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SOME ALGEBRAIC AND STATISTICAL PROPERTIES OF WLSES

UNDER A GENERAL GROWTH CURVE MODEL∗
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Abstract. Growth curve models are used to analyze repeated measures data (longitudinal data),
which are functions of time. General expressions of weighted least-squares estimators (WLSEs) of
parameter matrices were given under a general growth curve model. Some algebraic and statistical
properties of the estimators are also derived through the matrix rank method.

AMS subject classifications. 62F11, 62H12, 15A03, 15A09.

Key words. Growth curve model, Moore-Penrose inverse of matrix, Rank formulas for matrices,
Parameter matrix, WLSE, Extremal rank, Uniqueness, Unbiasedness.

1. Introduction. Throughout this paper, R
m×n stands for the collections of all

m×n real matrices. The symbols A′, r(A), R(A) and tr(A) stand for the transpose,
the rank, the range (column space) and the trace of a matrix A, respectively. The
Kronecker product of any two matrices A and B is defined to be A⊗B = (aijB). The
vec operation of any matrix A = [ a1, . . . ,an ] is defined to be vec(A) = [ a′

1, . . . ,a
′
n ]′.

A well-known property of the vec operation of a triple matrix product is vec(AZB) =
(B′ ⊗ A)vec(Z).

A longitudinal data set is a set consisting of a given sample of individuals over
time. They provide multiple observations on each individuals in the sample. Longitu-
dinal data can be used to establish regression models with respect to various possible
regressors. In statistical applications, a special type of linear longitudinal data model
is the following well-known growth curve model

Y = X1ΘX2 + εεε, E(εεε) = 0, Cov[vec(εεε)] = σ2(ΣΣΣ2 ⊗ΣΣΣ1). (1.1)

The model can also be written in the triplet form

M = {Y, X1ΘX2, σ2(ΣΣΣ2 ⊗ΣΣΣ1)}, (1.2)

where
Y = (yij) ∈ R

n×m is an observable random matrix (a longitudinal data set),
X1 = (x1ij) ∈ R

n×p and X2 = (x2ij) ∈ R
q×m are two known model matrices

of arbitrary ranks,
Θ = (θij) ∈ R

p×q is a matrix of unknown parameters to be estimated,
ΣΣΣ1 = (σ1ij) ∈ R

n×n and ΣΣΣ2 = (σ2ij) ∈ R
m×m are two known nonnegative

definite matrices of arbitrary ranks, and
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σ2 is a positive unknown scalar.
If one of ΣΣΣ1 and ΣΣΣ2 is a singular matrix, (1.1) is also said to be a singular growth
curve model.

Through the Kronecker product and the vec operation of matrices, the model in
(1.1) can alternatively be written as

vec(Y) = (X′
2 ⊗ X1)vec(Θ) + vec(εεε), E[vec(εεε)] = 0, Cov[vec(εεε)] = σ2(ΣΣΣ2 ⊗ΣΣΣ1).

(1.3)

Because (1.1) is a linear model, many results on linear models carry over to (1.1).
Note, however, that both vec(Y) and vec(Θ) in (1.3) are vectors, and many properties
of the two matrices Y and Θ in (1.1), such as their ranks, range, singularity, symmetry,
partitioned representations, can hardly be demonstrated in the expressions of vec(Y)
and vec(Θ). Conversely, not all estimators of vec(Θ) and (X′

2 ⊗ X1)vec(Θ) under
(1.3) can be written in the forms of matrices in (1.1). That is to say, some problems
on the model (1.1) can be studied through (1.3), others can only be done with the
original model (1.1).

The growth curve model in (1.1) is an extension of multivariate linear models.
This model was originally proposed by Potthoff and Roy [11] in studying longitudinal
data and was subsequently studied by many authors, such as, Frees [4], Hsiao [5],
Khatri [7], Pan and Fang [9], Rao [14, 15], Seber [18], von Rosen [31, 32], and Woolson
and Leeper [33], among many others. The purpose of the present paper is to give
some general expressions of weighted least-squares estimators (WLSEs) of Θ, X1ΘX2

and K1ΘK2 under the general assumption in (1.1), and then study the maximal
and minimal possible ranks of the estimators, as well as the unbiasedness and the
uniqueness of the estimators.

The Moore-Penrose inverse of A ∈ R
m×n, denoted by A+, is defined to be the

unique solution G to the four matrix equations

(i) AGA = A, (ii) GAG = G, (iii) (AG)′ = AG, (iv) (GA)′ = GA.

A matrix G is called a generalized inverse (g-inverse) of A, denoted by G = A−, if it
satisfies (i). Further, let PA, FA and EA stand for the three orthogonal projectors
PA = AA+, EA = Im − AA+ and FA = In − A+A.

