
ELA

EQUIVALENCE AND CONGRUENCE OF MATRICES UNDER THE
ACTION OF STANDARD PARABOLIC SUBGROUPS∗

FERNANDO SZECHTMAN†

Abstract. Necessary and sufficient conditions for the equivalence and congruence of matrices
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1. Introduction. We fix throughout a field F and a positive integer n ≥ 2. Let
M stand for the space of all n × n matrices over F and write G = GLn(F ) for the
general linear group.

We denote by X ′ the transpose of X ∈ M . If H is a subgroup of G and X,Y ∈ M
we say that X and Y are H-equivalent if there exist h, k ∈ H such that Y = h′Xk,
and H-congruent if there exists h ∈ H such that h′Xh = Y .

Our goal is to find necessary and sufficient conditions for H-equivalence of arbi-
trary matrices, and H-congruence of symmetric and alternating matrices, for various
subgroups H of G, specifically the subgroups U , B and P , as defined below.

By B we mean the group of all invertible upper triangular matrices and by U the
group of all upper triangular matrices whose diagonal entries are equal to 1.

We write P for a standard parabolic subgroup of G, i.e. a subgroup of G con-
taining B. Sections 8.2 and 8.3 of [3] ensure that P is generated by B and a set
J of transpositions (viewed as permutation matrices) of the form (i, i + 1), where
1 ≤ i < n. Let e1, ..., en stand for the canonical basis of the column space Fn.
Consider the sequence of subspaces

(0) ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, ..., en−1〉 ⊂ Fn,

and let C be the chain obtained by deleting the i-th intermediate term from the above
chain if and only if (i, i+1) is in J . An alternative description for P is that it consists
of all matrices in G stabilizing each subspace in the chain C. Thus P consists of block
upper triangular matrices, where each diagonal block is square and invertible. If C
has length m then 2 ≤ m ≤ n+ 1 and the matrices in P have m− 1 diagonal blocks,
where the size of block i is the codimension of the (i−1)-th term of C in the i-th term
of C, 1 < i ≤ m.

In particular, if m = 2 then P = G, while if m = n + 1 then P = B.
We know that G-equivalence has the same meaning as rank equality. It is also

known that alternating matrices are G-congruent if and only if they have the same
rank. The same is true for symmetric matrices under the assumptions that F = F 2
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(every element of F is a square) and χ(F ) �= 2 (the characteristic of F is not 2). If
F = F 2 but χ(F ) = 2 then a symmetric matrix is either alternating or G-congruent to
a diagonal matrix, and in both cases rank equality means the same as G-congruence
(see [8], chapter 1).

By a (0, 1)-matrix we mean a matrix whose entries are all equal to 0 or 1. A sub-
permutation is a matrix having at most one non-zero entry in every row and column.
In exercise 3 of section 3.5 of [7] we find that every matrix X is B-equivalent to a
sub-permutation (0, 1)-matrix Y . If X is invertible then the uniqueness of the Bruhat
decomposition yields that Y is unique. If X is not invertible Y is still unique, although
it is difficult to find a specific reference to this known result. Thus two matrices are
B-equivalent if and only if they share the same associated sub-permutation (0, 1)-
matrix.

We may derive the problems of B-congruence and U -congruence from their equiv-
alence counterparts, except for symmetric matrices in characteristic 2 when the sit-
uation becomes decidedly harder, even under the assumption that F = F 2. One of
our contributions is a list of orbit representatives of symmetric matrices under B and
U -congruence if χ(F ) = 2 and F = F 2.

A second contribution addresses the question of P -equivalence and P -congruence.
We first determine various conditions logically equivalent to P -equivalence. Let W
stand for the Weyl group of P , i.e. the subgroup of Sn generated by J . We view
W as a subgroup of G. One of our criteria states that two matrices Y and Z are P -
equivalent if and only if their associated sub-permutation (0, 1)-matrices C and D are
W -equivalent. This generalizes the above results for G and B-equivalence. We also
determine two alternative characterizations of P -equivalence in terms of numerical
invariants of the top left block submatrices of Y and Z, and also of C and D (the
well-known criterion for LU-factorization using principal minors becomes a particular
case).

