ii) hold.

It is worth noting that in the event that the interior matrix A′ of Corollary 3 is
a 1× 1 matrix, then this corollary is vacuous. Again using

A =


 1 −1 1
−1 1 −1
1 −1 1




as given in the introduction, this copositive matrix is an example of an interior matrix
which has minimizers 1

4 (1, 2, 1)
T and 1

6 (1, 3, 2)
T in the interior of S+

1 , and on the
boundary has minimizers 1

2 (1, 1, 0)
T and 1

2 (0, 1, 1)
T . The n × n matrix A = I − eeT

is also an example of a matrix that is interior, since for x ≥ 0 we have xTAx =
xTx− (xT e)2 ≥ (xT e)2( 1

n − 1) with equality if and only if x is a multiple of e.

3. Constructing copositive matrices. Examples of copositive matrices are
most easily constructed by forming the sum of a positive semidefinite matrix and a
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nonnegative matrix. We will provide a method for constructing copositive matrices
not of this form, that is, exceptional copositive matrices. The Horn matrix, which
corresponds to the Horn quadratic form in [8],

H =




1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1


 ,(3.1)

is an example of an exceptional copositive matrix. In fact, as is shown in [7], [8],
H is extreme in the set of all copositive matrices. The positive semidefinite extreme
copositive matrices are described in [4], [8], [9], as are the nonnegative extreme coposi-
tive matrices, and that leaves the exceptional extreme copositive matrices. Effectively
characterizing all extreme copositive matrices is a long-standing unsolved problem [4].
In Theorem 4.1 of [9] Hall and Newman provide a necessary condition for the con-
struction of an extreme copositive matrix. In [2] Baumert constructs n × n extreme
copositive matrices by bordering an (n − 1) × (n − 1) extreme matrix in a certain
way, and in [3] Baumert constructs extreme copositive 5 × 5 matrices for which not
all entries are ±1. In [1] Baston constructs extreme copositive n × n matrices with
all entries equal to ±1, when n ≥ 8.

Corollary 2 along with the remarks in the introduction (about the minimum of
the quadratic form when not achieved in the interior being achieved on the boundary)
imply Theorem 4, which is essentially part (i) of Lemma 7 in [7]. Theorem 4 places a
necessary condition on any method devised for constructing copositive matrices which
are not strictly copositive.

Theorem 4. (Diananda)) Let A ∈ R
n×n be copositive, and not strictly copositive.

Then A has a copositive interior principal submatrix A′ with

min
x∈S+

1

xTAx = min
x′∈S+

1
′
x′TA′x′ = 0,

and A′ is positive semidefinite.

Lemma 5 provides a sufficient condition for a copositive matrix to be not writable
as a sum of a positive semidefinite matrix and a nonzero nonnegative matrix (Note
we do not say exceptional). Note that the Horn matrix is not interior, since if it
was then from Theorem 1 we would have Hu = 0 for some u > 0, because µ = 0.
But this is not possible since H is nonsingular. The Horn matrix is an example of
a matrix that cannot be expressed as the sum of a positive semidefinite matrix and
a nonnegative matrix. Thus the fact that a matrix cannot be expressed as the sum
of a positive semidefinite matrix and a nonnegative matrix does not imply that the
matrix is interior.
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Lemma 5. Let A ∈ R
n×n be copositive and not strictly copositive. If A is interior

then A cannot be written as a sum of a positive semidefinite matrix and a nonzero
nonnegative matrix.

Proof. Suppose A = B+C, where B is positive semidefinite and C is nonnegative.
Then for u > 0 we have 0 = uTAu = uTBu+ uTCu. But uTCu = 0 implies C = 0.

Consider now the motivating example of

A =


 1 1 s

1 2 1
s 1 1


 .

If s is a minimum so that A is copositive, then s = −1, and in this case A is the sum
of a positive semidefinite matrix and a nonzero nonnegative matrix;

A =


 1 0 −1

0 0 0
−1 0 1


 +


 0 1 0
1 2 1
0 1 0


 .

However, if s is a minimum so that A is positive semidefinite then s = 0. In this
case there is a ‘gap’ between the minimum values of s for which there is a copositive
completion versus a positive semidefinite completion. Sometimes, as we are about to
show in Theorem 6, there is no such gap.

