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Abstract. The paper deals with infinite block matrices having compact off diagonal parts.
Bounds for the spectrum are established and estimates for the norm of the resolvent are proposed.
Applications to matrix integral operators are also discussed. The main tool is the π-triangular
operators defined in the paper.
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1. Introduction and definitions. Many books and papers are devoted to the
spectrum of finite block matrices, see [4, 5, 6, 14, 16] and references therein.

At the same time the spectral theory of infinite block matrices is developed con-
siderably less than the one of finite block matrices, although infinite block matrices
arise in numerous applications. To the best of our knowledge, mainly the Toeplitz
and Hankel infinite block matrices were investigated, cf. [3, 16, 17] and references
given therein. In the interesting paper [13], variational principles and eigenvalue es-
timates for a class of unbounded block operator matrices are explored. The paper
[15] also should be mentioned, it is devoted to inequalities on singular values of block
triangular matrices.

Recall that in the finite case the generalized Hadamard criterion for the invert-
ibility was established, cf. [4, 5]. That criterion does not assert that any finite block
triangular matrix with nonsingular diagonal blocks is invertible. But it is not hard
to check that such a matrix is always invertible. Moreover the generalized Hadamard
theorem can be extended to the infinite case under rather strong restrictions, only.

In the present paper we consider infinite block matrices whose off diagonal parts
are compact. We propose bounds for the spectrum and invertibility conditions which
in the finite case improve the Hadamard criterion for matrices that are ”close” to block
triangular matrices. Moreover, we derive an estimate for the norm of the resolvent
of a block matrix. Besides, some results from the papers [7, 8, 10] are generalized.
Applications to matrix integral operators are also discussed. Our main tool is the
π-triangular operators defined below.

Let H be a separable complex Hilbert space, with the norm ‖.‖ and unit operator
I. All the operators considered in this paper are linear and bounded. For an operator
A, σ(A) and Rλ(A) = (A− λI)−1 denote the spectrum and resolvent, respectively.

Recall that a linear operator V is called quasinilpotent, if σ(V ) = 0. A linear
operator is called a Volterra operator, if it is compact and quasinilpotent.
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The paper is organized as follows. In this section we define the π-triangular
operators. In Section 2 some properties of Volterra operators are considered. In
Section 3 we establish the norm estimates and multiplicative representation for the
resolvents of π-triangular operators. Section 4 is devoted to perturbations of block
triangular matrices. The main result of the paper-Theorem 5.1 on the spectrum of
infinite block matrices is presented in Section 5. Section 6 deals with diagonally
dominant block matrices. Besides we generalize the Hadamard criterion to infinite
block matrices. Some examples are presented in Section 7.

In what follows

π = {Pk, k = 0, 1, 2, ...}

is an infinite chain of orthogonal projections Pk in H, such that

0 = P0H ⊂ P1H ⊂ P2H ⊂ .... (sup
k≥1

dim ∆ PkH < ∞)

and Pn → I strongly as n → ∞. Here and below ∆Pk = Pk − Pk−1.
Let a linear operator A acting in H satisfy the relations

APk = PkAPk, (k = 1, 2, ...).(1.1)

That is, Pk are invariant projections for A. Put

D :=
∞∑

k=1

∆PkA∆Pk

and V = A−D. Then

A = D + V,(1.2)

and

DPk = PkD, (k = 1, 2, ...),(1.3)

and

Pk−1V Pk = V Pk, (k = 2, 3, ...); V P1 = 0.(1.4)

Definition 1.1. Let relations (1.1)-(1.4) hold with a compact operator V . Then
we will say that A is a π-triangular operator, D is a π-diagonal operator and V is a
π-Volterra operator.

Besides, relation (1.2) will be called the π-triangular representation of A, and D
and V will be called the π-diagonal part and π-nilpotent part of A, respectively.
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2. Properties of π-Volterra operators.
Lemma 2.1. Let πm = {Qk, k = 1, ...,m; m < ∞}, Qm = I be a finite chain

of projections. Then any operator V satisfying the condition Qk−1V Qk = V Qk (k =
2, ...,m), V Q1 = 0 is a nilpotent operator. Namely, V m = 0.

