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ZEROS OF UNILATERAL QUATERNIONIC POLYNOMIALS∗

STEFANO DE LEO† , GISELE DUCATI‡ , AND VINICIUS LEONARDI§

Abstract. The purpose of this paper is to show how the problem of finding the zeros of
unilateral n-order quaternionic polynomials can be solved by determining the eigenvectors of the
corresponding companion matrix. This approach, probably superfluous in the case of quadratic
equations for which a closed formula can be given, becomes truly useful for (unilateral) n-order
polynomials. To understand the strength of this method, it is compared with the Niven algorithm
and it is shown where this (full) matrix approach improves previous methods based on the use of the
Niven algorithm. For convenience of the readers, some examples of second and third order unilateral
quaternionic polynomials are explicitly solved. The leading idea of the practical solution method
proposed in this work can be summarized in the following three steps: translating the quaternionic
polynomial in the eigenvalue problem for its companion matrix, finding its eigenvectors, and, finally,
giving the quaternionic solution of the unilateral polynomial in terms of the components of such
eigenvectors. A brief discussion on bilateral quaternionic quadratic equations is also presented.
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1. Introduction. As far as we know, the problem of solving quaternionic qua-
dratic equations and the study of the fundamental theorem of algebra for quaternions
were first approached by Niven and Eilenberg [1, 2]. After these fundamental works,
the question of counting the number of zeros of n-order quaternionic polynomials and
the problem to find the solutions have been investigated. An interesting application
of unilateral quadratic equations (where a closed formula for their solutions can be
obtained) is found in solving homogeneous quaternionic linear second order differential
equations with constant coefficients [3, 4]. The solution of

d2

dx2
Ψ(x)− a1

d
dx

Ψ(x)− a0 Ψ(x) = 0 ,(1.1)

where Ψ : R → H , a0,1 ∈ H (the set of quaternions) and x ∈ R, can indeed be
reduced, by setting Ψ(x) = exp[q x] (q ∈ H) and using the H-linearity of Eq.(1.1), to
the following quadratic equation

q2 − a1 q − a0 = 0 .(1.2)

∗Received by the editors 7 December 2005. Accepted for publication 15 October 2006. Handling
Editor: Angelika Bunse-Gerstner.

†Department of Applied Mathematics, University of Campinas, SP 13083-970, Campinas, Brazil
(deleo@ime.unicamp.br).

‡Department of Mathematics, University of Parana, PR 81531-970, Curitiba, Brazil
(ducati@mat.ufpr.br).

§Department of Physics, University of Parana, PR 81531-970, Curitiba, Brazil
(vjhcl02@fisica.ufpr.br).

297

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 297-313, November 2006

http://math.technion.ac.il/iic/ela



ELA

298 S. De Leo, G. Ducati, and V. Leonardi

Generalizing this result, we see that the problem of finding the solution of n-order
(H-linear) differential equations with constant coefficients,

dn

dxn
Ψ(x)−

n−1∑
s=1

as
ds

dxs
Ψ(x)− a0 Ψ(x) = 0 ,(1.3)

where a0,1,...,n−1 ∈ H, can be immediately transformed to the problem of finding the
zeros of the corresponding n-order unilateral quaternionic polynomial,

An(q) := qn −
n−1∑
s=0

as q
s .(1.4)

The important point to be noted here is that such a solution method based on find-
ing the zeros of the corresponding quaternionic polynomial for H-linear differential
equations with constant coefficients does not work for R and C-linear differential
equations. For example, in non-relativistic quaternionic quantum mechanics [5], the
one-dimensional Schrödinger equation (for quaternionic stationary states) in presence
of a constant quaternionic potential, reads

i
�

2

2m
d2

dx2
Φ(x) − (i V1 + j V2 + k V3) Φ(x) = −Φ(x)E i ,(1.5)

and, due to the C-linearity, its solution cannot be expressed in terms of a quaternionic
exponential function, exp[q x]. Recent studies of quaternionic barrier [6] and well [7]
potentials confirmed that the solution of Eq.(1.5) has to be expressed as the product
of two factors: a quaternionic constant coefficient, p, and a complex exponential
function, exp[z x] (z ∈ C). Using Φ(x) = p exp[z x], the Eq.(1.5) reduces to

i
�2

2m
pz2 − (i V1 + j V2 + k V3) p = − pE i ,(1.6)

which obviously does not represent a quaternionic unilateral polynomial. For a more
complete discussion of R and C linear quaternionic differential equation theory, we
refer the reader to the papers cited in refs. [3, 8].

