THE Q-PROPERTY OF A MULTIPLICATIVE TRANSFORMATION IN SEMIDEFINITE LINEAR COMPLEMENTARITY PROBLEMS*

R. BALAJI ${ }^{\dagger}$ AND T. PARTHASARATHY ${ }^{\ddagger}$

Abstract

The Q-property of a multiplicative transformation $A X A^{T}$ in semidefinite linear complementarity problems is characterized when A is normal.

Key words. Multiplicative transformations, Q-property, Complementarity.

AMS subject classifications. 90C33, 17C55.

1. Introduction. Let S^{n} be the space of all real symmetric matrices of order n. Suppose that $L: S^{n} \rightarrow S^{n}$ is a linear transformation and $Q \in S^{n}$. We write $X \succeq 0$, if X is symmetric and positive semidefinite. The semidefinite linear complementarity problem, $\operatorname{SDLCP}(L, Q)$ is to find a matrix X such that

$$
X \succeq 0, \quad Y:=L(X)+Q \succeq 0, \quad \text { and } \quad X Y=0
$$

SDLCP has various applications in control theory, semidefinite programming and other optimization related problems. We refer to [2] for details. SDLCP can be considered as a generalization of the standard linear complementarity problem [1]. However many results in the linear complementarity problem cannot be generalized to SDLCP, as the semidefinite cone is nonpolyhedral and the matrix multiplication is noncommutative.

We say that a linear transformation L defined on S^{n} has the Q-property if $\operatorname{SDLCP}(L, Q)$ has a solution for all $Q \in S^{n}$. Let $A \in R^{n \times n}$. Then the double sided multiplicative linear transformation $M_{A}: S^{n} \rightarrow S^{n}$ is defined by $M_{A}(X):=A X A^{T}$. One of the problems in SDLCP is to characterize the Q-property of a multiplicative linear transformation. When A is a symmetric matrix, Sampangi Raman [6] proved that M_{A} has the Q-property if and only if A is either positive definite or negative definite and conjectured that the result holds when A is normal. In this paper, we prove this conjecture.

The transformation M_{A} has the following property: $X \succeq 0 \Rightarrow M_{A}(X) \succeq 0$. In other words, the multiplicative transformation leaves the positive semidefinite cone invariant. Using this interesting property, Gowda et al. [3] derived some specialized results for the multiplicative transformation. However, the problem of characterizing the Q-property of M_{A} remains open.

We recall a theorem due to Karamardian [5].
Theorem 1.1. Let L be a linear transformation on S^{n}. If $\operatorname{SDLCP}(L, 0)$ and $\operatorname{SDLCP}(L, I)$ have unique solutions then L has the Q-property.

[^0]The following theorem is well known, see for example [3].
Theorem 1.2. Let A be a $n \times n$ matrix. Then the following are equivalent:

1. A is positive definite or negative definite.
2. $\operatorname{SDLCP}\left(M_{A}, Q\right)$ has a unique solution for all $Q \in S^{n}$.

We mention a few notations. If k is a positive integer, let I_{k} be the $k \times k$ identity matrix. Let $\operatorname{SOL}\left(M_{A}, Q\right)$ be the set of all solutions to $\operatorname{SDLCP}\left(M_{A}, Q\right)$. Suppose that F is a $n \times n$ matrix. Then $f_{i j}$ will denote the (i, j)-entry of F. Given a vector $x \in R^{n}$, we let $\operatorname{diag}(x)$ to denote the diagonal matrix with the vector x along its diagonal.
2. Main Result. We introduce the following definitions.

Definition 2.1. Let A be a $k \times k$ matrix. We say that A is of type $(*)$, if $A=I+B$ where B is a $k \times k$ skew-symmetric matrix.