Proof. Since

V m = V mQm = V m−1Qm−1V = V m−2Qm−2V Qm−1V = ... =

V Q1...V Qm−2V Qm−1V,

we have V m = 0. As claimed. �

Lemma 2.2. Let V be a π-Volterra operator (i.e. it is compact and satisfies
(1.4)). Then V is quasinilpotent and hence Volterra.

Proof. Thanks to the definition of a π-Volterra operator and the previous lemma,
V is a limit of nilpotent operators in the operator norm, cf. [1, 2] and [11]. This
proves the lemma. �

Lemma 2.3. Let V be a π-Volterra operator and B be π-triangular. Then V B
and BV are π-Volterra operators.

Proof. It is obvious that

Pk−1BV Pk = Pk−1BPk−1V Pk = BPk−1V Pk = BV Pk.

Similarly Pk−1V BPk = V BPk. This proves the lemma. �

Lemma 2.4. Let A be a π-triangular operator. Let V and D be the π-nilpotent and
π-diagonal parts of A, respectively. Then for any regular point λ of D, the operators
V Rλ(D) and Rλ(D)V are π-Volterra ones.

Proof. Since PkRλ(D) = Rλ(D)Pk, the previous lemma ensures the required re-
sult. �

Let Y be a norm ideal of compact linear operators in H . That is, Y is algebraically
a two-sided ideal, which is complete in an auxiliary norm | · |Y for which |CB|Y and
|BC|Y are both dominated by ‖C‖|B|Y .

In the sequel we suppose that there are positive numbers θk (k ∈ N), with

θ
1/k
k → 0 as k → ∞,

such that

‖V k‖ ≤ θk|V |kY(2.1)

for an arbitrary Volterra operator

V ∈ Y.
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Recall that C2p (p = 1, 2, ...) is the von Neumann-Schatten ideal of compact operators
with the finite ideal norm

N2p(K) ≡ [Trace (K∗K)p]1/2p, (K ∈ C2p).

Let V ∈ C2p be a Volterra operator. Then due to Corollary 6.9.4 from [9], we get

‖V j‖ ≤ θ
(p)
j N j

2p(V ), (j = 1, 2, ...)(2.2)

where

θ
(p)
j =

1√
[j/p]!

and [x] means the integer part of a positive number x. Inequality (2.2) can be written
as

‖V kp+m‖ ≤ Npk+m
2p (V )√

k!
, (k = 0, 1, 2, ...; m = 0, ..., p− 1).(2.3)

In particular, if V is a Hilbert-Schmidt operator, then

‖V j‖ ≤ N j
2 (V )√
j!

, (j = 0, 1, 2, ...).

3. Resolvents of π-triangular operators.
Lemma 3.1. Let A be a π-triangular operator. Then σ(A) = σ(D), where D is

the π-diagonal part of A. Moreover,

Rλ(A) = Rλ(D)
∞∑

k=0

(V Rλ(D))k(−1)k.(3.1)

Proof. Let λ be a regular point of operator D. According to the triangular
representation (1.2) we obtain

Rλ(A) = (D + V − λI)−1 = Rλ(D)(I + V Rλ(D))−1.

Operator V Rλ(D) for a regular point λ of operator D is a Volterra one due to Lemma
2.3. Therefore,

(I + V Rλ(D))−1 =
∞∑

k=0

(V Rλ(D))k(−1)k

and the series converges in the operator norm. Hence, it follows that λ is a regular
point of A.

Conversely let λ �∈ σ(A). According to the triangular representation (1.2) we
obtain

Rλ(D) = (A− V − λI)−1 = Rλ(A)(I − V Rλ(A))−1.
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Since V is a π-Volterra, for a regular point λ of A, operator V Rλ(A) is a Volterra one
due to Lemmas 2.2 and 2.3. So

(I − V Rλ(A))−1 =
∞∑

k=0

(V Rλ(A))k

and the series converges in the operator norm. Thus,

Rλ(D) = Rλ(A)
∞∑

k=0

(V Rλ(A))k.