In Theorem 6 we have a partial positive semidefinite matrix A, where A consists
of two overlapping principal blocks (to be described), and one corner entry of A to
be specified. See [14] for the general problem of completions of positive semidefinite
matrices.

Theorem 6. Let A′ ∈ R
(n−2)×(n−2) be copositive, not strictly copositive, and

interior. Let [
a bT

b A′

]
∈ R

(n−1)×(n−1) and
[
A′ c

cT d

]
∈ R

(n−1)×(n−1)

be positive semidefinite, and

A =


 a bT s

b A′ c

s cT d


 ∈ R

n×n.

If s is a minimum among all copositive completions of A, then A is positive semidef-
inite.

Proof. It was proved in [11] that a copositive completion exists for any par-

tial copositive matrix. Since
[
a bT

b A′

]
is positive semidefinite we have b = A′u for
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some u ∈ R
n−2, from the row and column inclusion property of positive semidef-

inite matrices (see for instance [15]). The positive semidefiniteness also implies
a − uTA′u ≥ 0. Similarly, we have c = A′v for v ∈ R

n−2, and d − vTA′v ≥ 0.
Writing x = [x1 x′ xn ]

T , where x′ ∈ R
n−2, we have

xTAx = ax2
1 + x′TA′x′ + dx2

n + 2x1x
′TA′u+ 2xnx

′TA′v + 2sx1xn,

= (x′ + x1u+ xnv)TA′(x′ + x1u+ xnv) + ax2
1 + dx2

n + 2sx1xn

−(x1u+ xnv)TA′(x1u+ xnv),

= (x′ + x1u+ xnv)TA′(x′ + x1u+ xnv) + x2
1(a− uTA′u) + x2

n(d− vTA′v)

+2sx1xn − 2x1xnu
TA′v,

= (x′ + x1u+ xnv)TA′(x′ + x1u+ xnv) + (x1

√
a− uTA′u− xn

√
d− vTA′v)2

+2x1xn(s− uTA′v +
√
a− uTA′u

√
d− vTA′v).

If A is to be copositive we must have the coefficient of 2x1xn nonnegative, since
if this coefficient were negative we would have xTAx < 0, with x ≥ 0, by choosing
x1, xn ≥ 0 so that x1

√
a− uTA′u− xn

√
d− vTA′v = 0, which only fixes the ratio of

x1 to xn, and then choose x1 and xn small enough to have x′ = w − x1u− xnv ≥ 0,
where w > 0 satisfies wTA′w = 0.

Thus if we want s to be a minimum so that A is copositive, we will have that the
coefficient of 2x1xn is zero. But in this event, A will be positive semidefinite.

Diananda [7] defined the notion of A∗(n) for an n×n copositive matrix A, which
means that for any ε > 0 the matrix A − ε(Eij + Eji) is not copositive, for any
i, j, 1 ≤ i, j ≤ n. Evidently being A∗(n) is a weaker condition than being extreme
copositive, and being exceptional is weaker that being A∗(n). Baumert [2] improved
on Theorem 4 which we state as Theorem 7.

Theorem 7. (Baumert)) Let A ∈ R
n×n be A∗(n). Then for each i, 1 ≤ i ≤ n, the

(i, i) diagonal entry of A lies in a copositive, not strictly copositive, interior principal
submatrix of A.

Theorem 7 tells us that when attempting to construct an exceptional matrix, if it
is to be A∗(n) then we should arrange that some copositive interior principal subma-
trices cover all the diagonal entries. For our next theorem we make some simplifying
assumptions about the form of these copositive interior principal submatrices.

In Theorem 8 we again start with a partial positive semidefinite matrix, but this
time with A consisting of three overlapping principal blocks, and three corner entries
of A to be specified. Without loss of generality we will assume that the diagonal
entries of A are all equal to 1. Since every 2 × 2 principal submatrix of a copositive
matrix is copositive, and every 2× 2 copositive matrix is either positive semidefinite
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or nonnegative, it follows that every off-diagonal entry is at least −1. From [11] we
can also assume without loss of generality that all entries of A are at most 1.