The problem of finding the zeros of unilateral quaternionic polynomials was solved
in 1941 by using a two-step algorithm. In his seminal work [9], Niven proposed to
divide the unilateral n-order quaternion polynomial (1.4) by a quadratic polynomial
with real coefficients (c0,1 ∈ R)

C2(q) := q2 − c1 q − c0 .(1.7)

Then, by using the polynomial equation

An(q) = Bn−2(q)C2(q)−D1(q) ,(1.8)

where

Bn−2(q) := qn−2 −
n−3∑
s=0

bs q
s , D1(q) := d1 q + d0 , b0,1,...n−3 , d0,1 ∈ H ,

the problem of finding the zeros of An(q) was translated in the following two-step
problem:
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• step 1 - determine d0 and d1 in terms of c0,1 and a0,1,...,n−1;
• step 2 - obtain two coupled real equations which allow to calculate c0 and c1.

To facilitate the understanding of this paper, we explicitly discuss the Niven algorithm
in the next section. Since its proof is quite detailed and, furthermore, since its use
can be completely avoided, we merely state the results without proof.

In a recent paper [10], Serôdio, Pereira and Vitoria (SPV) proposed a practical
technique to compute the zeros of unilateral quaternion polynomials. The SPV ap-
proach is based on the use of the Niven algorithm [9]. Their idea was to improve such
an algorithm by calculating the real coefficients c0 and c1 by using, instead of the sec-
ond part of the Niven algorithm, the (complex) eigenvalues of the companion matrix
associated with the quaternionic polynomial An(q). The SPV approach, avoiding the
solution of the coupled real equations (step 2), surely simplifies the Niven algorithm
and gives a more practical method to find the zeros of n-order unilateral quaternionic
polynomials. However, once the real coefficients c0 and c1 are obtained in terms of the
moduli and real parts of the complex eigenvalues of the companion matrix, we have
to find the quaternionic coefficients d0 and d1. It seems that we have no alternative
choice and we have to come back to the Niven algorithm (step 1).

In this paper, we show that the matrix approach (based on the use of the quater-
nion eigenvalue problem) leads us to find directly the solutions of unilateral quaternion
polynomials by calculating the eigenvectors of the companion matrix. This allow us
to completely avoid the use of the Niven algorithm and, consequently, to simplify the
method to finding the zeros of unilateral quaternionic polynomials.

We interrupt our discussion at this point to introduce, the Niven algorithm and
the vector-matrix notation. These tools would permit a more pleasant reading of the
article and render our exposition self-consistent.

2. The Niven algorithm. In this section, we aim to concentrate on the Niven
algorithm. We shall first discuss the method proposed by Niven for a generic n-order
quaternionic polynomial, then, to illustrate the potential and problems of the Niven
algorithm, we consider an explicit example, i.e. a quadratic polynomial.

In order to determine the quaternionic coefficients d0 and d1 in terms of the real
coefficients of the second order polynomial C2(q) and of the quaternionic coefficients
of the n-order polynomials An(q), we expand the polynomial product Bn−2(q)C2(q),

Bn−2(q)C2(q) = qn − (bn−3 + c1) qn−1 − (bn−4 − c1 bn−3 + c0) qn−2 +

−
n−3∑
s=2

(bs−2 − c1 bs−1 − c0 bs) qs +

+(c1 b0 + c0 b1) q + c0 b0 .(2.1)

For a particular choice of the quaternionic coefficients of the polynomial Bn−2(q), i.e.

bn−3 = an−1 − c1 ,

bn−4 = an−2 + c1 bn−3 − c0 ,

bs−2 = as + c1 bs−1 + c0 bs (s = 2, 3, · · · , n − 3) ,(2.2)
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we can rewrite Eq.(2.1) as follows

Bn−2(q)C2(q) = An(q) + (a1 + c1 b0 + c0 b1) q + a0 + c0 b0 .(2.3)

Comparing this equation with the polynomial equation (1.8), we obtain (step 1)

d1 = a1 + c1 b0(c0,1; a2,3,···,n−1) + c0 b1(c0,1; a2,3,···,n−1) ,

d0 = a0 + c0 b0(c0,1; a2,3,···,n−1) .(2.4)