Hence, it follows that λ is a regular point of D. This finishes the proof. �

With V ∈ Y , introduce the function

ζY (x, V ) :=
∞∑

k=0

θk|V |kY xk+1, (x ≥ 0).

Corollary 3.2. Let A be a π-triangular operator and let its π-nilpotent part V
belong to a norm ideal Y with the property (2.1). Then

‖Rλ(A)‖ ≤ ζY (‖Rλ(D)‖, V ) ≡
∞∑

k=0

θk|V |kY ‖Rλ(D)‖k+1

for all regular λ of A.
Indeed, according to Lemma 2.3 and (2.1)

‖(V Rλ(D))k‖ ≤ θk|V Rλ(D)|kY .

But

|V Rλ(D)|Y ≤ |V |Y ‖Rλ(D)‖.

Now the required result is due to (3.1).
Corollary 3.2 and inequality (2.2) yield
Corollary 3.3. Let A be a π-triangular operator and its π-nilpotent part V ∈

C2p for some integer p ≥ 1. Then

‖Rλ(A)‖ ≤
∞∑

k=0

θ
(p)
k Nk

2p(V )‖Rλ(D)‖k+1, (λ �∈ σ(A))

where D is the π-diagonal part of A. In particular, if V is a Hilbert-Schmidt operator,
then

‖Rλ(A)‖ ≤
∞∑

k=0

Nk
2 (V )√
k!

‖Rλ(D)‖k+1, (λ �∈ σ(A)).
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Note that under the condition V ∈ C2p, p > 1, inequality (2.3) implies

‖Rλ(A)‖ ≤
p−1∑
j=0

∞∑
k=0

Npk+j
2p (V )√

k!
‖Rλ(D)‖pk+j+1.(3.2)

Thanks to the Schwarz inequality, for all x > 0 and a ∈ (0, 1),

[
∞∑

k=0

xk

√
k!

]2 = [
∞∑

k=0

xkak

ak
√

k!
]2 ≤

∞∑
k=0

a2k
∞∑

k=0

x2k

a2kk!
= (1 − a2)−1ex2/a2

.

In particular, take a2 = 1/2. Then

∞∑
k=0

xk

√
k!

≤
√

2ex2
.

Now (3.2) implies
Corollary 3.4. Let A be a π-triangular operator and its π-nilpotent part V ∈

C2p for some integer p ≥ 1. Then

‖Rλ(A)‖ ≤ ζp(‖Rλ(D)‖, V ), (λ �∈ σ(A)).

where

ζp(x, V ) :=
√

2
p−1∑
j=0

N j
2p(V )xj+1 exp [ N2p

2p (V )x2p], (x > 0).(3.3)

Lemma 3.5. Let A be a π-triangular operator, whose π-nilpotent part V belongs
to a norm ideal Y with the property (2.1). Then for any µ ∈ σ(B), either µ ∈ σ(D)
or

‖A−B‖ζY (‖Rµ(D)‖, V ) ≥ 1.

In particular, if V ∈ C2p for some integer p ≥ 1, then this inequality holds with
ζY = ζp.

Indeed this result follows from Corollaries 3.2 and 3.4.
Let us establish the multiplicative representation for the resolvent of a π-triangular

operator. To this end, for bounded linear operators X1, X2, ..., Xm and j < m, denote

→∏
j≤k≤m

Xk ≡ XjXj+1...Xm.
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In addition
→∏

j≤k≤∞
Xk := lim

m→∞

→∏
j≤k≤m

Xk

if the limit exists in the operator norm.
Lemma 3.6. Let π = {Pk}∞k=1 be a chain of orthogonal projectors, V a π-Volterra

operator. Then

(I − V )−1 =
→∏

k=2,3,....