In order to simplify various matrix expressions consisting of the Moore-Penrose
inverses of matrices, we need some formulas for ranks of matrices. The following rank
formulas are due to Marsaglia and Styan [8] .

Lemma 1.1. Let A ∈ R
m×n, B ∈ R

m×k, C ∈ R
l×n and D ∈ R

l×k. Then

r[ A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (1.4)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (1.5)

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC). (1.6)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 187-203, August 2007

http://math.technion.ac.il/iic/ela



ELA

General Growth Curve Model 189

If R(B) ⊆ R(A) and R(C′) ⊆ R(A′), then

r

[
A B
C D

]
= r(A) + r(D − CA+B ). (1.7)

Lemma 1.2. Suppose R(B′
1) ⊆ R(C′

1), R(B2) ⊆ R(C1), R(B′
2) ⊆ R(C′

2) and
R(B3) ⊆ R(C2). Then

r(A − B1C+
1 B2C+

2 B3 ) = r


 0 C2 B3

C1 B2 0
B1 0 −A


 − r(C1) − r(C2). (1.8)

Proof. In terms of the Moore-Penrose inverses of matrices, the given conditions
are equivalent to

B1C+
1 C1 = B1, C1C+

1 B2 = B2, B2C+
2 C2 = B2, C2C+

2 B3 = B3. (1.9)

Also recall that elementary block matrix operations (EBMOs) do not change the rank
of a matrix. Applying (1.9) and EBMOs to the block matrix in (1.8) gives

r


 0 C2 B3

C1 B2 0
B1 0 −A


 = r


 0 C2 B3

C1 0 0
0 −B1C+

1 B2 −A




= r


 0 C2 0

C1 0 0
0 0 −A + B1C+

1 B2C+
2 B3




= r(A − B1C+
1 B2C+

2 B3 ) + r(C1) + r(C2),

establishing (1.8).
Let A ∈ R

m×n, B ∈ R
m×k and C ∈ R

l×n be given, and suppose Z ∈ R
k×l is a

variable matrix. It was shown in [19, 23] that the matrix pencil A − BZC satisfies
the following two rank identities

r(A − BZC ) = r[ A, B ] + r

[
A
C

]
− r

[
A B
C 0

]
+ r[ ET1(Z + TM−S )FS1 ] (1.10)

and

r(A − BZC ) = r[ A, B ] + r

[
A
C

]
− r

[
A B
C 0

]
+ r(EQAFP − EQBZCFP), (1.11)

where M =
[

A B
C 0

]
, T = [ 0, Ik ], S =

[
0
Il

]
, T1 = TFM, S1 = EMS, P = EBA

and Q = AFC. It is easy to verify that the two matrix equations

ET1(Z + TM−S )FS1 = 0 and EQBZCFP = EQAFP (1.12)

are solvable for Z. The following result is derived from (1.10) and (1.11).
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Lemma 1.3. The maximal and minimal ranks of A− BZC are given by

max
Z∈Rk×l

r(A − BZC ) = min
{

r[ A, B ], r

[
A
C

]}
(1.13)

and

min
Z∈Rk×l

r(A − BZC ) = r[ A, B ] + r

[
A
C

]
− r

[
A B
C 0

]
. (1.14)

The matrices satisfying (1.13) and (1.14) can be derived from (1.12). The fol-
lowing two rank formulas are given in [20]. Note that the difference Y − X1ΘX2

corresponding to (1.1) is a matrix pencil with respect to the parameter matrix Θ, so
that the maximal and minimal ranks of Y − X1ΘX2 with respect to Θ can also be
derived from Lemma 1.3.

Lemma 1.4. Let A ∈ R
m×n, Bi ∈ R

m×ki , Ci ∈ R
li×n be given with R(B1) ⊆

R(B2) and R(C′
2) ⊆ R(C′

1). Then

max
Z1, Z2

r(A − B1Z1C1 − B2Z2C2 ) = min
{

r[ A, B2 ], r

[
A
C1

]
, r

[
A B1

C2 0

]}
(1.15)

and

min
Z1, Z2

r(A − B1Z1C1 − B2Z2C2 )

= r[ A, B2 ] + r

[
A
C1

]
+ r

[
A B1

C2 0

]
− r

[
A B1

C1 0

]
− r

[
A B2

C2 0

]
. (1.16)

In particular,

max
Z1, Z2

r(A − BZ1 − Z2C ) = min
{

m, n, r

[
A B
C 0

]}
(1.17)

and

min
Z1, Z2

r(A − BZ1 − Z2C ) = r

[
A B
C 0

]
− r(B) − r(C). (1.18)

The following result is well known, see, e.g., [10, 16].
Lemma 1.5. Let A ∈ R

m×n, B ∈ R
m×k and C ∈ R

l×n. Then the matrix equation
BZC = A is solvable for Z if and only if R(A) ⊆ R(B) and R(A′) ⊆ R(C′), or
equivalently, BB+AC+C = A. In this case, the general solution of the equation can
be written as Z = B+AC+ + FBU1 + U2EC, where U1 and U2 are arbitrary.