This show that by some simple algebraic manipulations, we can express the quater-
nionic coefficients d0,1 in terms of the real coefficients c0,1 and of the quaternionic
coefficients a0,1,...,n−1. This represents step 1 of the Niven algorithm. As stated in the
introduction, to complete the Niven algorithm, we have to determine the real coeffi-
cients c0,1 (step 2). Once such coefficients are obtained, we can explicitly calculate the
coefficients d0,1 by using Eq.(2.4) which, after step 2, only contains known quantities.
It is natural to ask why the quaternionic coefficients d0,1 are important in calculating
the quaternionic solution of the polynomial An(q). The answer is given by observing
that if q∗ is a solution of An(q) [⇒ An(q∗) = 0] and { c0 , c1 } = {− |q∗|2 , 2Re[q∗] }
[⇒ C2(q∗) = 0], then from Eq.(1.8), we find

D1(q∗) = 0 ⇒ q∗ = − d̄1 d0 / |d1|2 .(2.5)

The quaternionic solution can thus be expressed in terms of the coefficients d0,1.
Turning to the problem of determining the real coefficients c0,1, Niven noted that

c0 = − |q∗|2 = − |d0|2 / |d1|2 and c1 = 2Re[q∗] = −2Re[d̄1 d0] / |d1|2 .

Consequently, in order to find c0,1 we have to solve the following system (step 2)

c0 |d1(c0,1; a1,2,3,···,n−1)|2 + |d0(c0,1; a0,2,3,···,n−1)|2 = 0 ,(2.6)
c1 |d1(c0,1; a1,2,3,···,n−1)|2 + 2Re[d̄1(c0,1; a1,2,3,···,n−1)d0(c0,1; a0,2,3,···,n−1)] = 0 .

Each real coupled solution { c0 , c1 } gives the modulus and the real part of the quater-
nionic polynomial solution.

• Second order quaternionic polynomials. The main (practical) problem in
using the Niven algorithm is in step 2, that is finding the real solutions of the coupled
system (2.6). To illustrate the difficulty in using the Niven algorithm, we solve the
following quaternionic quadratic equation

q2 + j q + (1− k) = 0 [A2(q) = q2 − a1 q − a0 , a0 = k − 1 , a1 = −j ] .(2.7)

Second order polynomials represent the more simple situation in which we can test
the Niven algorithm. In this case, the quaternionic polynomial Bn−2(q) reduces to
B0(q) = −b0 = 1. Consequently,

B0(q)C2(q) = q2 − c1 q − c0

= q2 − a1 q − a0 + ( a1 − c1 ) q + a0 − c0

= A2(q) +D1(q) .
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From the previous equation or equivalently by setting b1 = 0 and b0 = −1 in Eq.(2.4),
we obtain

d1 = a1 − c1 ,

d0 = a0 − c0 .(2.8)

Now, for second order polynomials, Eq.(2.6) reduces to

c0 |a1 − c1|2 + |a0 − c0|2 = 0 ,

c1 |a1 − c1|2 + 2Re[(ā1 − c1)(a0 − c0)] = 0 .(2.9)

The solution of this system is not simple. In this special case, the choice of

a1 = −j and a0 = k − 1 ,

reduces the system (2.9) to

c0 (1 + c2
1) + (1 + c0)2 + 1 = 0 ,

c1 (1 + c2
1) + 2 c1 (1 + c0) = 0 .(2.10)

The discussion can be then simplified by considering

c1 	= 0 and c1 = 0 .

In the first case no real coupled solution exists. For c1 = 0, we have

( c0 , c1 ) =
{

(−1, 0)
(−2, 0) ⇒ ( d0 , d1 ) =

{
(k,−j)
(k + 1,−j) .

Finally, by using Eq.(2.5) we conclude that the solutions of the quadratic equation
(2.7) are given by

q∗ =
{ − i

− (i+ j) .(2.11)

By direct substitution, we can easily verify that −i and −(i+ j) represent the zeros
of our quadratic polynomial. Before concluding this brief review of the Niven algo-
rithm and underlining that it surely is an important (old) technique for obtaining
the solution of n-order unilateral quaternionic polynomial, we wish to emphasize that
the system (2.9) and, in general, the system (2.4) are not very practical and their
solutions could require laborious calculations.