(I + V ∆Pk)(3.4)

Proof. First let π = {P1, ..., Pm} be finite. According to Lemma 2.1

(I − V )−1 =
m−1∑
k=0

V k.(3.5)

On the other hand,

→∏
2≤k≤m

(I + V ∆Pk) = I +
m∑

k=2

Vk +
∑

2≤k1<k2≤m

Vk1Vk2

+... + V2V3...Vm.

Here, as above, Vk = V ∆Pk. However,
∑

2≤k1<k2≤m

Vk1Vk2 = V
∑

2≤k1<k2≤m

∆Pk1V ∆Pk2 =

V
∑

3≤k2≤m

Pk2−1V ∆Pk2 = V 2
∑

3≤k2≤m

∆Pk2 = V 2.

Similarly,
∑

2≤k1<k2...<kj≤m

Vk1Vk2 ...Vkj = V j

for j < m. Thus from (3.5) the relation (3.4) follows. The rest of the proof is left to
the reader. �

Theorem 3.7. For any π-triangular operator A and a regular λ ∈ C

Rλ(A) = (D − λI)−1
→∏

2≤k≤∞
(I − V ∆Pk(D − λI)−1∆Pk),
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where D and V are the π-diagonal and π-nilpotent parts of A, respectively.
Proof. Due to Lemma 2.4, V Rλ(D) is π-nilpotent. Now the previous lemma

implies

(I + V Rλ(D))−1 =
→∏

2≤k≤m

(I − V Rλ(D)∆Pk).

But Rλ(D)∆Pk = ∆PkRλ(D). This proves the result. �

Let A be a π-triangular operator and

Π(A, λ) := ‖Rλ(D)‖
∞∏

k=2

(1 + ‖Rλ(D)∆Pk‖‖V ∆Pk‖) < ∞.

Then from the previous theorem it follows the inequality ‖Rλ(A)‖ ≤ Π(A, λ).

4. Perturbations of block triangular matrices. Let H = l2(Cn) be the
space of sequences h = {hk ∈ Cn}∞k=1 with values in the Euclidean space Cn and the
norm

|h|l2(Cn) = [
∞∑

k=1

‖hk‖2
n]1/2,

where ‖ · ‖n is the Euclidean norm in Cn.
Consider the operator defined in l2(Cn) by the upper block triangular matrix

A+ =




A11 A12 A13 . . .
0 A22 A23 . . .
0 0 A33 . . .
. . . . . .


 ,(4.1)

where Ajk are n× n-matrices.
So A+ = D̃+V+, where V+ and D̃ are the strictly upper triangular, and diagonal

parts of A+, respectively:

V+ =




0 A12 A13 A14 . . .
0 0 A23 A24 . . .
0 0 0 A34 . . .
. . . . . . .




and D̃ = diag [A11, A22, A33, ...]. Put

ηn(λ) := sup
k

‖Rλ(Akk)‖n.

Lemma 4.1. Let A+ be the block triangular matrix defined by (4.1) and V+

be a compact operator belonging to a norm ideal Y with the property (2.1) Then
σ(A+) = σ(D̃), and

|Rλ(A+)|l2(Cn) ≤ ζY (ηn(λ), V+)
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for all regular λ of D̃. Moreover, for any bounded operator B acting in l2(Cn) and a
µ ∈ σ(B), either µ ∈ σ(D̃) or

qζY (ηn(µ), V+) ≥ 1

where q := |A+ −B|l2(Cn). In particular, if

V+ ∈ C2p (p = 1, 2, ...)(4.2)

then ζY = ζp.
Proof. Let Pj , j = 0, 1, 2, ... be projections onto the subspaces of l2(Cn) generated

by the first nj elements of the standard basis. Then π = {Pk} is the infinite chain
of orthogonal projections in l2(Cn), such that (1.1) holds and Pn → I strongly as
n → ∞. Moreover, dim ∆PkH ≡ n (k = 1, 2, ..) and

Ajk = ∆PkÃ∆Pk, D̃ =
∞∑

j=1

Ajj .

