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Abstract. It is shown that every real n×n matrix is a product of at most two nonnegative sign

equivalent matrices, and every real n × n matrix, n ≥ 2, is a product of at most three nonnegative
sign similar matrices. Finally, it is proved that every real n×n matrix is a product of totally positive
sign equivalent matrices. However, the question of the minimal number of such factors is left open.
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1. Nonnegative Sign Equivalent Factorization.
Notation 1.1. Let n be a positive integer, let A be an n × n matrix and let α

and β be nonempty subsets of {1, . . . , n}. We denote by A[α|β] the submatrix of A
whose rows and columns are indexed by α and β, respectively, in natural lexicographic
order.

Definition 1.2.
i) A matrix A is said to be totally positive if all minors A are nonnegative.
ii) A matrix A is said to be strictly totally positive if all minors A are strictly positive.
iii) An upper triangular matrix A is said to be triangular strictly totally positive if all
minors that can possibly be nonzero are strictly positive. That is, the determinant of
A[α|β] is strictly positive whenever α = {i1, . . . , ik}, i1 < · · · < ik, β = {j1, . . . , jk},
j1 < · · · < jk, and im ≤ jm, m = 1, . . . , k, for all possible α, β and k.

Definition 1.3. A matrix is said to be nonnegative sign equivalent if it can be
written in the form D1QD2 with Q (entrywise) nonnegative and D1 and D2 diagonal
matrices with diagonal elements equal to ±1.

Clearly, not every matrix is nonnegative sign equivalent. Fully supported matrices
that are nonnegative sign equivalent were characterized in [2, Theorem 4.12], while
the general case is covered in [5], [6], [8], [9] and [10]. It is interesting to ask whether
every real matrix is a product of nonnegative sign equivalent matrices. Also, if a
matrix is a product of such matrices, what is the minimal number of nonnegative sign
equivalent matrices in such a factorization?

In this section we show that every real matrix is a product of at most two non-
negative sign equivalent matrices.
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Our main result is the following factorization theorem.
Theorem 1.4. Let A be a real n × n matrix. Then we can always factor A in

the form A = DQB, where D is a diagonal matrix with diagonal elements equal to
±1, Q is a nonnegative matrix, and B is the inverse of an upper triangular strictly
totally positive matrix with diagonal elements equal to 1.

Proof. We first construct the matrix D = diag (d11, . . . , dnn) as follows. Let i ∈
{1, . . . , n}. If the ith row of A contains a nonzero element then we set dii = sgn (aij),
where j = min{k : aik 	= 0}. If the ith row of A is identically zero then we choose
dii as 1 or −1, arbitrarily. Let P be the permutation matrix rearranging the rows of
PDA = C = {cij}n

i,j=1 to have the form




+
...
+
0 +
...

...
0 +
0 0 +
...
0 · · · · · · · · · 0 + · · ·




. (1.5)

That is, if cij = 0, j = 1, . . . , m, then clj = 0, j = 1, . . . , m, l = i, . . . , n. In
other words, there exist n integers l0 = 0 ≤ l1 ≤ · · · ≤ ln ≤ n such that for every
k ∈ {1, . . . , n} we have

cij = 0, i = lk−1 + 1, . . . , lk, 1 ≤ j < k

cik > 0, i = lk−1 + 1, . . . , lk

cij = 0, i > lk, 1 ≤ j ≤ k.

(If lk−1 = lk then the first two conditions are empty.) Note that if ln < n, then the
rows ln + 1, . . . , n are identically zero.

We have P−1 = PT and D−1 = D. Thus, A = DPT C. We now construct an n × n
matrix M which is a unit diagonal upper triangular strictly totally positive matrix
and such that CM is a nonnegative matrix. We define M = {mij}n

i,j=1 using the
following algorithm.

Initialization: Let 


mii = 1

mij = 0, i > j
, i, j = 1, . . . , n. (1.6)
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Step p, p = 1, . . . : Let i be the largest index of a row containing elements that have
not yet been fixed, and let j be the largest index such that mij has not yet been fixed.
Note that by (1.6) we have i < j. We choose mij > 0 sufficiently large so that

detM [{i, i + 1, . . . , i + k}|{j, j + 1, . . . , j + k}] > 0, k = 0, . . . , n − j. (1.7)

Observe that this is possible since we have already fixed all other entries of the rows
i, . . . , n and columns j, . . . , n, and because

detM [{i + 1, . . . , i + k}|{j + 1, . . . , j + k}] > 0, k = 1, . . . , n − j.