Finally we show that for symmetric matrices (when F = F 2 and χ(F ) �= 2) and al-
ternating matrices, P -congruence has exactly the same meaning as P -equivalence. We
also furnish an alternative characterization of P -congruence in terms of W -conjugacy.

A restricted case of P -equivalence was considered is [5], but our main results
and goals are very distant from theirs. A combinatorial study of B-congruence of
symmetric complex matrices is made in [1].

We remark that the congruence actions of U on symmetric and alternating ma-
trices appear naturally in the study of a p-Sylow subgroup Q of the symplectic group
Sp2n(q) and the special orthogonal group SO+

2n(q), respectively. Here q stands for a
power of the prime p. An investigation of these actions is required in order to analyze
the complex irreducible characters of Q via Clifford theory. We refer the reader to [6]
for details.

Suppose that χ(F ) �= 2 and F = F 2. At the very end of the paper we count
the number of orbits of symmetric matrices under B-congruence. This number being
finite, so is the number of orbits of invertible matrices under P -congruence. We
may interpret this as saying that the double coset space O�G�P is finite, where O
stands the orthogonal group. The finiteness or not of a double coset space of the form
H�G�P for groups G more general than ours has been studied extensively. Precise
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information can be found in the works of Brundan, Duckworth, Springer and Lawther
cited in the bibliography.

We keep the above notation and adopt the following conventions. A (1,−1)-
matrix is a sub-permutation alternating matrix whose only non-zero entries above
the main diagonal are equal to 1.

If X ∈ M is a sub-permutation then there exists an X-couple associated to it,
namely a pair (f, σ) where σ ∈ Sn and f : {1, ..., n} → F is a function such that

Xei = f(i)eσ(i), 1 ≤ i ≤ n.

We write S(f) for the support of f , i.e. the set of points where f does not vanish.

2. Equivalence Representatives under U and B. The Bruhat decomposi-
tion of G can be interpreted as saying that permutation matrices are representatives
for the orbits of G under B-equivalence. This can be pushed further by noting that
every matrix in M is B-equivalent to a unique sub-permutation (0, 1)-matrix. We
include a proof of this known result, which is a particular case of Theorem 5.1 below.

Theorem 2.1. Let X ∈ M . Then
(a) X is B-equivalent to a unique sub-permutation (0, 1)-matrix.
(b) X is U -equivalent to a unique sub-permutation matrix.
Proof. Existence is a simple exercise that we omit.
To prove uniqueness in (a) suppose that Y and Z are sub-permutation (0, 1)-

matrices and that c′Y d = Z for some c, d ∈ B. Set a = c′ and b = d−1, so that
aY = Zb. We wish to show that Y = Z.

Let (f, σ) be a Z-couple and let (g, τ) be a Y -couple, where f, g : {1, ..., n} →
{0, 1}. Notice that S(f) and S(g) have the same cardinality: the common rank of Y
and Z.

We need to show that S(f) = S(g) and that σ(i) = τ(i) for every i ∈ S(f).
As a is lower triangular and b is upper triangular, for all 1 ≤ i ≤ n we have

Zbei = Z[b1ie1 + · · · + biiei] = b1if(1)eσ(1) + · · · + biif(i)eσ(i) (2.1)

and

aY ei = a[g(i)eτ(i)] = g(i)[aτ(i),τ(i)eτ(i) + · · · + an,τ(i)en]. (2.2)

Note that every diagonal entry of a and b must be non-zero.
Suppose that i ∈ S(f). Then eσ(i) appears with non-zero coefficient in (2.1), so it

must likewise appear in (2.2). We deduce that i ∈ S(g) and τ(i) ≤ σ(i). This proves
that S(f) is included in S(g). As they have the same cardinality, they must be equal.
Thus, for every i in the common support of f and g, we have τ(i) ≤ σ(i).

Suppose τ and σ do not agree on S(f) = S(g). Let i be the first index in the
common support such that τ(i) < σ(i). Now eτ(i) appears in (2.2) with non-zero
coefficient, so it must likewise appear in (2.1). Thus we must have τ(i) = σ(j) for
some j such that j < i and j ∈ S(f). But then τ(j) = σ(j) = τ(i), which cannot be.
This proves uniqueness in (a).