Hence it follows that A+ is a π triangular operator. Now Corollaries 3.2 and 3.5 prove
the result. �

Let

‖Rλ(Akk)‖ ≤ φ(ρ(Akk , λ)) :=
n−1∑
l=0

cl

ρl+1(Akk, λ)
, (λ �∈ σ(D̃))

where cl are nonnegative coefficients, independent of k, and ρ(A, λ) is the distance
between a complex point λ and σ(A). Then

‖Rλ(Akk)‖ ≤ φ(ρ(D̃, λ)) :=
n−1∑
l=0

cl

ρl+1(D̃, λ)
, (λ �∈ σ(D̃))

and

ρ(D̃, λ) = inf
k=1,2,....

min
j=1,...,n

|λ− λj(Akk)|

is the distance between a point λ and σ(D̃), and

φ(y) =
n−1∑
k=0

ck

yk+1
, (y > 0).

Then

ηn(λ) = sup
j=1,2,...

‖Rλ(Ajj)‖ ≤ φ(ρ(D̃, λ)).
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Under (4.2), Lemma 4.1 gives us the inequality

|Rλ(A+)|l2(Cn) ≤ ζp(φ(ρ(D̃, λ)), V+)

for all regular λ of D̃, provided V+ ∈ Y . So for a bounded operator B and µ ∈ σ(B),
either µ ∈ σ(D̃) or

qζp(φ(ρ(D̃, µ)), V+) ≥ 1.(4.3)

Furthermore, let C = (cjk)n
j,k=1 be an n × n-matrix. Then as it is proved in [9,

Corollary 2.1.2],

‖Rλ(C)‖n ≤
n−1∑
k=0

gk(C)√
k!ρk+1(C, λ)

,

where λk(C); k = 1, . . . , n are the eigenvalues of C including their multiplicities, and

g(C) = (N2
2 (C) −

n∑
k=1

|λk(C)|2)1/2.

Here N2(.) is the Hilbert-Schmidt norm in C. In particular, the inequalities

g2(C) ≤ N2
2 (C) − |Trace C2| and g2(C) ≤ 1

2
N2

2 (C∗ − C)

are true (see [9, Section 2.1]). If C is a normal matrix, then g(C) = 0. Thus

‖Rλ(Ajj)‖n ≤
n−1∑
k=0

gk(Ajj)√
k!ρk+1(Ajj , λ)

.

Since D̃ is bounded, we have

g0 := sup
k=1,2,...

g(Akk) < ∞.

Then one can take φ(y) = φ0(y) where

φ0(y) =
n−1∑
k=0

gk
0√

k!yk+1
.

If all the diagonal matrices Akk are normal, then g(Akk) = 0 and φ0(y) = 1/y.
Relation (4.3) yields

Lemma 4.2. Let A+ be defined by (4.1) and B a linear operator on l2(Cn). If,
in addition, condition (4.2) holds, then for any µ ∈ σ(B), there is a λ ∈ σ(D̃), such
that

|λ− µ| ≤ rp(q, V+)
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where rp(q, V+) is the unique positive root of the equation

qζp(φ0(y), V+) = 1.

Here y is the unknown.
It is simple to see that

rp(q, V+) ≤ yn(zp(q, V+))

where yn(b) is the unique positive root of the equation

φ0(y) = b, (b = const > 0).

and zp(q, V+) is the unique positive root of the equation

qζp(x, V+) ≡ q
√

2
p−1∑
j=0

N j
2p(V+)xj+1 exp [ N2p

2p (V+)x2p] = 1.(4.4)

Furthermore, thanks to [9, Lemma 1.6.1] yn(b) ≤ pn(b), where

pn(b) =
{

φ0(1)/b if φ0(1) ≥ b,
n
√

φ0(1)/b if φ0(1) < b.