Example 2.2. Let $A:=\left(\begin{array}{rr}1 & -5 \\ 5 & 1\end{array}\right)$. Then A is a type $(*)$ matrix.
Definition 2.3. Let $A \in R^{n \times n}$. We say that A is of $\operatorname{form}\left(n_{1}, n_{2}\right)$, if there exist type $(*)$ matrices S and T of order n_{1} and n_{2} respectively such that $n_{1}+n_{2}=n$ and

$$
A=\left(\begin{array}{rr}
S & 0 \\
0 & -T
\end{array}\right)
$$

Definition 2.4. Let $m>2$ and $A \in R^{m \times m}$. We say that A is of $\operatorname{form}(*)$, if there exists a skew-symmetric matrix W of order $k \geq 2$ such that

$$
A=\left(\begin{array}{cc}
W & 0 \\
0 & \widehat{A}
\end{array}\right)
$$

where $\widehat{A} \in R^{(m-k) \times(m-k)}$.
Definition 2.5. We say that an $n \times n$ symmetric matrix $D=\left(d_{i j}\right)$ is a corner matrix if its rank is one, $d_{11}, d_{1 n}, d_{n 1}$ and $d_{n n}$ are nonzero real numbers and all the remaining entries are zeros.

Definition 2.6. We say that an $n \times n$ symmetric matrix Q is of type $\left(n_{1}, n_{2}\right)$, if Q is not positive semidefinite and there exist integers n_{1} and n_{2} and a rank one matrix $Q_{1} \in R^{n_{1} \times n_{2}}$ such that $n_{1}+n_{2}=n$ and $Q=\left(\begin{array}{cc}I_{n_{1}} & Q_{1} \\ Q_{1}^{T} & I_{n_{2}}\end{array}\right)$.

Define

$$
\widetilde{Q}:=\left(\begin{array}{cc}
I_{n-1} & q \\
q^{T} & 1
\end{array}\right)
$$

where $q:=(2,0, \cdots, 0)^{T}$.
By the well-known formula of Schur, $\operatorname{det} \widetilde{Q}=-3$. Therefore \widetilde{Q} is not positive semidefinite. It is clear that if n_{1} and n_{2} are any two positive integers such that $n_{1}+n_{2}=n$, then \widetilde{Q} can be written as a type $\left(n_{1}, n_{2}\right)$ matrix. Throughout the paper, we use \widetilde{Q} to denote this matrix.

We will make use of the following proposition. The proof is a direct verification.
Proposition 2.7. Let $A \in R^{n \times n}$. Then the following statements are true.

1. If $0 \in \operatorname{SOL}\left(M_{A}, Q\right)$, then $Q \succeq 0$.
2. Suppose that P is a nonsingular matrix. Then

$$
X \in \operatorname{SOL}\left(M_{A}, Q\right) \Leftrightarrow P^{-1} X P^{-T} \in \operatorname{SOL}\left(M_{P^{T} A P}, P^{T} Q P\right)
$$

Thus M_{A} has the Q-property iff $M_{P A P^{T}}$ has the Q-property.
3. If M_{A} has the Q-property, then A must be nonsingular.

We will use the following property of positive semidefinite matrices.
THEOREM 2.8. Suppose that $X:=\left(\begin{array}{cc}X_{1} & Y_{1} \\ Y_{1}^{T} & Z_{1}\end{array}\right) \succeq 0$. If $X_{1}=0$ or $Z_{1}=0$, then $Y_{1}=0$.

We begin with the following lemma.
Lemma 2.9. Suppose that U_{1} and U_{2} are orthogonal matrices of order n_{1} and n_{2} respectively where $n_{1}+n_{2}=n$. Let $U=\left(\begin{array}{cc}U_{1} & 0 \\ 0 & U_{2}\end{array}\right)$. If $A \in R^{n \times n}$ is of $\operatorname{form}\left(n_{1}, n_{2}\right)$, then $U A U^{T}$ is of $\operatorname{form}\left(n_{1}, n_{2}\right)$.