3. Companion matrix and SPV method. Taking as our guide the standard
complex matrix theory, we associate to the n-order unilateral quaternionic polynomial
An(q) the following companion matrix

an−1 an−2 · · · a1 a0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .(3.1)
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In standard complex theory, the zeros of n-order polynomials can be determined
by calculating the eigenvalues of the corresponding companion matrix. Any direct
attempt based upon a straightforward expansion of the determinant |Mn[H]− λ I| is
surely destined for failure due to the non-commutativity of the quaternionic algebra
[11]. The quaternionic eigenvalue problem has recently been investigated by means
of the complex representation of quaternionic matrices. It is clear that the rigorous
presentation of the quaternionic eigenvalue problem would require a deep knowledge
of quaternionic matrix theory. To facilitate the understanding of this paper, we
do not discuss any theoretical aspect of the quaternionic eigenvalue problem here
and aim to give a practical matrix solution method based on complex translation
rules. We refer the reader to the articles cited in refs. [12, 13, 14] for a through
discussion of quaternionic diagonalization and Jordan form. In order to appreciate
some of the potentialities of the complex representation of quaternionic matrices, we
shall consider in detail the case of second-order polynomials and show how we can
immediately obtain the coefficients c0 and c1 by calculating the real part and the
modulus of the eigenvalues associated to the complex matrix which represents the
complex translation of the quaternionic companion matrix (SPV method [10]).

Before analyzing the companion matrix associated to a second-order unilateral
quaternionic polynomial and calculate its eigenvalues, we give the main idea of the
complex translation by using a generic 2× 2 quaternionic matrix,

M2[H] =
(

q1 q2

q3 q4

)
, q1,2,3,4 ∈ H .

The complex translation would proceed along the following lines. A first possibility
is the use of the symplectic form directly for the quaternionic matrix M2[H],

M2[H] =
(

z1 z2

z3 z4

)
+ j

(
w1 w2

w3 w4

)
,

i.e.,

M2[H] → M4[C] =


z1 z2 −w̄1 −w̄2

z3 z4 −w̄3 −w̄4

w1 w2 z̄1 z̄2

w3 w4 z̄3 z̄4

 ,(3.2)

where z1,2,3,4 and w1,2,3,4 ∈ C. In this case the symplectic decomposition directly
applies to the complex matrix blocks. Another possibility is represented by the use
of the symplectic decomposition for the quaternionic elements of M2[H],

M2[H] =
(

z1 + j w1 z2 + j w2

z3 + j w3 z4 + j w4

)
,

i.e.,

M2[H] → M̃4[C] =


z1 −w̄1 z2 −w̄2

w1 z̄1 w2 z̄2

z3 −w̄3 z4 −w̄4

w3 z̄3 w4 z̄4

 .(3.3)
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For the problem of finding the zeros of quaternionic polynomial, the complex represen-
tations (3.2) and (3.3) represent equivalent choices. In fact, there exist a permutation
matrix

P4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


which converts M4[C] to M̃4[C] by using a simple similarity transformation,

M̃4[C] = P4 M4[C]P4 .

In Appendix A, we extend this similarity for the matricesM2n[C] and M̃2n[C] (complex
counterparts of the n-dimension quaternionic matrix Mn[H]),

M̃2n[C] = P2n M2n[C]P2n ,

by explicitly giving the permutation matrix P2n. Such a matrix will be obtained by
working with the complex representations of the quaternionic column vectors asso-
ciated to the matrix representations (3.2) and (3.3). Due to this equivalence, in all
the explicit examples given in this paper, we shall use, without loss of generality, the
complex matrix representation M2n[C].

• Second order quaternionic polynomials. Let us consider the unilateral quater-
nionic polynomial discussed in the previous section, Eq. (2.7). In this case, the
quaternionic companion matrix is

M2[H] =
( −j k − 1

1 0

)
.(3.4)

The SPV method allows us to obtain the real coefficients c0 and c1 by calculating the
eigenvalues of the complex matrix M4[C],

{λ1 , λ2 , λ̄1 , λ̄2 , } ,

which, due to the particular structure of the complex symplectic translation, always
appear in conjugate pairs [12]. By using the complex translation rules (3.2), we
immediately obtain the following complex counterpart of M2[H],

M4[C] =


0 −1 1 − i
1 0 0 0

−1 − i 0 −1
0 0 1 0

 ,(3.5)

whose eigenvalues are easily calculated by using |M4[C] − λ I4| = 0. As observed
above, the eigenvalues appear in conjugate pairs,

{λ1 = i , λ2 = i
√
2 , λ̄1 = − i , λ̄2 = − i

√
2 } .
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The real coefficients c0 and c1,