We need the following
Lemma 4.3. The unique positive root za of the equation

p−1∑
j=0

zj+1 exp [z2p] = a, (a ≡ const > 0)

satisfies the inequality za ≥ δp(a), where

δp(a) :=
{

a/pe if a ≤ pe,
[ln (a/p)]1/2p if a > pe.

(4.5)

For the proof see [9, Lemma 8.3.2]. Put in (4.4) N2p(V+)x = z. Then we get equation
(4.5) with a = N2p(V+)/q

√
2. The previous lemma implies

zp(q, V+) ≥ γp(q, V+)

where

γp(q, V+) :=
δp(N2p(V+)/q

√
2)

N2p(V+)
.

We thus get

rp(q, V+) ≤ pn(γp(q, V+)).(4.6)
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5. The main result. Consider in l2(Cn) the operator defined by the block
matrix

Ã =




A11 A12 A13 . . .
A21 A22 A23 . . .
A31 A32 A33 . . .
. . . . . .


(5.1)

where Ajk are n× n-matrices. Clearly,

Ã = D̃ + V+ + V−

where V+ is the strictly upper triangular, part, D̃ is the diagonal part and V− is the
strictly lower triangular part of Ã:

V− =




0 0 0 0 . . .
A21 0 0 0 . . .
A31 A32 0 0 . . .
A41 A42 A43 0 . . .
. . . . . . .


 .

Now we get the main result of the paper which is due to (4.3) with B = Ã.
Recall that φ0 is defined in the previous section and ζp is defined by (3.3).
Theorem 5.1. Let Ã be defined by (5.1) and condition (4.2) hold. Then for any

µ ∈ σ(Ã), either µ ∈ σ(D̃) or there is a λ ∈ σ(D̃) such that

|V−|l2(Cn)ζp(φ0(|λ − µ|), V+) ≥ 1.

The theorem is exact in the following sense: if V− = 0, then σ(Ã) = σ(D̃).
Moreover, Lemma 4.2 with B = Ã implies

Corollary 5.2. Let Ã be defined by (5.1) and condition (4.2) hold. Then for
any µ ∈ σ(D̃), there is a λ ∈ σ(D̃), such that

|λ− µ| ≤ rp(Ã),

where rp(Ã) is is the unique positive root of the equation

|V−|l2(Cn)ζp(φ0(y), V+) = 1.

Moreover, (4.6) gives us the bound for rp(Ã) if we take q = |V−|l2(Cn).
Note that in Theorem 5.1 it is enough that V+ is compact. Operator V− can be

noncompact.
Clearly, one can exchange V+ and V−.
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6. Diagonally dominant block matrices. Put

mjk = ‖Ajk‖n, (j, k = 1, 2, ...)

and consider the matrix

M = (mjk)∞j,k=1.

Lemma 6.1. The spectral radius rs(Ã) of Ã is less than or is equal to the spectral
radius of M .

Proof. Let A
(ν)
jk and m

(ν)
jk (ν = 2, 3, ...) be the entries of Ãν and Mν , respectively.

We have

‖A(2)
jk ‖n = ‖

∞∑
l=1

AjlAlk‖n ≤

∞∑
l=1

‖Ajl‖n‖Alk‖n =
∞∑
l=1

mjlmlk = m
(2)
jk .

Similarly, we get ‖A(ν)
jk ‖n ≤ m

(ν)
jk .

But for any h = {hk} ∈ l2(Cn), we have

|Ãh|2l2(Cn) ≤
∞∑

j=1

(
∞∑

k=1

‖Ajkhk‖n)2 ≤
∞∑

j=1

(
∞∑

k=1

mjk‖hk‖n)2 = |Mh̃|2l2(R)

where

h̃ = {‖hk‖n} ∈ l2(R1).

Since

|h|2l2(Cn) =
∞∑

k=1

‖hk‖2
n = |h̃|2l2(R),

we obtain |Ãν |l2(Cn) ≤ |Mν |l2(R) (ν = 2, 3, ...). Now the Gel’fand formula for the
spectral radius yields the required result. �

Denote

Sj :=
∞∑

k=1,k �=j

‖Ajk‖n.