The rank formulas in Lemmas 1.1–1.4 together with EBMOs can be used to
simplify various expressions involving the Moore-Penrose inverses of matrices and
arbitrary matrices. We call the method of solving problems through rank formulas
of matrices and EBMOs the matrix rank method. In regression analysis, this method
can be used to investigate

(a) consistency of regression models,
(b) explicit and implicit restrictions to parameters in regression models,
(c) superfluous observations,
(d) estimability of parametric functions,
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(e) reduced-rank estimators,
(f) unbiasedness of estimators,
(g) uniqueness of estimators,
(h) equalities of estimators,
(i) additive and block decomposability of estimators,
(j) unrelatedness of estimators,
(k) independence of estimators,
(l) orthogonality of estimators,

(m) proportionality of estimators,
(n) parallelness of estimators,
(o) relations between original and misspecified models,

etc., see several recent papers [12, 13, 21, 22, 24, 25, 26, 27, 28, 29] on these topics by
the rank method.

2. Expressions of WLSEs under the growth curve model. Let Z ∈ R
n×m,

let V1 ∈ R
n×n and V2 ∈ R

m×m be two nonnegative definite matrices of arbitrary
ranks, and define

f(Z) = tr(Z′V1ZV2) = vec′(Z)(V2 ⊗ V1)vec(Z). (2.1)

The WLSE of Θ under (1.1) with respect to the loss function in (2.1), denoted by
WLSE(Θ), is defined to be

Θ̂ = argmin
Θ

f(Y − X1ΘX2 ), (2.2)

the WLSE of X1ΘX2 under (1.1) is defined to be

WLSE(X1ΘX2) = X1WLSE(Θ)X2, (2.3)

the WLSE of the matrix K1ΘK2 under (1.1) is defined to be

WLSE(K1ΘK2) = K1WLSE(Θ)K2, (2.4)

where K1 ∈ R
k1×p and K2 ∈ R

q×k2 are two given matrices.
The normal equation corresponding to (2.2) is given by

(X′
1V1X1)Θ(X2V2X′

2) = (X′
1V1)Y(V2X′

2). (2.5)

This equation is always consistent. Solving the equation by Lemma 1.5 gives the
following well-known result on the WLSEs of Θ, X1ΘX2 and K1ΘK2 under (1.1).

Theorem 2.1. The general expressions of the WLSEs of Θ, X1ΘX2 and K1ΘK2

under (1.1) are given by

WLSE(Θ) = (X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+

+ F(V1X1)U1 + U2E(X2V2), (2.6)

WLSE(X1ΘX2) = X1(X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+X2

+ X1F(V1X1)U1X2 + X1U2E(X2V2)X2, (2.7)

WLSE(K1ΘK2) = K1(X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+K2

+ K1F(V1X1)U1K2 + K1U2E(X2V2)K2, (2.8)
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where U1, U2 ∈ R
p×q are arbitrary. If the two arbitrary matrices have no relation

with Y, then

E[WLSE(Θ)] = (V1X1)+V1X1ΘX2V2(X2V2)+

+ F(V1X1)U1 + U2E(X2V2), (2.9)

E[WLSE(X1ΘX2)] = X1(V1X1)+V1X1ΘX2V2(X2V2)+X2

+ X1F(V1X1)U1X2 + X1U2E(X2V2)X2, (2.10)

E[WLSE(K1ΘK2)] = K1(V1X1)+V1X1ΘX2V2(X2V2)+K2

+ K1F(V1X1)U1K2 + K1U2E(X2V2)K2. (2.11)

Replace U1 and U2 in (2.6), (2.7) and (2.8) with

U1 = L1YV2X′
2(X2V2X′

2)+,

U2 = [ (X′
1V1X1)+X′

1V1 + F(V1X1)L1 ]YL2E(X2V2),

respectively, where L1 ∈ R
p×n and L2 ∈ R

m×q are arbitrary. Then (2.6), (2.7) and
(2.8) can be written in the following homogeneous forms

WLSE(Θ) = [ (X′
1V1X1)+X′

1V1 + F(V1X1)L1 ]Y

×[ V2X′
2(X2V2X′

2)+ + L2E(X2V2) ], (2.12)

WLSE(X1ΘX2) = [ X1(X′
1V1X1)+X′

1V1 + X1F(V1X1)L1 ]Y

×[ V2X′
2(X2V2X′

2)+X2 + L2E(X2V2)X2 ], (2.13)