Proof. Let $B:=U A U^{T}$. Then there exist type $(*)$ matrices S and T of order n_{1} and n_{2} respectively such that

$$
A=\left(\begin{array}{rr}
S & 0 \\
0 & -T
\end{array}\right)
$$

It is easy to see that

$$
B=\left(\begin{array}{cc}
S_{1} & 0 \\
0 & -T_{1}
\end{array}\right)
$$

where $S_{1}=U_{1} S U_{1}^{T}$ and $T_{1}=U_{2} T U_{2}^{T}$.
Let $S=I_{n_{1}}+W$, where W is a skew-symmetric matrix. Then $W_{1}:=U_{1} W U_{1}^{T}$ will be skew-symmetric. Therefore $S_{1}=I_{n_{1}}+W_{1}$. So S_{1} is of type(*). Similarly, T_{1} is of type $(*)$. Thus B is of $\operatorname{form}\left(n_{1}, n_{2}\right)$.

Lemma 2.10. Let $A \in R^{n \times n}$. Suppose X is a solution to $\operatorname{SDLCP}\left(M_{A}, P \widetilde{Q} P^{T}\right)$, where P is a permutation matrix. Then rank of X must be one.

Proof. Let $\widehat{Q}:=P \widetilde{Q} P^{T}$ and $Y:=A X A^{T}+\widehat{Q}$. Let K be the leading principal $(n-1) \times(n-1)$ submatrix of Y. Then it can be easily verified that K is positive definite. Therefore the rank of Y must be at least $n-1$.

Since $X \in \operatorname{SOL}\left(M_{A}, \widehat{Q}\right), X Y=0$. Suppose that U is a orthogonal matrix which diagonalize X and Y simultaneously. Let $D=U X U^{T}$ and $E=U Y U^{T}$, where D and E are diagonal. Then $D E=0$. The rank of E is at least $n-1$. Therefore the rank of D can be at most one. If $D=0$, then $X=0$. This implies that $\widehat{Q} \succeq 0$ (Proposition 2.7) which is a contradiction. This means that the rank of X is exactly one. \square

Lemma 2.11. Let $A \in R^{n \times n}$. Suppose that A is of $\operatorname{form}\left(n_{1}, n_{2}\right)$. If $X \in$ $\operatorname{SOL}\left(M_{A}, \widetilde{Q}\right)$ then there exists a form $\left(n_{1}, n_{2}\right)$ matrix B and a type $\left(n_{1}, n_{2}\right)$ matrix \widehat{Q} such that $\operatorname{SDLCP}\left(M_{B}, \widehat{Q}\right)$ has a corner solution.

Proof. Write

$$
X=\left(\begin{array}{cc}
X_{1} & Y_{1} \\
Y_{1}^{T} & Z_{1}
\end{array}\right)
$$

where $X_{1} \in S^{n_{1} \times n_{1}}$ and $Z_{1} \in S^{n_{2} \times n_{2}}$. The above lemma implies that rank of X is one. Therefore rank of X_{1} can be at most one. We now claim that rank of X_{1} is exactly one. Let $Y:=A X A^{T}+\widetilde{Q}$.

Since A is of $\operatorname{form}\left(n_{1}, n_{2}\right)$, there exist type $(*)$ matrices S_{1} and S_{2} of order n_{1} and n_{2} respectively such that

$$
A=\left(\begin{array}{cc}
S_{1} & 0 \\
0 & -S_{2}
\end{array}\right)
$$

Now

$$
\widetilde{Q}=\left(\begin{array}{ll}
I_{n_{1}} & Q_{1} \\
Q_{1}^{T} & I_{n_{2}}
\end{array}\right)
$$

where Q_{1} is of rank one. Suppose $X_{1}=0$. Then Theorem 2.8 implies that $Y_{1}=0$. Thus,

$$
A X A^{T}=\left(\begin{array}{cc}
0 & 0 \\
0 & S_{2} Z_{1} S_{2}^{T}
\end{array}\right)
$$

and hence

$$
Y=\left(\begin{array}{cc}
I_{n_{1}} & Q_{1} \\
Q_{1}^{T} & S_{2} Z_{1} S_{2}^{T}+I_{n_{2}}
\end{array}\right)
$$

From the condition $X Y=0$, we see that

$$
Z_{1}\left(S_{2} Z_{1} S_{2}^{T}+I_{n_{2}}\right)=0
$$

This implies that $Z_{1}=0$; so $X=0$. Therefore $\widetilde{Q} \succeq 0$ (Proposition 2.7) which is a contradiction. Thus, X_{1} is of rank one. Similarly we can prove that Z_{1} and Y_{1} are of rank one.

