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Abstract. The following case of the Determinantal Conjecture of Marcus and de Oliveira is
established. Let A and C be hermitian n × n matrices with prescribed eigenvalues a1, . . . , an and
c1, . . . , cn, respectively. Let κ be a non-real unimodular complex number, B = κC, bj = κcj for
j = 1, . . . , n. Then

det(A − B) ∈ co

8<
:

nY
j=1

(aj − bσ(j)); σ ∈ Sn

9=
; ,

where Sn denotes the group of all permutations of {1, . . . , n} and co the convex hull taken in the
complex plane.

1. Introduction. The celebrated Determinantal Conjecture of Marcus [7] and
de Oliveira [8] can be stated as follows.

Conjecture 1.1. [The de Oliveira – Marcus Conjecture (OMC)] Let
A and B be normal n×n matrices with prescribed complex eigenvalues a1, . . . , an and
b1, . . . , bn respectively. Let ∆0 be the subset of C given by

∆0 = co




n∏
j=1

(aj − bσ(j));σ ∈ Sn


 .

Then

det(A−B) ∈ ∆0,

where Sn denotes the group of all permutations of {1, . . . , n} and co the convex hull
taken in the complex plane.

The purpose of this paper is to establish the following theorem.
Theorem 1.2. Conjecture 1.1 holds in case that A is hermitian and B a non-real

scalar multiple of a hermitian matrix.
Conjecture 1.1 is known in a great many special cases. The case in which A and B

are both hermitian was settled by Fiedler[6]. The case in which A is positive definite
and B is skew hermitian was settled by da Providência and Bebiano[9]. The case A
is positive definite and B a non-real scalar multiple of a hermitian matrix (among
others) was settled by N. Bebiano, A. Kovačec, and J. da Providência [5]. The proof
of Theorem 1.2 borrows many ideas from these papers. The real content of the present
article is to weaken the hypothesis that A is positive definite to A hermitian in [5].

The case in which A and B are both unitary was settled by Bebiano and da
Providência[4], the key observation being that Conjecture 1.1 is unchanged under a
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simultaneous application of a fractional linear (Möbius) transformation of the eigen-
values aj and bj , allowing a reduction to the case in which A and B are hermitian.

Theorem 1.2 has the following corollary proved using the Möbius transformation
trick and a number of other results.

Corollary 1.3. Let CA and CB be circles in the complex plane. Let a1, . . . , an ∈
CA and b1, . . . , bn ∈ CB , then Conjecture 1.1 holds.

Proof. The case CA = CB can be reduced to the case in which A and B are
both hermitian. The case of non-intersecting circles is established in [1]. The case
of circles that touch can be reduced to the case in which CB is the real axis and
CA = {z; z ∈ C,�z = 1} by means of the Möbius transformation trick. This case,
which amounts to showing that

det(iI + C −B) ∈ co




n∏
j=1

(i+ cj − bσ(j));σ ∈ Sn


(1.1)

in case bj , cj are all real (i.e. B and C hermitian) was handled by N. Bebiano, A.
Kovačec, and J. da Providência in [5]. It can also be deduced from the main result
in an earlier paper Drury[2], where it is shown that (1.1) is valid even if i is treated
as an indeterminate and the convex hull is taken in the ring of polynomials R[i]. The
final case of circles that intersect at two points can be obtained using the Möbius
transformation trick and the result established in this article.

We start by stating some ideas extracted from [9] and [5].
Let ∆ be a closed bounded subset of C. Let z be an extreme point of co(∆),

which therefore necessarily lies in ∆. We will say that z is almost flat if there is
a smooth curve segment passing through z, lying entirely inside ∆ and having zero
curvature at z.

Lemma 1.4. The set ∆ is contained in the closed convex hull of those extreme
points of co(∆) that are not almost flat.

Lemma 1.5. Let A and B be normal matrices and P skew hermitian. Let T =
A − B be invertible and consider a variation T (t) = exp(tP )A exp(−tP ) − B. Then
the expansion

det(T (t))
det(T )

= 1 + u1t+ u2t
2 + · · ·

is valid about t = 0 where u1 = tr(T−1[P,A]) = tr(T−1[P,B]) and

u2 =
1
2

(
tr(T−1[P,A]) tr(T−1[P,B]) − tr(T−1[P,A]T−1[P,B])

)
(1.2)

= tr(T−1[P,A] ∧ T−1[P,B]).

We note that for S an operator on an inner product space E, the operator S ∧ S is
defined on the inner product space E∧E by extending (S∧S)(e1∧e2) = Se1∧Se2 by
linearity. This definition is further extended to S1∧S2 for possibly different operators
S1 and S2 on E either by the polarization identity

S1 ∧ S2 =
1
4

(
S1 + S2) ∧ (S1 + S2)− (S1 − S2) ∧ (S1 − S2)

)
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or by (S1 ∧S2)(e1 ∧ e2) = 1
2 (S1e1 ∧S2e2 +S2e1 ∧S1e2). We remark in particular that

if S is a rank one operator, then S ∧ S is zero.