Also, if li−1 < li then mij > 0 is chosen sufficiently large so that

(CM)pj = cpimij +
j∑

t=i+1

cptmtj > 0, p = li−1, . . . , li.

Note that this is doable since mtj have already been specified for i < t ≤ j.

Finalization: The algorithm terminates whenever the matrix M is fully fixed.

It follows from the form (1.5) of C and the definition of the matrix M that
Q1 = CM is a nonnegative matrix. Also, since M satisfies (1.6) as well as (1.7) for
all i and j, it follows by [1] that M is a unit diagonal upper triangular strictly totally
positive matrix. Therefore, we have C = Q1B, where Q1 is a nonnegative matrix and
B is the inverse of a unit diagonal upper triangular strictly totally positive matrix.
As A = DPT C = DPT Q1B, our claim follows.

Corollary 1.8. Every real matrix is a product of at most two nonnegative sign
equivalent matrices.

Proof. Let A = DQB be a factorization of a real n × n matrix A as proven in
Theorem 1.4. Being the inverse of a unit diagonal upper triangular strictly totally
positive matrix, the matrix B has the form B = D∗R̂D∗ where R̂ is a unit diagonal
upper triangular strictly totally positive matrix, and D∗ is the n×n diagonal matrix
with diagonal elements d∗ii = (−1)i+1, i = 1, . . . , n. Thus, A can be factored in the
form A = DQD∗R̂D∗.

2. Nonnegative Sign Similar Factorization.
Definition 2.1. A matrix is said to be nonnegative sign similar if it can be

written in the form DQD with Q nonnegative and D a diagonal matrix with diagonal
elements equal to ±1.

Clearly, not every matrix is nonnegative sign similar. It is known that an irre-
ducible real matrix A is nonnegative sign similar if and only if all cyclic products of
A are nonnegative. This is an easy consequence of [2, Theorem 4.1] or of [3, Theorem
4.1]. The treatment of reducible matrices can be found in [8], [9] and [10], in [5] and
in [6]. In view of Corollary 1.8 it is also natural to ask whether every real matrix is
a product of nonnegative sign similar matrices. In this section we show that with the
obvious exception of negative 1×1 matrices, every real matrix is a product of at most
three nonnegative sign similar matrices.
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Theorem 2.2. Every real n × n matrix, n ≥ 2, is a product of at most three
nonnegative sign similar matrices.

We divide the proof of this theorem into three parts because of the different
methods of proof in each.

Proposition 2.3. Every real matrix which is not a diagonal matrix with all
diagonal elements negative, is a product of at most three nonnegative sign similar
matrices.

Proof. Let A = {aij}n
i,j=1 be an n × n matrix which is not a diagonal ma-

trix with all diagonal elements negative. It follows that for some k ∈ {1, . . . , n}
either akk ≥ 0 or the kth row of the matrix A contains a nonzero off-diagonal el-
ement. We define an n × n matrix M = {mij}n

i,j=1 as follows. We set mii = 1,
i = 1, . . . , n, and mij = 0 whenever i 	= j and j 	= k. Observe that the kth column
of AM is obtained by adding columns 1, . . . , k − 1, k + 1, . . . , n of A, multiplied by
m1k, . . . , mk−1,k, mk+1,k, . . . , mnk, respectively, to the kth column. Therefore, we can
assign values m1k, . . . , mk−1,k, mk+1,k, . . . , mnk such that (AM)ik 	= 0 whenever the
ith row of A contains a nonzero element (including the case i = k) and such that
(AM)kk ≥ 0. Let D1 be the diagonal sign matrix defined by

(D1)ii =




1, (AM)ik ≥ 0

−1, (AM)ik < 0.

Observe that the kth column of D1AM is nonnegative. Since (D1)kk = 1, it follows
that the kth column of C = D1AMD1 too is nonnegative. We now define a nonneg-
ative n×n matrix Q = {qij}n

i,j=1 as follows. We set qii = 1, i = 1, . . . , n, and qij = 0
whenever i 	= j and i 	= k. Observe that B = CQ is the matrix obtained by adding the
kth column of C multiplied by qk1, . . . , qk,k−1, qk,k+1, . . . , qkn to columns 1, . . . , k −
1, k + 1, . . . , n, respectively. Therefore, we can choose qk1, . . . , qk,k−1, qk,k+1, . . . , qkn

to be positive numbers such that B is a nonnegative matrix. Since D−1
1 = D1, we

have

A = D1BQ−1D1M
−1.