( c0 , c1 ) =
{

(−|λ1|2 , 2Re[λ1] ) = (−1, 0)
(−|λ2|2 , 2Re[λ2] ) = (−2, 0) ,

can now be obtained without the need of solving the system (2.10). This method
proposed by Serôdio, Pereira and Vitoria [10] avoids the solution of the complicated
coupled system (2.6) and represents a simpler way to find the real coefficients c0 and
c1. Consequently, it improves the Niven algorithm. Note that step 1 in the Niven
algorithm has yet to be used for finding the quaternionic coefficients d0 and d1. In
the next section, we shall prove that by calculating the eigenvectors of the complex
representation of the quaternion companion matrix Mn[H], we can directly obtain the
zeros of n-order unilateral quaternionic polynomials.

4. Finding the zeros by using the eigenvectors method. In complex the-
ory, the zeros of the n-order polynomial, An(z) = 0, are determined by calculating the
eigenvalues of the corresponding companion matrix, Mn[C], i.e. |Mn[C] − λ I| = 0.
For quaternions, this method cannot be carried through successfully. In fact, the
eigenvalues of the quaternionic companion matrix are not unequivocally determined.
Consequently, we have to pursue a different track. Before demonstrating two the-
orems, which will guide us to the solution of our quaternionic mathematical chal-
lenge, we briefly recall the main results concerning the (right) eigenvalue problem for
quaternionic matrices. Due to the non-commutativity of the quaternionic algebra,
the eigenvalues of

Mn[H] =


a
(1,i)
n−1 a

(1,i)
n−2 · · · a

(1,i)
1 a

(1,i)
0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


︸ ︷︷ ︸

Zn[C]

(4.1)

+ j

−j


a
(j,k)
n−1 a

(j,k)
n−2 · · · a

(j,k)
1 a

(j,k)
0

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0




︸ ︷︷ ︸

Wn[C]

belong to the following class of equivalence

{ u1λ1ū1 , u2λ2ū2 , ... , unλnūn } ,(4.2)
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where (by using the standard definition adopted in literature) λn are the eigenvalues
of

M2n[C] =

 Zn[C] −W ∗
n [C]

Wn[C] Z∗
n[C]

(4.3)

with Im[λn] ≥ 0, and un are quaternionic unitary similarity transformations. The
starting point in finding the zeros of n-order quaternionic unilateral polynomials is
the same as in complex theory; i.e., the solution of the eigenvalue problem for the
companion matrix,

Mn[H] Φ = Φλ , λ ∈ C , Im[λ] ≥ 0 ,(4.4)

and

Φ =


ϕ1

ϕ2

...
ϕn

 , ϕ1,2,...,n ∈ H .

Nevertheless, once the complex eigenvalues have been calculated we also get infinite
similar quaternionic eigenvalues

Mn[H] Ψ = Ψ uλū ,(4.5)

where Ψ = Φ ū, u ∈ H, and uū = 1. Geometrically, the quaternionic eigenvalue uλū
represents, for the imaginary part of λ, the following three-dimensional rotation:

λ
↓

(Im[λ], 0, 0)
↙↘

θ = 2 arctan
[ |(Re[−iu],Re[−ju],Re[−ku])|

u0

]
, axis : (Re[−iu],Re[−ju],Re[−ku])

↘ ↙
(Re[−iuλū],Re[−juλū],Re[−kuλū])

↓
uλū .

We demonstrate later that, for each complex eigenvalue, λ, it is possible to choose
an appropriate similarity transformation u(q)λū(q) which corresponds to one of the
zeros of the n-order quaternionic unilateral polynomial An(q). This breaks down
the symmetry between the infinitely many equivalent directions in the eigenvalue
quaternionic space, uλū. The complete set of the zeros of the n-order quaternionic
unilateral polynomial An(q) will be then given by

{ u(q1)
1 λ1ū

(q1)
1 , u(q2)

2 λ2ū
(q2)
2 , ... , u(qn)

n λnū
(qn)
n } .(4.6)
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Now, we proceed with the main objective of this section and prove that the eigenvalue
spectrum (4.6) is connected with the zeros of An(q). In doing that, the first step will
be the proof of two theorems. Theorem 4.1 and Theorem 4.2 concern the (right)
complex eigenvalue problem (4.4).

Theorem 4.1. The last component of the quaternionic eigenvector Φ is non
null.