WLSE(K1ΘK2) = [ K1(X′
1V1X1)+X′

1V1 + K1F(V1X1)L1 ]Y

×[ V2X′
2(X2V2X′

2)+K2 + L2E(X2V2)K2 ] (2.14)

with

E[WLSE(Θ)] = [ (V1X1)+V1X1 + F(V1X1)L1X1 ]Θ

×[ X2V2(X2V2)+ + X2L2E(X2V2) ], (2.15)

E[WLSE(X1ΘX2)] = [ X1(V1X1)+V1X1 + X1F(V1X1)L1X1 ]Θ

×[ X2V2(X2V2)+X2 + X2L2E(X2V2)X2 ], (2.16)

E[WLSE(K1ΘK2)] = [ K1(V1X1)+V1X1 + K1F(V1X1)L1X1 ]Θ

×[ X2V2(X2V2)+K2 + X2L2E(X2V2)K2 ]. (2.17)

Eqs. (2.9)–(2.11) and (2.15)–(2.17) indicate that WLSE(Θ), WLSE(X1ΘX2) and
WLSE(K1ΘK2) are not necessarily unbiased for Θ, X1ΘX2 and K1ΘK2, respec-
tively. In Section 4, we shall give necessary and sufficient conditions such that
WLSE(Θ), WLSE(X1ΘX2) and WLSE(K1ΘK2) in (2.6)–(2.8) and (2.12)–(2.14) are
unbiased.
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If V1 = In and V2 = Im, then (2.6), (2.7) and (2.8) reduce to the following
ordinary least-squares estimators (OLSEs) of Θ, X1ΘX2 and K1ΘK2 under (1.1)

OLSE(Θ) = X+
1 YX+

2 + FX1U1 + U2EX2 , (2.18)
OLSE(X1ΘX2) = PX1YPX2 , (2.19)
OLSE(K1ΘK2) = K1X+

1 YX+
2 K2 + K1FX1U1K2 + K1U2EX2K2. (2.20)

3. Ranks of WLSEs under the growth curve model. Observe that (2.6),
(2.7) and (2.8) are three matrix pencils with two arbitrary matrices U1 and U2. One
of the most fundamental results on WLSE(Θ), WLSE(X1ΘX2) and WLSE(K1ΘK2)
in (2.6), (2.7) and (2.8) are their maximal and minimal possible ranks with respect
to the choice of U1 and U2.

Theorem 3.1. Let WLSE(Θ), WLSE(X1ΘX2) and WLSE(K1ΘK2) be as given
in (2.6), (2.7) and (2.8). Then:

(a) The maximal and minimal ranks of WLSE(Θ) are given by

max r[WLSE(Θ)] = min{p + q + r(X′
1V1YV2X′

2) − r(V1X1) − r(X2V2),
p, q} (3.1)

and
min r[WLSE(Θ)] = r(X′

1V1YV2X′
2). (3.2)

In particular, the rank of WLSE(Θ) is invariant if and only if one of the
following holds:

(i) r(X′
1V1YV2X′

2) = p,
(ii) r(X′

1V1YV2X′
2) = q,

(iii) r(V1X1) = p and r(X2V2) = q.
(b) The maximal and minimal ranks of WLSE(X1ΘX2) are given by

max r[WLSE(X1ΘX2)]
= min{ r(X′

1V1YV2X′
2) + r(X1) + r(X2) − r(V1X1) − r(X2V2)

r(X1), r(X2)}, (3.3)
and

min r[WLSE(X1ΘX2)] = r(X′
1V1YV2X′

2). (3.4)

In particular, the rank of WLSE(X1ΘX2) is invariant if and only if one of
the following holds:

(i) R(X′
1V1) = R(X′

1) and R(X2V1) = R(X2),
(ii) R(X′

1V1YV2X′
2) = R(X′

1),
(iii) R(X2V2Y′V1X1) = R(X2).

(c) The maximal and minimal ranks of WLSE(K1ΘK2) are given by

max r[WLSE(K1ΘK2)]

= min


r


X′

1V1YV2X′
2 X′

1V1X1 0
X2V2X′

2 0 K2

0 K1 0


 − r(V1X1) − r(X2V2),

r(K1), r(K2)} (3.5)
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and

min r[WLSE(K1ΘK2)]

= r


X′

1V1YV2X′
2 X′

1V1X1 0
X2V2X′

2 0 K2

0 K1 0


 − r

[
K1

V1X1

]
− r[ K2, X2V2 ]. (3.6)

(d) The maximal and minimal ranks of the residual matrix Y−WLSE(X1ΘX2)
are given by

max r[ Y − WLSE(X1ΘX2) ]

= min


r


 Y 0 X1

0 −X′
1V1YV2X′

2 X′
1V1X1

X2 X2V2X′
2 0


 − r(V1X1) − r(X2V2),

r[ Y, X1 ], r

[
Y
X2

]}
(3.7)

and

min r[ Y − WLSE(X1ΘX2) ]