Theorem 6.2. Let Ajj be invertible for all integer j. In addition, let

sup
j

Sj < ∞(6.1)
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and there be an ε > 0, such that

‖A−1
jj ‖−1

n − Sj ≥ ε, (j = 1, 2, ...).(6.2)

Then Ã is invertible. Moreover, let

ψ(λ) := sup
j

‖(Ajj − λ)−1‖Sj < 1.

Then λ is a regular point of Ã, and

|(Ã − λ)−1|l2(Cn) ≤ (1 − ψ(λ))−1 sup
j

‖(Ajj − λ)−1‖n.

Proof. Put W = Ã − D̃ = V+ + V− with an invertible D̃. That is, W is the
off-diagonal part of Ã, and

Ã = D̃ + W = D̃(I + D̃−1W ).(6.3)

Clearly,

∞∑
k=1,k �=j

‖A−1
jj Ajk‖n ≤ Sj‖A−1

jj ‖.

From (6.2) it follows

1 − Sj‖A−1
jj ‖n ≥ ‖A−1

jj ‖nε (j = 1, 2, ...).

Therefore

sup
j

∞∑
k=1,k �=j

‖A−1
jj Ajk‖n < 1.

Then thanks to the well-known bound for the spectral radius [12, Section 3.16] and
the previous lemma the spectral radius rs(D̃−1W ) < 1. Therefore I + D̃−1W is in-
vertible. Now (6.3) implies that Ã is invertible. This proves the theorem. �

Theorem 6.2 extends the above mentioned Hadamard criterion to infinite block
matrices.

It should be noted that condition (6.1) implies that the off-diagonal part W of Ã
is compact, since under (6.1) the sequence of the finite dimensional operators

Wl :=




0 A12 A13 . . . A1l

A21 0 A23 . . . A2l

A31 A32 0 . . . A3l

. . . . . . .
Al1 Al2 Al3 . . . 0




converges to W in the norm of space l2(Cn) as l → ∞.
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7. Examples. Let n = 2, then D̃ is the orthogonal sum of the 2 × 2-matrices

Akk =
(

a2k−1,2k−1 a2k−1,2k

a2k,2k−1 a2k,2k

)
.

If Akk are real matrices, then due to the above mentioned inequality g2(C) ≤
N2

2 (C∗ − C)/2, we have

g(Akk) ≤ |a2k−1,2k − a2k,2k−1|.
So one can take

φ0(y) =
1
y
(1 +

g̃0

y
)

with

g̃0 := sup
k

|a2k−1,2k − a2k,2k−1|.

Besides, σ(D̃) = {λ1,2(Akk)}∞k=1, where

λ1,2(Akk) =
1
2
(a2k−1,2k−1 + a2k,2k ± [(a2k−1,2k−1 − a2k,2k)2 − a2k−1,2ka2k,2k−1]1/2).

Now we can directly apply Theorems 5.1 and 6.2, and Corollary 5.2.
Furthermore, let L2(ω,Cn) be the space of vector valued functions defined on a

bounded subset ω of Rm with the scalar product

(f, g) =
∫

ω

(f(s), g(s))Cnds

where (., .)Cn is the scalar product in Cn. Let us consider in L2(ω,Cn) the matrix
integral operator

(Tf)(x) =
∫

ω

K(x, s)f(s)ds

with the condition ∫
ω

∫
ω

‖K(x, s)‖2
ndx ds < ∞.

That is, T is a Hilbert-Schmidt operator.
Let {ek(x)} be an orthogonal normal basis in L2(ω,Cn) and

K(x, s) =
∞∑

j,k=1

Ajkek(s)ek(x)

be the Fourier expansion of K, with the matrix coefficients Ajk. Then T is unitarily
equivalent to the operator Ã defined by (1.1). Now one can apply Theorems 5.1 and
6.1, and Corollary 5.2.
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