Proof. Due to the special form of the companion matrix, from Eq.(4.4) we get
the following equalities:

an−1 ϕ1 + an−2 ϕ2 + · · ·+ a1 ϕn−1 + a0 ϕn = ϕ1 λ ,

ϕ1 = ϕ2 λ ,

...
ϕn−1 = ϕn λ .(4.7)

Thus, ϕn = 0 implies ϕ1,2,...,n−1 = 0. This means ϕn = 0 ⇒ Φ = 0

Theorem 4.2. Let Φ be an eigenvector of the companion matrix Mn[H] asso-
ciated with the polynomial An(q). The solution q, expressed in terms of the two last
components of Φ, is given by ϕn−1 ϕ

−1
n .

Proof. Combining the last n− 1 equalities in (4.7), we obtain

ϕn−1 = ϕn λ ,

ϕn−2 = ϕn−1 λ = ϕn λ2 ,

...
ϕ1 = ϕ2 λ = ... = ϕn λn−1 .

This implies

Φ =


ϕ1

ϕ2

...
ϕn

 = ϕn


λn−1

λn−1

...
1

 .

The first equation of system (4.7) can be then re-written as follows

an−1 ϕn λn−1 + an−2 ϕn λn−2 + · · ·+ a1 ϕn λ+ a0 ϕn = ϕn λn .

Theorem 4.1 guarantees that ϕn 	= 0. We can thus multiply (from the right) the
previous equation by ϕ−1

n obtaining

an−1 ϕn λn−1 ϕ−1
n + an−2 ϕn λn−2 ϕ−1

n + · · ·+ a1 ϕn λϕ−1
n + a0 = ϕn λn ϕ−1

n ,

or equivalently

an−1 (ϕn λϕ−1
n )n−1 + an−2 (ϕn λϕ−1

n )n−2 + · · ·+ a1 ϕn λϕ−1
n + a0 = (ϕn λϕ−1

n )n .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 297-313, November 2006

http://math.technion.ac.il/iic/ela



ELA

Zeros of Unilateral Quaternionic Polynomials 307

Consequently, q = ϕn λϕ−1
n and by using that ϕn−1 = ϕnλ

q = ϕn−1 ϕ
−1
n .(4.8)

This completes the proof.

The results of Theorem 4.1 and Theorem 4.2 can be easily extended to the (right)
quaternionic eigenvalue problem (4.5). In fact,

“ Φ 	= 0 ⇒ ϕn 	= 0 ” ⇔ “Φ ū (= Ψ) 	= 0 ⇒ ϕn ū (= ψn) 	= 0 ”

and

q = ϕn−1 ϕ
−1
n ⇒ q = ϕn−1 ū (ϕn ū)−1 = ϕn−1 ū u ϕ−1

n = ψn−1 ψ
−1
n .

We conclude this subsection by going back to the discussion on the quaternionic
similarity transformation which breaks down the symmetry between the infinitely
many equivalent directions in the eigenvalue quaternionic space. By using Theorem
4.2, we can write the zero of the quaternionic polynomial An(q) in terms of the last
component of the eigenvector Φ and of the complex eigenvalue λ,

q = ϕn λϕ−1
n .(4.9)

This allows us to define (for the companion matrix) a privileged (right) quaternionic
eigenvalue problem, i.e.

Mn[H] Ψ(q) = Ψ(q) u(q) λ ū(q) (u(q) = ϕn/|ϕn| )
= Ψ(q) q ,(4.10)

with

Ψ(q) = Φ ū(q) = Φϕ−1
n |ϕn| =


ϕ1ϕ

−1
n

ϕ2ϕ
−1
n

...
ϕn−1ϕ

−1
n

1

 |ϕn| .

Recall that

q = ϕn−1 ϕ
−1
n and λ = ϕ−1

n ϕn−1 .

For the complex case, commutativity guarantees q = λ. The problem of finding the
zeros of n-order unilateral quaternionic polynomials is enormously simplified by using
the results obtained in this section. This will be explicitly seen in the next subsections,
where the solutions of second and third order quaternionic unilateral equations are
calculated using complex matrix translation. For the convenience of the readers, we
illustrate the steps of our method in the following sequence:

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 297-313, November 2006

http://math.technion.ac.il/iic/ela



ELA

308 S. De Leo, G. Ducati, and V. Leonardi

An(q) (unilateral quaternionic polynomial) ,
⇓

Mn[H] (quaternionic companion matrix) ,
⇓

M2n[C] (complex translated matrix) ,
⇓

(ω1, ω2, ..., ωn, σ1, σ2, ..., σn)λ (complex eigenvector of M2n[C]) ,
⇓

(ω1 + j σ1, ω2 + j σ2, ..., ωn + j σn)λ (quaternionic eigenvector of Mn[H])) ,
⇓

q = ϕn−1 ϕ
−1
n (zero corresponding to λ) ,

⇓
λ = ϕ−1

n ϕn−1 (check of the solution) .