= r[ Y, X1 ] + r

[
Y
X2

]
+ r


 Y 0 X1

0 −X′
1V1YV2X′

2 X′
1V1X1

X2 X2V2X′
2 0




− r

[
Y X1 0
X2 0 X2V2

]
− r


 Y X1

X2 0
0 V1X1


. (3.8)

Proof. Applying (1.17) and (1.18) to (2.6) gives

max r[WLSE(Θ)]
= max

U1,U2
r[ (X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+ + F(V1X1)U1 + U2E(X2V2) ]

= min
{

p, q, r

[
(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+ F(V1X1)

E(X2V2) 0

]}
(3.9)

and

min r[WLSE(Θ)]
= min

U1,U2
r[ (X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+ + FV1X1U1 + U2EX2V2 ]

= r

[
(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+ F(V1X1)

E(X2V2) 0

]
− r(F(V1X1)) − r(E(X2V2)). (3.10)

It can be derived from (1.4), (1.5) and (1.6) that

r(F(V1X1)) = p − r(V1X1), r(E(X2V2)) = q − r(X2V2),
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r

[
(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+ F(V1X1)

E(X2V2) 0

]
= r[(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+] + r(F(V1X1)) + r(E(X2V2))

= r(X′
1V1YV2X′

2) + p + q − r(V1X1) − r(X2V2),

so that (3.1) and (3.2) follow. Applying (1.15) and (1.16) to (2.7) gives

max r[WLSE(X1ΘX2)]
= max

U1,U2
r[ X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2

+ X1F(V1X1)U1X2 + X1U2E(X2V2)X2 ]

= min
{

r

[
X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2 X1F(V1X1)

E(X2V2)X2 0

]
,

r(X1), r(X2)} (3.11)

and
min r[WLSE(X1ΘX2)]
= min

U1,U2
r[ X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2

+ X1F(V1X1)U1X2 + X1U2E(X2V2)X2 ]

= r

[
X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2 X1F(V1X1)

E(X2V2)X2 0

]
− r(X1F(V1X1)) − r(E(X2V2)X2). (3.12)

Applying (1.4), (1.5) and (1.6) and simplifying by EBMOs give

r(X1F(V1X1)) = r(X1) − r(V1X1), r(E(X2V2)X2) = r(X2) − r(X2V2),

r

[
X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2 X1F(V1X1)

E(X2V2)X2 0

]

= r


X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2 X1 0

X2 0 X2V2

0 V1X1 0




− r(V1X1) − r(X2V2)

= r


 0 X1 0

X2 0 0
0 0 V1X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2V2




− r(V1X1) − r(X2V2)
= r(X1) + r(X2) + r[V1X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2V2]

− r(V1X1) − r(X2V2)
= r(X′

1V1YV2X′
2) + r(X1) + r(X2) − r(V1X1) − r(X2V2),
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so that (3.3) and (3.4) follow. Applying (1.15) and (1.16) to (2.8) gives

max r[WLSE(K1ΘK2)]
= max

U1,U2
r[ K1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+K2

+ K1F(V1X1)U1K2 + K1U2E(X2V2)K2 ]

= min
{

r

[
K1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+K2 K1F(V1X1)

E(X2V2)K2 0

]
,

r(K1), r(K2)} (3.13)

and

min r[WLSE(K1ΘK2)]
= min

U1,U2
r[ K1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+K2

+ K1F(V1X1)U1K2 + K1U2E(X2V2)K2 ]

= r

[
K1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+K2 K1F(V1X1)

E(X2V2)K2 0

]
−r(K1F(V1X1)) − r(E(X2V2)K2). (3.14)

Applying (1.4), (1.5) and (1.6) and simplifying by EBMOs give

r(K1F(V1X1)) = r

[
K1

V1X1

]
− r(V1X1), r(E(X2V2)K2) = r[ K2, X2V2 ] − r(X2V2),

r

[
K1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+K2 K1F(V1X1)

E(X2V2)K2 0

]

= r


K1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+K2 K1 0

K2 0 X2V2

0 V1X1 0




−r(V1X1) − r(X2V2)

= r


 0 K1 0

K2 0 X2V2

0 V1X1 V1X1(X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+X2V2




−r(V1X1) − r(X2V2)

= r


 0 K1 0

K2 0 X2V2X′
2

0 X′
1V1X1 X′

1V1YV2X′
2


 − r(V1X1) − r(X2V2),

so that (3.5) and (3.6) follow. Applying (1.15) and (1.16) to Y − WLSE(X1ΘX2)
gives
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max r[ Y − WLSE(X1ΘX2) ]
= max

U1,U2
r(Y − X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2

− X1F(V1X1)U1X2 − X1U2E(X2V2)X2 )