Theorem 8. Let A′ ∈ R
(n−2)×(n−2) have all diagonal entries equal to 1, and

be copositive, not strictly copositive, and interior. Let A ∈ R
n×n have all diagonal

entries equal to 1, all off-diagonal entries between −1 and 1, and consist of three
overlapping principal blocks each of which are copositive, not strictly copositive, and
interior with central principal block A′, thus

A =



1 bT r s

b t

r A
′

c

s t cT 1


 ,

where the upper left (n−2)×(n−2) principal block of A, and the lower right (n−2)×
(n−2) principal block of A are also copositive and interior. If s is a minimum among
all copositive completions (r, s, t) of A, then with s in the (1, n) and (n, 1) corners of A
either there is a positive semidefinite completion of A or else all copositive completions
of A are exceptional.

Proof. Since the graph of the specified entries is chordal we know that there is a
positive semidefinite completion [14]. Using Theorem 1 in [11] about the existence of
a copositive completion, since all diagonal entries of A are equal to 1, if r = s = t = 1
then A is copositive. Now choose s to be a minimum among all copositive completions
(r, s, t) such that −1 ≤ r, s, t ≤ 1. It is worth noting that s is fixed for the remainder
of the proof.

If there is an (r, s, t) providing a positive semidefinite completion of A we’re done.
Suppose now, for the sake of obtaining a contradiction, that A does not have a positive
semidefinite completion with the (1, n) and (n, 1) entries equal to s, and that there
is a copositive completion (r, s, t) with A = B + C, where B is positive semidefinite
and C is nonnegative. Since A′ is interior, there exists u ∈ R

n−2, u > 0, such that

[ 0 uT 0 ]A


 0
u

0


 = 0. Then reasoning as in the proof of Lemma 5 this implies that

the central (n− 2)× (n− 2) principal block of C is zero. Similarly, for the upper left
and lower right (n − 2) × (n − 2) principal blocks of C. Thus the only candidates
for nonzero entries in C are the (1, n− 1), (1, n), and (2, n) entries c1(n−1) = c(n−1)1,
c1n = cn1, and c2n = cn2, respectively. Now s = b1n + c1n. If c1n > 0 we would
have s > b1n, which is not possible, since b1n would give a smaller value than s for
a copositive completion of A with (r, s, t) = (b1(n−1) + c1(n−1), b1n, b2n + c2n). So we
must have c1n = 0. But now the equation A = B + C implies there is a positive
semidefinite completion of A with (r, s, t) = (b1(n−1), s, b2n), which we assumed not
be the case.
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Theorem 8 and its proof are readily modified to other sizes and numbers of coposi-
tive, not strictly copositive, interior overlapping principal blocks along the diagonal of
A, and corner entry s a minimum among all copositive completions (There isn’t even
a requirement that the overlapping blocks be the same size). We explore examples of
such completions in the next section.

4. Examples of exceptional matrices. If n = 4 and we follow the construc-
tion of Theorem 8, the 2× 2 principal blocks being copositive, not strictly copositive,

and interior means they must equal
[
1 −1
−1 1

]
. Thus

A =




1 −1 r s

−1 1 −1 t

r −1 1 −1
s t −1 1


 .

The minimum s for which A is copositive is evidently s = −1, when r = t = 1, so A

has a positive semidefinite completion.

If we try to construct a 5×5 matrix with four overlapping 2×2 copositive interior
principal blocks, we will have

A =




1 −1 a13 a14 a15

−1 1 −1 a24 a25

a13 −1 1 −1 a35

a14 a24 −1 1 −1
a15 a25 a35 −1 1


 .

Since each 3 × 3 principal overlapping diagonal block has to be copositive, and no
entry is greater than 1, we have from Theorem 6 applied to the 3× 3 blocks, that

A =




1 −1 1 a14 a15

−1 1 −1 1 a25

1 −1 1 −1 1
a14 1 −1 1 −1
a15 a25 1 −1 1


 ,

which when completed with a15 minimal becomes the Horn matrix H (see below).

If A is an n× n copositive matrix with n− 2 overlapping copositive, not strictly
copositive, interior principal diagonal blocks of the form


 1 −1 1
−1 1 −1
1 −1 1


 ,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 9-20, January 2008

http://math.technion.ac.il/iic/ela



ELA

18 C.R. Johnson and R. Reams

so that A conforms to a modified form of Theorem 8, easy to see that for n even the
minimum value for s is −1 since with A = wwT , where w is the alternating signs
vector w = (1,−1, 1, · · · ,−1)T , we have a positive semidefinite completion as with
the 4× 4 example above.