The importance of the new method is due, in great extent, to the possibility of using
complex matrix analysis.

4.1. Second order unilateral polynomials. In section 2 and in section 3 we
have solved (by means of the SPV algorithms) the following (unilateral) quaternionic
quadratic equation

q2 + j q + (1 − k) = 0 .

We now calculate the zeros of A2(q) by using our method:

A2(q) = q2 + j q + (1− k) ,
⇓

M2[H] =
( −j k − 1

1 0

)
,

⇓

M4[C] =


0 −1 1 − i
1 0 0 0

−1 − i 0 −1
0 0 1 0

 ,

⇓
ω1

ω2

σ1

σ2

 =




0
0
i
1


i

,


√
2 (

√
2− 1)

− i (
√
2− 1)

i
√
2

1


i
√

2

 ,

⇓(
ϕ1

ϕ2

)
=
(

ω1 + j σ1

ω2 + j σ2

)
=

{( − k
j

)
i

,

( √
2 (

√
2− 1− k)

j − i (
√
2− 1)

)
i
√

2

}
,

⇓
q = ϕ1 ϕ

−1
2 = {− i , − (i+ j) } [⇒ λ = ϕ−1

2 ϕ1 = { i , i√2 } ] .
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4.2. Third order unilateral polynomials. Let us now give an example of
solution for a third order quaternionic polynomial.

A3(q) = q3 + k q2 + i q − j ,
⇓

M3[H] =

 −k −i j
1 0 0
0 1 0

 ,

⇓

M6[C] =


0 −i 0 i 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
i 0 1 0 i 0
0 0 0 1 0 0
0 0 0 0 1 0

 ,

⇓
ω1

ω2

ω3

σ1

σ2

σ3

 =




−1

i
1

−1
i
1


i

,



i− 1
i
√
2

i+ 1
i
√
2

i− 1√
2


1+i√

2

,



1− i

−√
2

i+ 1
−i

√
2

i− 1√
2


i−1√

2


,

⇓ ϕ1

ϕ2

ϕ3

 =


 −1− j

i− k
1 + j


i

,

 i− 1− k
√
2

i
√
2 + j − k

1 + i+ j
√
2


1+i√

2

,

 1− i+ k
√
2

−√
2− j − k

1 + i+ j
√
2


i−1√

2

 ,

⇓
q = ϕ2 ϕ

−1
3 =

{
−k , j−k+

√
2

2 , j−k−√
2

2

} [
⇒ λ = ϕ−1

3 ϕ2 =
{
i , 1+i√

2
, i−1√

2

}]
.

5. Bilateral quadratic equations. So far, we have not analyzed the possibility
to have left and right acting coefficients in the quaternionic polynomials. This topic
exceeds the scope of this paper. At the moment it represents an open question and
satisfactory resolution methods have to be further investigated. Nevertheless, an
interesting generalization of the matrix approach introduced in the previous section
can be found in discussing bilateral equations [15], i.e.,

p2 − α1 p+ p β1 − α0 = 0 .(5.1)

For second order bilateral quaternionic polynomial, we introduced the following gen-
eralized companion matrix

M2[H] =
(

α1 α0

1 β1

)
,(5.2)
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which reduces to the standard one for β1 = 0. The (right) complex eigenvalue problem
for this matrix,

M2[H] Φ = Φλ ,(5.3)

is equivalent to

α1 ϕ1 + α0 ϕ2 = ϕ1 λ ,

ϕ1 + β1 ϕ2 = ϕ2 λ ,

where ϕ1,2 are the components of the eigenvector Φ. It is immediate to show that
ϕ2 = 0 implies Φ = 0. Consequently, the second component of the (non trivial)
eigenvector Φ is always different from zero. Multiplying the first of the previous
equations by ϕ−1

2 (from the right), we obtain

α1 ϕ1 ϕ
−1
2 + α0 = ϕ1 ϕ

−1
2 ϕ2 λϕ−1

2 .

From the second equation, we get

ϕ2 λϕ−1
2 = ϕ1 ϕ

−1
2 + β1 .