= min
{

r

[
Y − X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2 X1F(V1X1)

E(X2V2)X2 0

]
,

r[ Y, X1 ], r

[
Y
X2

]}
(3.15)

and
min r[ Y − WLSE(X1ΘX2) ]
= min

U1,U2
r[ Y − X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2

− X1F(V1X1)U1X2 − X1U2E(X2V2)X2 ]

= r[ Y, X1 ] + r

[
Y
X2

]
− r

[
Y X1F(V1X1)

X2 0

]
− r

[
Y X1

E(X2V2)X2 0

]

+ r

[
Y − X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2 X1F(V1X1)

E(X2V2)X2 0

]
. (3.16)

Applying (1.4), (1.5) and (1.6) and simplifying by EBMOs give

r

[
Y X1F(V1X1)

X2 0

]
= r


 Y X1

X2 0
0 V1X1


 − r(V1X1),

r

[
Y X1

E(X2V2)X2 0

]
= r

[
Y X1 0
X2 0 X2V2

]
− r(X2V2),

r

[
Y − X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2 X1F(V1X1)

E(X2V2)X2 0

]

= r


Y − X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2 X1 0

X2 0 X2V2

0 V1X1 0




− r(V1X1) − r(X2V2)

= r


 Y X1 −YV2

X2 0 0
−V1Y 0 V1YV2 − V1X1(X′

1V1X1)+X′
1V1YV2X′

2(X2V2X′
2)+X2V2




− r(V1X1) − r(X2V2)

= r


 Y X1 0

X2 0 X2V2

0 V1X1 −V1X1(X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+X2V2




−r(V1X1) − r(X2V2)
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= r


 Y X1 0

X2 0 X2V2X′
2

0 X′
1V1X1 −X′

1V1X1(X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+X2V2X′
2




−r(V1X1) − r(X2V2)

= r


 Y X1 0

X2 0 X2V2X′
2

0 X′
1V1X1 −X′

1V1YV2X′
2


 − r(V1X1) − r(X2V2),

so that (3.7) and (3.8) follow.
Partition the parameter matrix Θ in (1.1) as

Θ =
[

Θ11 Θ12

Θ21 Θ22

]
, (3.17)

where Θ11 ∈ R
p1×q1 . Then Θ11 can be written as Θ11 = K1ΘK2, where

K1 = [ Ip1 , 0 ] and K2 = [ Iq1 , 0 ]′. (3.18)

Applying Theorem 3.1(c) to Θ11 yields the following result.
Corollary 3.2. The maximal and minimal ranks of WLSE(Θ11) are given by

max r[WLSE(Θ11)]

= min
{

p1, q1, r

[
X′

1V1YV2X′
2 X′

1V1X12

X22V2X′
2 0

]
+ p1 + q1 − r(V1X1) − r(X2V2)

}
(3.19)

and

min r[WLSE(Θ11)] = r

[
X′

1V1YV2X′
2 X′

1V1X12

X22V2X′
2 0

]
− r(X′

1V1X12) − r(X21V2X′
2),

(3.20)
where

X1 = [ X11, X12 ] and X2 = [ X′
21, X′

22 ]′. (3.21)

Eqs. (3.1)–(3.8), (3.19) and (3.20) only give the maximal and minimal ranks of
the WLSEs of Θ, X1ΘX2, K1ΘK2 and Θ11 under (1.1). A more challenging task is
to give the WLSEs of Θ, X1ΘX2 and K1ΘK2 that achieve the extremal ranks. In
addition, it is of interest to construct WLSE(Θ), WLSE(X1ΘX2), WLSE(K1ΘK2)
and Θ11 with a given rank between the two maximal and minimal ranks. These
problems are referred to as reduced-rank regression in the literature. Some previous
work on reduced-rank regression for multivariate linear models can be found, e.g., in
[1, 2, 3, 6, 17, 30].

4. Unbiasedness of WLSEs under the growth curve model. One of the
most important and desirable properties of an estimator under (1.1) is its unbiasedness
for corresponding parametric functions.
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Lemma 4.1. Let WLSE(K1ΘK2) be given as in (2.14), and denote

PK1:X1:V1 = K1(X′
1V1X1)+X′

1V1 + K1F(V1X1)L1 (4.1)
and

QK2:X2:V2 = V2X′
2(X2V2X′

2)+K2 + L2E(X2V2)K2. (4.2)

Then the estimator is unbiased for K1ΘK2 under (1.1) if and only if

PK1:X1:V1X1ΘX2QK2:X2:V2 = K1ΘK2. (4.3)

In particular, if

PK1:X1:V1X1 = K1 and X2QK2:X2:V2 = K2, (4.4)

then the estimator WLSE(K1ΘK2) in (2.14) is unbiased for K1ΘK2 under (1.1).
Solving the two equations in (4.4) by Lemma 1.5, we obtain the following result.
Theorem 4.2. There exist PK1:X1:V1 and QK2:X2:V2 such that the two equalities

in (4.4) hold if and only if

R(K′
1) ⊆ R(X′

1) and R(K2) ⊆ R(X2).