We use the same proof in (b), only that every diagonal entry of a and b is now
equal to 1, while f and g take values in F . Then the old proof gives the additional
information that f(i) = g(i) for all i in the common support of f and g, as required.
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3. Congruence Representatives under U and B. Case 1.
Theorem 3.1. Let X ∈ M .
(1) Suppose χ(F ) �= 2. If X is symmetric then X is U -congruent to a unique

sub-permutation matrix. Two symmetric matrices are U -congruent if and only if they
are U -equivalent.

(2) If X is alternating then X is U -congruent to a unique sub-permutation matrix.
Two alternating matrices are U -congruent if and only if they are U -equivalent.

Proof. Existence in (1) and (2) is a simple exercise that we omit. Uniqueness
in (1) and (2) follows from uniqueness in Theorem 2.1. Suppose C and D are sym-
metric (resp. alternating) and U -equivalent. Let Y, Z be sub-permutation matrices
U -congruent to C and D, respectively. Then Y, Z are U -equivalent, so Y = Z by
Theorem 2.1. Hence C and D are U -congruent. The converse is obvious.

Much as above, we obtain the following result.
Theorem 3.2. Let X ∈ M .
(1) Assume χ(F ) �= 2 and F = F 2. If X is symmetric then X is B-congruent to

a unique sub-permutation (1, 0)-matrix. Two symmetric matrices are B-congruent if
and only if they are B-equivalent.

(2) If X is alternating then X is B-congruent to a unique (1,−1)-matrix. Two
alternating matrices are B-congruent if and only if they are B-equivalent.

4. Congruence Representatives under U and B. Case 2. We declare
X ∈ M to be a pseudo-permutation if X is symmetric, every column of X has at most
two non-zero entries, and if there exists j such that column j of X has two non-zero
entries then these must be Xjj and Xij for some i < j.

Suppose that X is a pseudo-permutation matrix. Every pair (i, j) where Xij and
Xjj are non-zero is called an X-pair (notice that Xii = 0 in this case). Suppose that
(i, j) is an X-pair. If (k, ') is also an X-pair we say that (k, ') is inside (i, j) provided
i < k < ' < j. By an X-index we mean an index s such that Xss �= 0 and this the
only non-zero entry in column s of X . If s is an X-index then s is X-interior to the
X-pair (i, j) if i < s < j. An X-pair is problematic if it has an X-pair inside it or an
X-index interior to it.

We refer to X as a specialized pseudo-permutation if X is a pseudo-permutation
with no problematic X-pairs.

As an illustration, the (0, 1)-matrices



0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1


 and




0 0 0 1
0 0 1 0
0 1 1 0
1 0 0 0




are specialized pseudo-permutations, whereas

X =




0 0 1
0 1 0
1 0 1


 and Y =




0 0 0 1
0 0 1 0
0 1 1 0
1 0 0 1



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are not, in spite of being pseudo-permutations. In the first case the index 2 is an
X-index interior to the X-pair (1, 3); in the second case the Y -pair (2, 3) is inside
the Y -pair (1, 4). Clearly every sub-permutation (0, 1)-matrix is a specialized pseudo-
permutation.

Theorem 4.1. Let X ∈ M be symmetric. Suppose χ(F ) = 2 and F = F 2. Then
(a) X is U -congruent to a unique specialized pseudo-permutation matrix.
(b) X is B-congruent to a unique specialized pseudo-permutation (0, 1)-matrix.
Proof. It is easy to show by induction that X must be U -congruent to a pseudo-

permutation matrix Z. Suppose that Z is not specialized. Then there exists a prob-
lematic Z-pair (i, j), having either a Z-pair (k, ') inside or a Z-index s interior to
it.

In the first case, given 0 �= a ∈ F , we add a times row ' to row j and then
a times column ' to column j. This congruence transformation will replace Zjj by
Zjj +a2Z�,�. It will also modify the entries Zjk and Zj� on row j, and Zkj and Z�j on
column j, into non-zero entries. As F = F 2 we may choose a so that the (j, j) entry
of Z becomes 0. We can then use Zji and Zij to eliminate the above four spoiled
entries.