Since X_{1} is a rank one matrix, we can find an orthogonal matrix U_{1} such that

$$
D:=U_{1} X_{1} U_{1}^{T}=\left(\begin{array}{cccc}
d & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \cdots & 0
\end{array}\right)
$$

where $d>0$.
Let U_{2} be an orthogonal matrix such that

$$
R:=U_{2} Z_{1} U_{2}^{T}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \cdots & r
\end{array}\right)
$$

where $r>0$. Let $G=U_{1} Y_{1} U_{2}^{T}$. Then rank of G must be one as rank of Y_{1} is one. Define

$$
U:=\left(\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right)
$$

Then U is orthogonal. Let $Z:=U X U^{T}$. Now

$$
Z=\left(\begin{array}{cc}
D & G \\
G^{T} & R
\end{array}\right)
$$

Since $Z \succeq 0$, by Theorem 2.8,

$$
Z=\left(\begin{array}{ccccc}
d & 0 & \ldots & 0 & e \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
e & 0 & \ldots & 0 & r
\end{array}\right)
$$

As G is of rank one, e is nonzero. Thus Z is a corner matrix.
Let $B:=U A U^{T}$. Then by Proposition $2.7, Z$ is a solution to $\operatorname{SDLCP}\left(M_{B}, \widehat{Q}\right)$, where $\widetilde{Q}:=U \widetilde{Q} U^{T}$. By Lemma $2.9, B$ must be of $\operatorname{form}\left(n_{1}, n_{2}\right)$. It is direct to verify that \widehat{Q} is of type $\left(n_{1}, n_{2}\right)$. This completes the proof.

Lemma 2.12. Let Q be a $m \times n$ matrix defined as follows:

$$
Q=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & \pm 1 \\
q_{21} & q_{22} & \ldots & q_{2 n-1} & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
q_{m 1} & q_{m 2} & \ldots & q_{m n-1} & 0
\end{array}\right)
$$

Suppose the rank of Q is one. Then the submatrix of Q obtained by deleting the first row and the last column is a zero matrix.

Proof. We claim that $q_{21}=0$. Consider the 2×2 submatrix

$$
\left(\begin{array}{cc}
0 & \pm 1 \\
q_{21} & 0
\end{array}\right)
$$

Since Q is of rank one, $q_{21}=0$. By repeating a similar argument for the remaining entries we get the result. \square

Lemma 2.13. Suppose that \widehat{B} is of form $\left(n_{1}, n_{2}\right)$. Let \widehat{Q} be a type $\left(n_{1}, n_{2}\right)$ matrix. Then a corner matrix cannot be a solution to $\operatorname{SDLCP}\left(M_{\widehat{B}}, \widehat{Q}\right)$.

Proof. Since \widehat{B} is of $\operatorname{form}\left(n_{1}, n_{2}\right)$, there exist type $(*)$ matrices B and C of order n_{1} and n_{2} respectively such that

$$
\widehat{B}=\left(\begin{array}{rr}
B & 0 \\
0 & -C
\end{array}\right) .
$$

Let $B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$. Then $b_{i i}=c_{i i}=1$. Every off-diagonal entry of B and C will now satisfy $b_{i j}+b_{j i}=0$ and $c_{i j}+c_{j i}=0$.