In this case, the general expressions of PK1:X1:V1 and QK2:X2:V2 satisfying the two
equalities in (4.4) can be written as

P̂K1:X1:V1 = K1(X′
1V1X1)+X′

1V1 + K1FV1X1X
+
1 + K1FV1X1W1EX1 (4.5)

and
Q̂K2:X2:V2 = V2X′

2(X2V2X′
2)+K2 + X+

2 EX2V2K2 + FX2W2EX2V2K2, (4.6)

or equivalently,

P̂K1:X1:V1 = K1X−
1 + K1(X′

1V1X1)+X′
1V1( In − X1X−

1 ) (4.7)
and

Q̂K2:X2:V2 = X−
2 K2 + ( Im − X−

2 X2 )V2X′
2(X2V2X′

2)+K2, (4.8)

where W1 ∈ R
p×n and W2 ∈ R

m×q are arbitrary, and X−
1 and X−

2 are any g-inverses
of X1 and X2. Correspondingly,

WLSE(K1ΘK2) = P̂K1:X1:V1YQ̂K2:X2:V2

is unbiased for K1ΘK2 under M .
Corollary 4.3. The linear estimator

WLSE(X1ΘX2) = [ X1X−
1 + X1(X′

1V1X1)+X′
1V1( In − X1X−

1 ) ]Y
×[ X−

2 X2 + ( Im − X−
2 X2 )V2X′

2(X2V2X′
2)+X2 ]

is unbiased for X1ΘX2 under (1.1) for any two nonnegative definite matrices V1 and
V2.

Corollary 4.4. Let K1, K2, X1 and X2 be as given in (3.18) and (3.21). Then
there are PK1:X1:V1 and QK2:X2:V2 as in (4.1) and (4.2) such that the two equalities
in (4.4) hold if and only if

r(X11) = p1, r(X21) = q1, R(X11) ∩ R(X12) = {0}, R(X′
21) ∩ R(X′

22) = {0}.
In this case, WLSE(Θ11) = P̂K1:X1:V1YQ̂K2:X2:V2 is unbiased for Θ11 under M ,

where P̂K1:X1:V1 and Q̂K2:X2:V2 are as given in (4.7) and (4.8).
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5. Uniqueness of WLSEs under the growth curve model. Concerning
the uniqueness of WLSE(Θ), WLSE(X1ΘX2), WLSE(K1ΘK2) and WLSE(Θ11), we
have the following results.

Theorem 5.1. Let WLSE(Θ), WLSE(X1ΘX2) and WLSE(K1ΘK2) be as given
in (2.6), (2.7) and (2.8). Then,

(a) WLSE(Θ) is unique if and only if r(V1X1) = p and r(X2V2) = q. In this
case, the unique WLSE(Θ) can be written as

WLSE(Θ) = (X′
1V1X1)−1X′

1V1YV2X′
2(X2V2X′

2)−1 (5.1)

with

r[WLSE(Θ)] = r(X′
1V1YV2X′

2),
E[WLSE(Θ)] = Θ,

Cov[WLSE(Θ)] = σ2[(X2V2X′
2)−1X2V2ΣΣΣ2] ⊗ [(X′

1V1X1)−1X′
1V1ΣΣΣ1].

(b) WLSE(X1ΘX2) is unique if and only if R(X′
1V1) = R(X′

1) and R(X2V2) =
R(X2). In this case, the unique WLSE(X1ΘX2) can be written as

WLSE(X1ΘX2) = X1(X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+X2 (5.2)

with

r[WLSE(X1ΘX2)] = r(X′
1V1YV2X′

2),

r[ Y − WLSE(X1ΘX2) ] = r


 Y 0 X1

0 −X′
1V1YV2X′

2 X′
1V1X1

X2 X2V2X′
2 0




− r(X1) − r(X2)

and

E[WLSE(X1ΘX2)] = X1ΘX2,

Cov[WLSE(X1ΘX2)] = σ2[X′
2(X2V2X′

2)+X′
2V2ΣΣΣ2 ⊗ X1(X′

1V1X1)+X′
1V1ΣΣΣ1].

(c) WLSE(K1ΘK2) is unique if and only if R(K′
1) ⊆ R(X′

1V1) and R(K2) ⊆
R(X2V2). In this case, the unique WLSE(K1ΘK2) can be written as

WLSE(K1ΘK2) = K1(X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+K2 (5.3)

with

E[WLSE(K1ΘK2)] = K1ΘK2,

Cov[WLSE(K1ΘK2)] = σ2[K′
2(X2V2X′

2)+X′
2V2ΣΣΣ2 ⊗ K1(X′

1V1X1)+X′
1V1ΣΣΣ1].