In the second case we reason analogously, using the entry Zs,s to eliminate the
entry Zjj , and then Zji and Zij to clear the new entries in positions (j, s) and (s, j)
back to 0.

In either case the problematic pair (i, j) ceases to be a Z-pair, and all other entries
of Z remain the same. Repeating this process with every problematic pair produces
a specialized pseudo-permutation matrix U -congruent to X . The proves existence in
(a). The corresponding existence result in (b) follows at once.

We are left to demonstrate the more delicate matter of uniqueness. Let H stand
for either of the groups U or B.

Let Y and Z be specialized pseudo-permutation matrices which are H-congruent.
In the case H = B we further assume that Y, Z are (0, 1)-matrices. We wish to show
that Y = Z.

Let Ŷ be the matrix obtained from Y transforming into 0 the entry Yjj of any
Y -pair (i, j). Clearly Ŷ is H-equivalent to Y (not to be confused with H-congruent
to Y ). Moreover, Ŷ is a sub-permutation matrix (and a (0, 1)-matrix if H = B). Let
Ẑ be constructed similarly from Z. All matrices Y, Ŷ , Z, Ẑ are H-equivalent, so the
uniqueness part of Theorem 2.1 yields that Ŷ = Ẑ.

It remains to show that if (i, j) is a Y -pair then Yjj = Zjj , and conversely. By
symmetry of H-congruence, the converse is redundant.

Suppose then that (i, j) is a Y -pair. Aiming at a contradiction, assume that
Yjj �= Zjj (in the case H = B we are assuming that Zjj = 0, i.e. (i, j) is not a
Z-pair).

We have A′Y A = Z for some A ∈ H . Using the fact that A is upper triangular,
for all 1 ≤ u, v ≤ n we have

Zuv =
∑

1≤k≤u

∑
1≤�≤v

AkuYk�A�v.
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As χ(F ) = 2, the entry Zjj simplifies to

Zjj =
∑

1≤k≤j

A2
kjYkk.

If H = U then Ajj = 1 and Zjj �= Yjj . If H = B then Yjj = 1, Ajj �= 0 and Zjj = 0.
In either case, there must exist an index s such that 1 ≤ s < j and AsjYss �= 0.
Choose s as small as possible subject to these conditions.

Notice that s �= i, since (i, j) is a Y -pair, which implies that Yii = 0.
We claim that there exists a pair (p, q) such that 1 ≤ p ≤ j, 1 ≤ q < s, q < i,

p �= q and ApjYpq �= 0.
To prove the claim we need to analyze two cases: i < s or s < i.
Consider first the case i < s. Since Yss �= 0, i < s < j and (i, j) does not have

interior Y -indices, there must exist an index t such that t < s and (t, s) is a Y -pair.
By transitivity, t < j. Now the Y -pair (t, s) cannot be inside (i, j), so necessarily
t < i (*).

Since Ŷ = Ẑ the only non-zero off-diagonal entry of Z in row j is Zji, so Zjt = 0.
Thus

0 = Zjt =
∑

1≤k≤j

∑
1≤�≤t

AkjYk�A�t.

But AsjYstAtt �= 0, since Att �= 0 is a diagonal entry, (t, s) is a Y -pair, and Asj �= 0
by the choice of s. It follows that a different summand to this must be non-zero, that
is ApjYpqAqt �= 0 for some 1 ≤ p ≤ j, 1 ≤ q ≤ t and (p, q) �= (s, t).

If p = q then ApjYpp �= 0 where p = q ≤ t < s, against the choice of s. Thus
p �= q.

Suppose, if possible, that q = t. Then p �= s, since (p, q) �= (s, t). Moreover,
Ypt �= 0. But we also have Yst �= 0, with s �= t. By the nature of Y , this can only
happen if p = t. But then p = q, which was ruled out before. It follows that q < t.
Since t < s and t < i, we infer that q < i and q < s. This proves the claim in this
case.