Suppose that X is a corner matrix and solves $\operatorname{SDLCP}\left(M_{\widehat{B}}, \widehat{Q}\right)$. Let

$$
X=\left(\begin{array}{ccccc}
d & 0 & \ldots & 0 & e \\
0 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
e & 0 & \ldots & 0 & r
\end{array}\right)
$$

Let $\widehat{Q}=\left(\begin{array}{cc}I_{n_{1}} & Q_{1} \\ Q_{1}^{T} & I_{n_{2}}\end{array}\right)$ where

$$
Q_{1}=\left(\begin{array}{cccc}
q_{11} & q_{12} & \ldots & q_{1 n_{2}} \\
q_{21} & q_{22} & \ldots & q_{2 n_{2}} \\
\ldots & \ldots & \ldots & \ldots \\
q_{n_{1} 1} & q_{n_{1} 2} & \ldots & q_{n_{1} n_{2}}
\end{array}\right)
$$

Suppose that $Y:=\widehat{B} X \widehat{B}^{T}+\widehat{Q}$. Then

$$
Y=\left(\begin{array}{ccccc}
d+1 & * & \ldots & * & q_{1 n_{2}}-e \\
-b_{12} d & * & \ldots & * & b_{12} e+q_{2 n_{2}} \\
\ldots & \ldots & \ldots & * & \\
-b_{1 n_{1}} d & * & \ldots & * & b_{1 n_{1}} e+q_{n_{1} n_{2}} \\
c_{1 n_{2}} e+q_{11} & * & \ldots & * & -c_{1 n_{2}} r \\
c_{2 n_{2}} e+q_{12} & * & \ldots & * & -c_{2 n_{2}} r \\
\ldots & \ldots & \ldots & * & \\
-e+q_{1 n_{2}} & * & \ldots & * & r+1
\end{array}\right) .
$$

Suppose that $y_{1}, y_{2}, \ldots, y_{n}$ are the columns of Y and $x_{1}, x_{2}, \ldots, x_{n}$ are the columns of X. Since X is a solution to $\operatorname{SDLCP}\left(M_{\widehat{B}}, \widehat{Q}\right), X Y=0$. Therefore for all $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, n\}$, we must have $y_{i}^{T} x_{j}=0$.

From the equations $y_{1}^{T} x_{1}=0$ and $y_{n}^{T} x_{n}=0$, we have

$$
\begin{align*}
& d(d+1)+e\left(q_{1 n_{2}}-e\right)=0 \tag{2.1}\\
& r(r+1)+e\left(q_{1 n_{2}}-e\right)=0 . \tag{2.2}
\end{align*}
$$

Equations (2.1) and (2.2) imply that

$$
d(d+1)=r(r+1)
$$

As d and r are positive, $d=r$. Since X is a corner matrix, rank of X must be one and hence

$$
d=r= \pm e
$$

Now $d^{2}=e^{2}$, and therefore from (2.1) we have

$$
q_{1 n_{2}}= \pm 1
$$

Let $i \in\left\{2, \cdots, n_{1}\right\}$. Then $y_{i}^{T} x_{1}=0$ gives

$$
-b_{1 i} d^{2}+b_{1 i} e^{2}+q_{i n_{2}} e=0
$$

As $d^{2}=e^{2}$ and e is nonzero,

$$
q_{i n_{2}}=0
$$

Thus the last column of Q_{1} is $(\pm 1,0, \cdots, 0)^{T}$.
Let $i \in\left\{1, \cdots, n_{2}-1\right\}$. Then

$$
c_{i n_{2}} e d+q_{1 i} d-c_{i n_{2}} r e=0
$$

Using $r=d$, we have

$$
q_{1 i}=0
$$

Thus the first row of Q_{1} is $(0, \cdots, 0, \pm 1)$.
Now \widehat{Q} is a $\operatorname{type}\left(n_{1}, n_{2}\right)$ matrix and hence Q_{1} is of rank one. Thus Q_{1} satisfies the conditions of Lemma 2.12 and therefore the submatrix obtained by deleting the first row and last column of Q_{1} is a zero matrix. Thus

$$
\widehat{Q}=\left(\begin{array}{cc}
I_{n-1} & e \\
e^{T} & 1
\end{array}\right)
$$

where e is the $n-1$ vector $(\pm 1,0, \cdots, 0)^{T}$.
If $x \in R^{n}$, then

$$
x^{T} \widehat{Q} x=\left(x_{1} \pm x_{n}\right)^{2}+\sum_{i=2}^{n-1} x_{i}^{2} \geq 0
$$