It is easy to verify that

(M−1)ij =




1, i = j

0, i 	= j, j 	= k

−mik, j = k, i 	= k

and

(Q−1)ij =




1, i = j

0, i 	= j, i 	= k

−qkj , i = k, j 	= k.
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Let D2 and D3 be the diagonal matrices defined by

(D2)ii =




1, i = k

1, i 	= k, mik < 0

−1, i 	= k, mik ≥ 0

and

(D3)ii =




1, i 	= k

−1, i = k.

It follows that M1 = D2M
−1D2 and Q1 = D3Q

−1D3 = Q are nonnegative matrices.
Hence, we have

A = D1BD3Q1D3D1D2M1D2 = (D1BD1)(D1D3Q1D3D1)(D2M1D2),

proving our claim.
Proposition 2.4. Let n be an even positive integer, and let A be a diagonal n×n

matrix with all diagonal elements negative. Then A is a product of two nonnegative
sign similar matrices.

Proof. Let P = PT be the permutation matrix corresponding to the permutation
(1, 2) (3, 4) . . . (n − 1, n), and let D be the n × n diagonal matrix diagonal elements
dii = (−1)i+1, i = 1, . . . , n. Observe that the matrix Q = DAPD is nonnegative.
Therefore we have A = DQDP , and our claim follows.

Proposition 2.5. Let n be an odd positive integer, n ≥ 3, and let A be a diagonal
n×n matrix with all diagonal elements negative. Then A is a product of at most two
nonnegative sign similar matrices.

Proof. Let Q = {qij}n
i,j=1 be any strictly totally positive matrix. Since n is

odd, we can increase q2,n−1 so that the determinant of Q[{2, . . . , n}|{1, . . . , n − 1}]
becomes negative. Now, we increase q1,n−1 so that the determinants of all (n − 1)×
(n − 1) submatrices whose upper-rightmost element is q1,n−1 become negative, and
we increase q2n so that the determinants of all (n − 1) × (n − 1) submatrices whose
upper-rightmost element is q2n become negative. Finally, we increase q1n so that the
determinants of all (n−1)×(n−1) submatrices whose upper-rightmost element is q1n

become negative and the determinant of the whole resulting matrix Q̄ is positive. The
matrix Q̄ is entrywise positive, with a positive determinant, and all minors of order
n− 1 negative. Thus, the sign of the (Q̄−1)ij is (−1)i+j+1. Let B = −Q̄−1 and let D
be the n×n diagonal matrix diagonal elements dii = (−1)i+1, i = 1, . . . , n. Note that
DBD is a nonnegative matrix and that Q̄B = −I. Let D1 be the diagonal matrix
whose diagonal elements are the absolute values of the elements of A. A required
factorization is now A = (D1Q̄)B.

Remark 2.6. Proposition 2.4 also follows easily by the method of proof in
Proposition 2.5. The desired matrix Q̄ is obtained by taking any strictly totally
positive matrix and simply reversing the order of the rows (or columns).
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Remark 2.7. Clearly, a 1× 1 matrix with a negative element cannot be written
as a product of 1× 1 nonnegative sign similar matrices.

In view of Theorem 2.2 the minimal number of nonnegative sign similar matrices
in a factorization of a real matrix does not exceed three. The following example shows
that the minimal number is three.

Example 2.8. Let

A =
[

1 0
0 −1

]
.

Since a22 < 0, the matrix A is not nonnegative sign similar. We now show that A is
also not a product of two nonnegative sign similar matrices. Assume to the contrary
that A = B1B2, where B1 and B2 are nonnegative sign similar. It is easy to verify
that a 2× 2 matrix is nonnegative sign similar if and only if it is either of type[

+ +
+ +

]
(2.9)

or of type [
+ −
− +

]
, (2.10)

where “ + ” denotes a nonnegative element and “− ” denotes a nonpositive element.
Since the product of two matrices of type (2.9) is a matrix of type (2.9) and a product
of two matrices of type (2.10) is a matrix of type (2.10), the matrices B1 and B2 are
of different types. Since A = AT , without loss of generality we may assume that B1

is of type (2.9) and B2 is if type (2.10). Let D = diag (1,−1). Since B1B2 = A, we
have B1(B2D) = I, and so B−1

1 = B2D. Note that B2D is of type
[

+ +
− −

]
. (2.11)

Observe that if detB1 > 0 then B−1
1 is of type (2.10). For B−1

1 to be of both types
(2.10) and (2.11) it requires that the second column of B−1

1 is a zero column, which
is impossible. Similarly, if detB1 < 0 then B−1

1 is of type
[ − +

+ −
]

. (2.12)

For B−1
1 to be of both types (2.11) and (2.12) it requires that the first column of B−1

1

is a zero column, which is impossible. Therefore, our assumption that A is a product
of two nonnegative sign similar matrices is false.