Consider next the case s < i. Since Yss �= 0, either s is a Y -index or there is
t < s such that (t, s) is a Y -pair. In the second alternative we argue exactly as above,
starting at (*) (the fact that t < i is now obtained for free, since t < s < i).

Suppose thus that s is a Y -index. The only non-zero off-diagonal entry in row j
of Z is again Zji, so Zjs = 0. Thus

0 = Zjs =
∑

1≤k≤j

∑
1≤�≤t

AkjYk�A�t.

But AsjYssAss �= 0, since Ass �= 0 is a diagonal entry, and the choice of s ensures
AsjYss �= 0. As above, there must exist (p, q) such that ApjYpqYqs �= 0, 1 ≤ p ≤ j,
1 ≤ q ≤ s and (p, q) �= (s, s).

If q = s then Yps �= 0. But s is a Y -index, so p = s, against the fact that
(p, q) �= (s, s). This shows that q < s. Since s < i, we also have q < i.
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If p = q then ApjYpp �= 0 with p = q < s, against the choice of s. Therefore p �= q.
This proves our claim in this final case.

The claim being settled, we choose a pair (p, q) satisfying the stated properties
with q as small as possible. We next produce a another such pair with a smaller
second index, yielding the desired contradiction.

Indeed, the only non-zero off-diagonal entry in row j of Z is again Zji and q < i,
so Zjq = 0. Thus

0 = Zjq =
∑

1≤k≤j

∑
1≤�≤q

AkjYk�A�q.

But ApjYpqAqq �= 0 by our choice of q, so there exists (k, ') such that AkjYk�A�q �= 0,
1 ≤ k ≤ j, 1 ≤ ' ≤ q and (k, ') �= (p, q). Obviously ' < i and ' < s.

If k = ' then AkjYkk �= 0 where k = ' ≤ q < s, against the choice of s. Thus
k �= '.

Suppose, if possible, that ' = q. Then k �= p, since (k, ') �= (p, q). Moreover,
Ykq �= 0. But we also have Ypq �= 0, with p �= q. By the nature of Y , this can only
happen if k = q. But then k = ', which was ruled out before. It follows that ' < q.
This contradicts the choice of q and completes the proof.

Note 4.2. Every algebraic extension F of the field with 2 elements satisfies
F = F 2. The hypothesis F = F 2 cannot be dropped in Theorem 4.1. Indeed,
suppose that z is not a square in a field F of characteristic 2 (e.g. t is not a square
in the field F = K(t), where K is a field characteristic 2 and t is transcendental over
K). Then the matrix




0 0 1
0 1 0
1 0 z




is not B-congruent to a specialized pseudo-permutation matrix.

5. Equivalence and Congruence under Parabolic Subgroups. We fix here
a standard parabolic subgroup P of G, generated by B and a set J of transpositions
of the form (i, i + 1), 1 ≤ i < n.

Let W be the group generated by J . Let O1, ..., Or be the orbits of W acting on
Z. We denote by Mi the largest index in Oi. Note that W is isomorphic to the direct
product of symmetric groups defined on the Oi.

Let Y be a sub-permutation (0, 1)-matrix. We let (f, σ) stand for a Y -couple,
where f : {1, ..., n} → {0, 1}.

For 1 ≤ i, j ≤ r we define Y {i, j} to be equal to the total number of indices k
such that k ∈ S(f), k ∈ Oi and σ(k) ∈ Oj .

For C ∈ M and 1 ≤ i, j ≤ r we define C[i, j] to be the rank of the Mj × Mi top
left sub-matrix of C. We also define C[0, j] = 0 and C[i, 0] = 0 for 1 ≤ i, j ≤ r.