Hence $\widehat{Q} \succeq 0$. This contradicts that \widehat{Q} is a type $\left(n_{1}, n_{2}\right)$ matrix. This completes the proof.

Lemmas 2.11 and 2.13 now implies the following result.
Lemma 2.14. Let A be $a \operatorname{form}\left(n_{1}, n_{2}\right)$ matrix. Then M_{A} cannot have the Q property.

We now claim that a skew-symmetric matrix cannot have Q-property.
Lemma 2.15. If A is a $n \times n$ skew-symmetric matrix, then $\operatorname{SDLCP}\left(M_{A}, \widetilde{Q}\right)$ has no solution.

Proof. Suppose that X is a solution. Then the rank of X must be one. Therefore $X=x x^{T}$ for some vector $x \in R^{n}$. By the skew-symmetry of $A, x^{T} A x=0$; hence $X A X=0$. Now $X\left(A X A^{T}+\widetilde{Q}\right)=0$. So $X \widetilde{Q}=0$. Since \widetilde{Q} is nonsingular, $X=0$. This implies that $\widetilde{Q} \succeq 0$ (Proposition 2.7) which is a contradiction.

Lemma 2.16. Let $A \in R^{n \times n}$. If A is a form $(*)$ matrix, then M_{A} cannot have the Q-property.

Proof. Suppose that M_{A} has the Q-property. Since A is of form(*),

$$
A=\left(\begin{array}{cc}
W & 0 \\
0 & B
\end{array}\right)
$$

where W is skew-symmetric of order $k \geq 2$ and B is of order l.
Define a $k \times k$ matrix by

$$
Q_{11}=\left(\begin{array}{cc}
I_{k-1} & p \\
p^{T} & 1
\end{array}\right)
$$

where $p:=(2,0, \ldots, 0)^{T}$.
Now define

$$
Q^{\prime}=\left(\begin{array}{cc}
Q_{11} & 0 \\
0 & I_{l}
\end{array}\right)
$$

Note that there exists a permutation matrix P such that $P \widetilde{Q} P^{T}=Q^{\prime}$. Suppose that X is a solution to $\operatorname{SDLCP}\left(M_{A}, Q^{\prime}\right)$. Write

$$
X=\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{2}^{T} & X_{3}
\end{array}\right)
$$

where X_{1} is of order k.
Suppose that $X_{3}=0$. Then, as $X \succeq 0, X_{2}=0$.
Now

$$
A X A^{T}+Q^{\prime}=\left(\begin{array}{cc}
W X_{1} W^{T}+Q_{11} & 0 \\
0 & I_{l}
\end{array}\right)
$$

It is now easy to verify that X_{1} is a solution to $\operatorname{SDLCP}\left(M_{W}, Q_{11}\right)$. However by applying the previous lemma, we see that $\operatorname{SDLCP}\left(M_{W}, Q_{11}\right)$ has no solution. Thus, we have a contradiction. Therefore X_{3} cannot be zero.

In view of Lemma 2.10, rank of X must be one. Hence the rank of X_{1} can be at most one and the rank of X_{3} is exactly one.