There are numerous products of three nonnegative sign similar matrices that give
A. For example, [

1 0
0 −1

]
=

[
1 2
1 1

] [
1 −2
0 1

] [
1 0
1 1

]
.
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3. Totally Positive Sign Equivalent Factorization.
Definition 3.1. A matrix is said to be totally positive sign equivalent if it can be

written in the form D1QD2 with Q totally positive and D1 and D2 diagonal matrices
with diagonal elements equal to ±1.

It is interesting to ask whether every real matrix is a product of totally positive
sign equivalent matrices. Also, if a matrix is a product of such matrices, what is the
minimal number of totally positive sign equivalent matrices in such a factorization?
We will prove that every matrix is a product of totally positive sign equivalent matri-
ces. However we do not know the minimal number of totally positive sign equivalent
matrices in such a factorization. The number is at least three, as we shall show. But
this question remains open.

Proposition 3.2. Every square real matrix is a product of totally positive sign
equivalent matrices.

Proof. The proof is a simple consequence of the fact that every matrix A =
{aij}n

i,j=1, where aii ≥ 0, i = 1, . . . , n, aj,j+1 ≥ 0 (or aj+1,j ≥ 0), j = 1, . . . , n − 1,
and all other entries identically zero, is totally positive. As such the class of totally
positive sign equivalent matrices includes all bidiagonal matrices, that is matrices of
the form A = {aij}n

i,j=1, where the only nonzero entries are possibly aii, i = 1, . . . , n,
and aj,j+1 (or aj+1,j), j = 1, . . . , n − 1. It is well-known that every matrix can be
factored as a product of bidiagonal matrices. The existence of such a factorization,
the so-called Loewner-Neville factorization, was proven in [4] for square matrices
satisfying certain invertibility conditions. It was proven for general matrices in [7],
where there is also a discussion on the minimal number of required factors.

Example 3.3. Let us show that the matrix

A =
[

0 1
1 0

]

is the product of exactly three totally positive sign equivalent matrices, and no less.
To see that three suffices consider, for example, the factorization:[

0 1
1 0

]
=

[
1 −1
0 1

] [
1 0
1 1

] [
1 1
0 −1

]
.

It is easily verified that each factor on the right-hand-side of this factorization is
totally positive sign equivalent.

It remains to show that A cannot be factored as a product of two totally positive
sign equivalent matrices. Assume to the contrary that

A = D1BD2CD3,

where D1, D2 and D3 are diagonal matrices with diagonal elements equal to ±1, while
B and C are totally positive. Thus

D1AD3 = BD2C

and as is easily checked,

D1AD3 = E =
[

0 σ1

σ2 0

]
,
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where σ1, σ2 ∈ {−1, 1}. As E is nonsingular, so are B and C, and therefore

B−1 = D2CE−1.

Let

B−1 =
[

g11 g12

g21 g22

]
.

As B is totally positive we have that detB−1 > 0, g11, g22 > 0 and g12, g21 ≤ 0.
Let

D2 =
[

d1 0
0 d2

]
, C =

[
c11 c12

c21 c22

]
.

As

E−1 =
[

0 σ2

σ1 0

]

we have

D2CE−1 =
[

d1σ1c12 d1σ2c11

d2σ1c22 d2σ2c21

]
.

We now compare B−1 and D2CE−1, and arrive at a contradiction.
As C is totally positive and nonsingular we have c11, c22 > 0, c12, c21 ≥ 0, and

detC = c11c22 − c12c21 > 0.

Thus, from the form of B−1, d1σ1 = d2σ2 = 1 while d1σ2 = d2σ1 = −1. Now from
the properties of B−1 and C,

0 < detB−1 = detD2CE−1 = c12c21 − c11c22 < 0,

which is a contradiction.
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