(d) WLSE(Θ11) is unique if and only if

r(V1X11) = p1, r(X21V2) = q1,

R(V1X11) ∩ R(V1X12) = {0}, R(V2X′
21) ∩ R(V2X′

22) = {0}.
In this case, WLSE(Θ11) is unbiased for Θ11.
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Proof. It can be seen from (2.6) that WLSE(Θ) is unique F(V1X1) = 0 and
E(X2V2) = 0, both of them are equivalent to r(V1X1) = p and r(X2V2) = q. It can be
seen from (2.7) that WLSE(X1ΘX2) is unique X1F(V1X1) = 0 and E(X2V2)X2 = 0,
both of which are equivalent to r(V1X1) = r(X1) and r(X2V2) = r(X2), or equiv-
alently R(X′

1V1) = R(X′
1) and R(X2V2) = R(X2). It can be seen from (2.8) that

WLSE(K1ΘK2) is unique K1F(V1X1) = 0 and E(X2V2)K2 = 0, both of which are

equivalent to r

[
K1

V1X1

]
= r(V1X1) and r[ K2, X2V2 ] = r(X2V2), or equivalently,

R(K′
1) ⊆ R(X′

1V1) and R(K2) ⊆ R(V2X2). Result (d) is a direct consequence of
(c).

Two special cases of WLSE(X1ΘX2) and WLSE(K1ΘK2) in (2.7) and (2.8) are

WLSE(X1ΘX2) = X1(X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+X2 (5.4)
and

WLSE(K1ΘK2) = K1(X′
1V1X1)+X′

1V1YV2X′
2(X2V2X′

2)+K2, (5.5)

where V1 = (X1T1X′
1 + ΣΣΣ1)+ and V2 = (X′

2T2X2 + ΣΣΣ2)+, the two symmet-
ric matrices T1 and T2 are taken such that r(X1T1X′

1 + ΣΣΣ1) = r[ X1, ΣΣΣ1 ] and
r(X′

2T2X2 + ΣΣΣ2) = r[ X′
2, ΣΣΣ2 ]. In this case, (5.4) is the best linear unbiased estima-

tor (BLUE) of X1ΘX2 under (1.1), and (5.5) is the BLUE of K1ΘK2 under (1.1).
In particular, if both ΣΣΣ1 and ΣΣΣ2 are positive definite, and r(X1) = p and r(X2) = q,
then

WLSE(X1ΘX2) = X1(X′
1ΣΣΣ

−1
1 X1)−1X′

1ΣΣΣ
−1
1 YΣΣΣ−1

2 X′
2(X2ΣΣΣ−1

2 X′
2)−1X2 (5.6)

and
WLSE(K1ΘK2) = K1(X′

1ΣΣΣ
−1
1 X1)−1X′

1ΣΣΣ
−1
1 YΣΣΣ−1

2 X′
2(X2ΣΣΣ−1

2 X′
2)−1K2 (5.7)

are the unique BLUEs of X1ΘX2 and K1ΘK2 under (1.1), respectively.
Corollary 5.2. The ranks of the BLUE of X1ΘX2 in (5.6) and the residual

matrix Y − BLUE(X1ΘX2) can be written as

r[BLUE(X1ΘX2)] = r(X′
1ΣΣΣ−1

1 YΣΣΣ−1
2 X′

2)
and

r[ Y − BLUE(X1ΘX2) ] = r


 Y 0 X1

0 −X′
1ΣΣΣ

−1
1 YΣΣΣ−1

2 X′
2 X′

1ΣΣΣ
−1
1 X1

X2 X2ΣΣΣ−1
2 X′

2 0


 − p − q.

6. Conclusions. We have derived some algebraic and statistical properties of
the WLSEs of Θ, X1ΘX2 and K1ΘK2 under the general growth curve model in (1.1)
through the matrix rank method. These basic properties can be used to further inves-
tigate various problems associated with these estimators under (1.1). It is expected
that other interesting results of estimators of Θ, X1ΘX2 and K1ΘK2 can be derived
in a similar manner. Furthermore, the matrix rank method can be used to investigate
the restricted growth curve model

Y = X1ΘX2 + εεε, A1ΘA2 = B, E(εεε) = 0, Cov[vec(εεε)] = σ2(ΣΣΣ2 ⊗ΣΣΣ1),
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and the extended growth curve model

Y = X11Θ1X21 + · · · + X1kΘkX2k + εεε, E(εεε) = 0, Cov[vec(εεε)] = σ2(ΣΣΣ2 ⊗ΣΣΣ1).

The method can also be used to derive algebraic and statistical properties of estima-
tors under other types of regression model for longitudinal and panel data.
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