Finally,

α1 ϕ1 ϕ
−1
2 + α0 = (ϕ1 ϕ

−1
2 )

2
+ ϕ1 ϕ

−1
2 β1

which, once compared with Eq.(5.1), implies

p = ϕ1 ϕ
−1
2 .(5.4)

The solution for the bilateral quadratic equation (5.1) is then formally equal to the
solution given for the unilateral one. The complex eigenvalue λ can be expressed in
terms of the Φ components and of the right acting coefficient β1 by

λ = ϕ−1
2 ϕ1 + ϕ−1

2 β1 ϕ2 .(5.5)

It is worth pointing that the bilateral equation (5.1) can be reduced to the following
equivalent unilateral equation

q2 − a1 q − a0 = 0 ,(5.6)

where a1 = α1 + β1 and a0 = α0 − α1 β1 by using

p = q − β1 .(5.7)

The next examples should emphasize one more time the advantage of using of the
matrix approach proposed in this paper to solve unilateral (and some particular bilat-
eral) quaternionic equations. It would be desirable to extend this approach to more
general polynomials (with left and right acting quaternionic coefficients) but we have
not been able to do this and from our point of view this should deserve more attention
and further investigation. The question of solving general quaternionic polynomials
is at present far from being solved.
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5.1. Second order bilateral polynomials. Let us consider the bilateral qua-
dratic equation

p2 − i p+ p j − k = 0 .(5.8)

To solve this equation, we shall follow the same steps of the resolution method pre-
sented in the previous section:

M2[H] =
(

i k
1 j

)
,

⇓

M4[C] =


i 0 0 − i
1 0 0 − 1
0 − i − i 0
0 1 1 0

 ,

⇓
ω1

ω2

σ1

σ2

 =




1
0
0
1


0

,


−1−√

2
i+ i

√
2

− i
1


i
√

2

 ,

⇓(
ϕ1

ϕ2

)
=

{(
1
j

)
0

,

(
k − 1−√

2
i+ i

√
2 + j

)
i
√

2

}
,

⇓
p = ϕ1 ϕ

−1
2 = {− j , i } [⇒ λ = ϕ−1

2 ϕ1 + ϕ−1
2 β1 ϕ2 = { 0 , i√2 } ] .

5.2. Equivalent second order unilateral polynomials. In this subsection,
we solve the unilateral quadratic equation obtained from Eq.(5.8) by using p = q− j:

M2[H] =
(

i+ j 0
1 0

)
,

⇓

M4[C] =


i 0 − 1 0
1 0 0 0
1 0 − i 0
0 0 1 0

 ,

⇓
ω1

ω2

σ1

σ2

 =




0
1
0
1


0

,


−√

2 (1 +
√
2)

i (1 +
√
2)

i
√
2

1


i
√

2

 ,

⇓(
ϕ1

ϕ2

)
=
(

ω1 + j σ1

ω2 + j σ2

)
=

{(
0

1 + j

)
i

,

( −√
2 (1 +

√
2 + k)

i (1 +
√
2) + j

)
i
√

2

}
,

⇓
q = ϕ1 ϕ

−1
2 = { 0 , i+ j } [⇒ λ = ϕ−1

2 ϕ1 = { 0 , i√2 } ] .
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As expected, by recalling that

p = q − β1 = q − j = {− j , i }

we recover the solution of Eq.(5.8) obtained in the previous subsection.

Appendix. Equivalence between translation rules. Let


ϕ1

ϕ2

...
ϕn

 =


ω1

ω2

...
ωn

+ j


σ1

σ2

...
σn

→



ω1

ω2

...
ωn

σ1

σ2

...
σn


and


ϕ1

ϕ2

...
ϕn

 =


ω1 + j σ1

ω2 + j σ2

...
ωn + j σn

→



ω1

σ1

ω2

σ2

...

...
ωn

σn


be the complex vectors obtained by using the complex translation rules given in
Eqs.(3.2) and (3.3). A simple algebraic calculation shows that

ω1

σ1

ω2

σ2

...

...
ωn

σn


= P2n



ω1

ω2

...
ωn

σ1

σ2

...
σn


,

where

P2n , rs =
{

1 (r, s) = (1, 1) , (2, n+ 1) , . . . , (2n− 1, n) , (2n, 2n) ,
0 otherwise .
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The foregoing result can be then used to prove the equivalence between the complex
matrices M2n[C] and M̃2n[C],

M̃2n[C] = P2n M2n[C]P2n .
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