Theorem 5.1. Let P be a parabolic subgroup of G with Weyl group W . Keep
the above notation. Let C and D be in M and let Y and Z be sub-permutation
(0, 1)-matrices respectively B-equivalent to them. Then the following conditions are
equivalent:
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(a) C and D are P -equivalent.
(b) C[i, j] = D[i, j] for all 1 ≤ i, j ≤ r.
(c) Y and Z are W -equivalent.
(d) Y {i, j} = Z{i, j} for all 1 ≤ i, j ≤ r.
Proof. Taking into account the type of elementary matrices that actually belong

to P we see that (a) implies (b). The equivalence of (c) and (d) is not difficult to
see. Obviously (c) implies (a). Suppose (b) holds. Since Y is a sub-permutation
(0, 1)-matrix, it is clear that

Y [i, j] − Y [i− 1, j] − Y [i, j − 1] + Y [i− 1, j − 1] = Y {i, j}, 1 ≤ i, j ≤ r. (5.1)

Now Y and Z are P -equivalent to C and D, respectively, so the equation in (b) is
valid with C replaced by Y and D replaced by Z. This includes also the case when
i = 0 or j = 0. Then (5.1) and the corresponding formula for Z yield (d).

We turn our attention to P -congruence. Keep the notation preceding Theorem
5.1 but suppose now that Y is symmetric or alternating. We may assume that σ has
order 2.

Let σ′ be the permutation obtained from σ by eliminating all pairs (i, j) in the
cycle decomposition of σ such that either i, j are in the same W -orbit or f(i) = 0
(and hence f(j) = 0). We call σ′ the reduced permutation associated to Y .

Theorem 5.2. Suppose that χ(F ) �= 2 and F = F 2. Let C and D be symmetric
matrices and let Y and Z be sub-permutation (0, 1)-matrices respectively B-congruent
to them. Let σ′ and τ ′ be the reduced permutations associated to Y and Z, respectively.
The following conditions are equivalent:

(a) σ′ is W -conjugate to τ ′ and Y {i, i} = Z{i, i} for all 1 ≤ i ≤ r.
(b) C and D are P -congruent.
(c) C and D are P -equivalent.
Proof. It is clear that (a) implies (b) and that (b) implies (c). Suppose (c) holds.

By Theorem 5.1

Y {i, j} = Z{i, j}, 1 ≤ i, j ≤ r. (5.2)

Writing σ′ and τ ′ as a product of disjoint transpositions, condition (5.2) ensures that
the number of transpositions (a, b) where a ∈ Oi, b ∈ Oj and i �= j is the same in both
σ′ and τ ′. For each such pair (a, b) present in σ′ and each such pair (c, d) present in
τ ′ we let w(a) = c and w(b) = d. Doing this over all such pairs and all i �= j yields an
injective function w from a subset of {1, ..., n} to a subset of {1, ..., n} that preserves
all W -orbits. We may extend w to an element, still called w, of W . This element
satisfies wσ′w−1 = τ ′.

A reasoning similar to the above yields
Theorem 5.3. Let C and D be alternating matrices and let Y and Z be (1,−1)-

matrices respectively B-congruent to them. Let σ′ and τ ′ be the reduced permutations
associated to Y and Z, respectively. The following conditions are equivalent:

(a) σ is W -conjugate to τ and Y {i, i} = Z{i, i} for all 1 ≤ i ≤ r.
(b) C and D are P -congruent.
(c) C and D are P -equivalent.
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Note 5.4. The second condition in (a) is not required for invertible matrices in
either of the above two theorems.

6. Number of Orbits. Here we count the number of certain orbits under B-
congruence.

Theorem 6.1. Let C(n) be the number of B-congruence orbits of alternating
matrices. Then C(n) satisfies the recursive relation

C(0) = 1; C(1) = 1; C(n) = C(n− 1) + (n− 1)C(n− 2), n ≥ 2.

Proof. Suppose Y is a (1,−1)-matrix. If column 1 of Y is 0 there are C(n − 1)
choices for (n − 1) × (n − 1) matrix that remains after eliminating row and column
1 of Y . Otherwise there are n− 1 choices for the position (i, 1), i > 1, of the −1 on
column 1 of Y . Every choice (i, 1) completely determines rows and columns 1 and
i of Y , with C(n − 2) choices for the (n − 2) × (n − 2) matrix that remains after
eliminating them.

Reasoning as above, we obtain
Theorem 6.2. Suppose F = F 2 and χ(F ) �= 2. Let D(n) stand for the number of

B-congruence orbits of symmetric matrices. Then D(n) satisfies the recursive relation

D(0) = 1; D(1) = 2; D(n) = 2D(n− 1) + (n− 1)D(n− 2).
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