Let U_{1} be a orthogonal matrix such that

$$
U_{1} X_{1} U_{1}^{T}=\left(\begin{array}{cccc}
d & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0
\end{array}\right)
$$

and U_{2} be a orthogonal matrix such that

$$
U_{2} X_{3} U_{2}^{T}=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & r
\end{array}\right)
$$

Define an orthogonal matrix U by

$$
U:=\left(\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right)
$$

Suppose that $Z:=U X U^{T}$. Then by Theorem 2.8

$$
Z=\left(\begin{array}{cccc}
d & 0 & \ldots & e \\
0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
e & 0 & \ldots & r
\end{array}\right)
$$

Note that $r>0$. Now Z is a solution to $\operatorname{SDLCP}\left(M_{U A U^{T}}, U Q^{\prime} U^{T}\right)$. Suppose that $Y:=M_{U A U^{T}}+U Q^{\prime} U^{T}$.

Now

$$
U Q^{\prime} U^{T}=\left(\begin{array}{cc}
U_{1} Q_{11} U_{1}^{T} & 0 \\
0 & I_{l}
\end{array}\right) \text { and } U A U^{T}=\left(\begin{array}{cc}
U_{1} W U_{1}^{T} & 0 \\
0 & U_{2} B U_{2}^{T}
\end{array}\right)
$$

Let α be the (n, n)-entry of $U B U^{T}$. Clearly, $U_{1} W U_{1}^{T}$ is skew-symmetric. Let the last row of Y be the vector $\mathbf{y}:=\left(y_{1}, \ldots, y_{n}\right)^{T}$. Then by a direct verification, $y_{1}=0$ and $y_{n}=\alpha^{2} r+1$. By the complementarity condition, \mathbf{y} is orthogonal to $(e, 0, \ldots, 0, r)^{T}$. Thus, $r\left(\alpha^{2} r+1\right)=0$, which is a contradiction. This completes the proof. \square

The next result is apparent from Theorem 2.5.8 in Horn and Johnson [4]; hence we omit the proof.

Lemma 2.17. Suppose that $A \in R^{n \times n}$ is a nonsingular normal matrix. If A is neither positive definite nor negative definite, then one of the following statements must be true:

1. There exists a nonsingular matrix Q and positive integers n_{1} and n_{2} such that $Q A Q^{T}$ is of $\operatorname{form}\left(n_{1}, n_{2}\right)$.
2. There exists a nonsingular matrix Q such that $Q A Q^{T}$ is a form $(*)$ matrix.
3. A is skew-symmetric.

Now the following theorem which is our main result follows from item (2) of Proposition 2.7 and the above results.

THEOREM 2.18. Let $A \in R^{n \times n}$ be normal. Then the following are equivalent:
(i) $\pm A$ is positive definite.
(ii) $\operatorname{SDLCP}\left(M_{A}, Q\right)$ has a unique solution for all $Q \in S^{n}$.
(ii) M_{A} has the Q-property.

Acknowledgment. We wish to thank Professor Seetharama Gowda for his comments and suggestions.

REFERENCES

[1] R. Cottle, J.-S. Pang, and R.E. Stone. The Linear Complementarity Problem. Academic Press, Boston, 1992.
[2] M.S. Gowda and Y. Song. On semidefinite linear complementarity problems. Mathematical Programming A, 88:575-587, 2000.
[3] M.S. Gowda, Y. Song, and G. Ravindran. On some interconnections between strict monotonicity, globally uniquely solvable, and P properties in semidefinite linear complementarity problems. Linear Algebra and its Applications, 370:355-368, 2003.
[4] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University press, Cambridge, 1985.
[5] S. Karamardian. An existence theorem for the complementarity problem. Journal of Optimization Theory and its Applications, 19:227-232, 1976.
[6] D. Sampangi Raman. Some contributions to semidefinite linear complementarity problems. Ph.D. Thesis, Indian Statistical Institute, Kolkata, 2002.

[^0]: *Received by the editors 6 September 2007. Accepted for publication 26 November 2007. Handling Editor: Michael J. Tsatsomeros.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Hyderabad, Hyderabad 46, India (balaji149@gmail.com). Supported by a generous grant from NBHM.
 ${ }^{\ddagger}$ Indian Statistical Institute, Chennai (pacha14@yahoo.com). Supported by INSA.