For general odd n ≥ 5, the construction of the preceding paragraph starting with
the same n − 2 overlapping copositive interior principal diagonal blocks provides a
natural extension of the Horn matrix. The Horn matrix is the matrix of the quadratic
form xTHx = (x1 + x2 + · · ·+ xn)2 − 4x1x2 − 4x2x3 − · · · − 4xn−1xn − 4xnx1, when
n = 5. The matrix for odd n≥5 is

A=




1 −1 1 1 · · · · · · 1 1 1 −1
−1 1 −1 1

. . . . . . 1 1 1

1 −1 1 −1 1
. . . 1 1

1 1 −1 1 −1 . . . . . . 1
...

. . . 1 −1 1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

1
. . . . . . 1 −1 1 1

1 1
. . . . . . −1 1 −1 1

1 1 1
. . . 1 −1 1 −1

−1 1 1 1 · · · · · · 1 1 −1 1




,

which is copositive because we can write it as a sum of three matrices in two ways as
A = Bi + Ci +Di, for i = 1, 2, where Bi is positive semidefinite, Ci is nonnegative,
for i = 1, 2, and there exists a vector w ∈ R

n such that D1 satisfies xTD1x ≥ 0
for all x ≥ 0 such that xTw ≥ 0, and D2 satisfies xTD2x ≥ 0 for all x ≥ 0 such
that xTw ≤ 0. In fact, let u = (1,−1, 1,−1, · · · ,−1, 1)T ∈ R

n−2, v = (−1, 1)T ,
w1 = (u, v)T , B1 = w1w

T
1 and D1 = −2(e1(0, v)T +

[
0
v

]
eT
1 ), so that xTD1x ≥ 0,

when x ≥ 0 and xT

[
0
v

]
≤ 0. Then A = B1 + C1 +D1, where C1 is a nonnegative

matrix with 2’s in various positions but not on the diagonal, 1st or 2nd subdiagonal,
nor the 1st or 2nd superdiagonal. If we let w2 = (u,−v)T , B2 = w2w

T
2 and D2 =

2(en−2(0, v)T +
[
0
v

]
eT

n−2), so that xTD2x ≥ 0, when x ≥ 0 and xT

[
0
v

]
≥ 0, then

A = B2+C2+D2, where C2 is a nonnegative matrix with 2’s in the (n−3, n−1) and
(n − 1, n − 3) positions, and in various other positions not on the diagonal, the 1st
or 2nd subdiagonal, nor the 1st or 2nd superdiagonal. Since s cannot be any smaller,
and A is copositive, we know s = −1 is the minimum. However, the matrix A with
overlapping 3 × 3 principal blocks specified and s = −1 cannot be completed to a
positive semidefinite matrix, by considering column inclusion with the column vector
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in R
2 whose first component is s = −1 and second component the (2, n) entry. If

A were completeable to a positive semidefinite matrix, this column vector must be

in the range of the 2× 2 diagonal block
[
1 −1
−1 1

]
, so this vector has to be

[−1
1

]
.

But then arguing similarly with the column vector whose first component is the (2, n)
entry 1 and second component is the (3, n) entry, and continuing like this, the last
column of A would have to consist of alternating 1’s and −1’s which is not possible
with n odd. The only possibility left to us is that A is exceptional.

If n = 7 or n = 9 this matrix is exceptional but not extreme, because it is the sum
of a nonnegative matrix and an extreme matrix. When n = 7 the extreme matrix,
which we call the Hoffman-Pereira matrix, is



1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1
1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1
−1 1 0 0 1 −1 1




as given at the end of [10]. When n = 9 the similarly banded matrix with eight
diagonal bands of zeroes instead of four can also be shown to be extreme copositive
using Theorem 4.1 in [10].

Other examples of nonextreme exceptional copositive matrices may be found by
starting with an extreme copositive matrix A, which is of the form described in
Theorem 8 (or its modified form), for instance the Horn matrix or the Hoffman-Pereira
matrix. Then A+ ε(E1n +En1) will be exceptional but not extreme if 0 < ε < s′ − s,
where s′ is the smallest value of the (1, n) entry for which A has a positive semidefinite
completion (Note that conceivably A + (s′ − s)(E1n + En1) might not be positive
semidefinite).
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