2. A Quadratic Equation. We now specialize to the case of interest in this
article by proving the following.

Proposition 2.1. Let n ≥ 3 and κ ∈ C \ R with |κ| = 1. Let A be an n × n
invertible hermitian matrix with eigenvalues a1, . . . , an and B an n × n matrix with
κ−1B hermitian and with eigenvalues b1, . . . , bn. We assume that the aj and bj are
generic, specifically we suppose that they are non zero, distinct, distinct from their
negatives and that the n2 numbers bja−1

k (1 ≤ j, k ≤ n) are distinct. Suppose also that
A and B have no common nontrivial invariant linear subspace and that det(A − B)
is an extreme point of co(∆), where

∆ = {det(U� diag(a1, . . . , an)U − V � diag(b1, . . . , bn)V ); U, V unitary}.
Let X denote the matrix κ−1BA−1. Then either A − B is singular, or X satisfies a
quadratic equation with real coefficients

ω(I − κX) + ω(I − κX) = λ(I − κX)(I − κX),(2.1)
λX2 − (λκ+ λκ− κω − κω)X + (λ − ω − ω)I = 0,(2.2)

where ω is a unimodular complex number and λ ∈ R\{0} is suitably chosen. Further,
we may write X in one of two possible forms:

• X = ρ1E1 + ρ2E2 where E1 and E2 are complementary linear projections,
ρ1, ρ2 being the roots of (2.2)

• X = ρI + κN where ρ is a double root of (2.2) and N2 = 0.
We remark that the approach used in [5] is to take X = κ−1A− 1

2BA− 1
2 , a normal

matrix, with the advantages that the second case above does not occur, that in the
first case the projections E1 and E2 are orthogonal projections and that the roots of
(2.2) are real and distinct.

Proof. We assume that A−B is non singular. Since det(A−B) is an extreme point
of ∆, it possesses a supporting hyperplane. We choose ω to be a complex number of
unit modulus such that the direction ω det(A−B) is normal to this hyperplane. It is
now clear that for every choice of skew hermitian P the function

t �→ �ωdet(T (t))
det(T )

has a critical point at t = 0. Consequently �ωu1 = 0. Thus, for all P skew hermitian,
we have

�ω tr(P [T−1, A]) = 0

or equivalently H = ω[T−1, A] is hermitian. Let C = κ−1B, so that C is hermitian.
Letting X = κ−1BA−1 = CA−1, X� = A−1C = A−1XA. Also B = κXA, T =
A−B = (I−κX)A, T−1 = A−1(I−κX)−1, H = ω(A−1(I−κX)−1A−(I−κX)−1) =
ω((I − κX�)−1 − (I − κX)−1). Since H is hermitian, we get

ω((I − κX�)−1 − (I − κX)−1) = ω((I − κX)−1 − (I − κX�)−1),
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or

ω(I − κX)−1 + ω(I − κX)−1 = ω(I − κX�)−1 + ω(I − κX�)−1

= A−1(ω(I − κX)−1 + ω(I − κX)−1A)

so that,

[A,ω(I − κX)−1 + ω(I − κX)−1] = 0.

Since the eigenvalues of A are assumed to be all distinct, we see that the matrix
ω(I − κX)−1 + ω(I − κX)−1 diagonalizes with A. Any eigenspace of this operator
is necessarily invariant under both A and X and hence also under B. It follows that
the operator ω(I − κX)−1 +ω(I − κX)−1 = λI for some suitable λ. Thus X satisfies
the quadratic equation (2.1). Taking adjoints we get

λI = ω(I − κX�)−1 + ω(I − κX�)−1

= A−1(ω(I − κX)−1 + ω(I − κX)−1)A
= A−1(λI)A = λI

so that λ is necessarily real. Note that if λ = 0 then the equation (2.1) reduces to a
linear one. If this equation vanishes identically, then both ω+ω = 0 and κω+κω = 0,
forcing κ to be real, which is not allowed. Thus X is a scalar multiple of the identity
and it follows that A and B commute — a contradiction. So we can assert that λ �= 0.

The remainder of the assertions follow easily.

3. The Second Order Term — Distinct Roots Cases. We suppose that
we are in the first case of Proposition 2.1.

Proposition 3.1. With the hypotheses and notations of Proposition 2.1, for P
an arbitrary skew hermitian matrix we obtain for suitable scalars C1 and C2

�ω
(
u2 − C1 tr((E1Z) ∧ (E1Z)) − C2 tr((E2Z) ∧ (E2Z))

)
= 0,

where Q = APA−1 and Z = P −Q.
Proof. Let ρj , (j = 1, 2) be the roots of (2.1). It will be noted that X� also

satisfies a similar quadratic equation, the roots of which are ρj (j = 1, 2). Then we
have that X = ρ1E1 + ρ2E2 where Ej (j = 1, 2) are (not necessarily orthogonal)
linear projections onto linear subspaces Vj (j = 1, 2), according to the direct sum
V = V1 ⊕ V2. We can write X� = ρ1E

�
1 + ρ2E

�
2 where E�

j (j = 1, 2) are linear
projections onto the linear subspaces V ⊥

j′ according to the direct sum V = V ⊥
2 ⊕ V ⊥

1 ,
the notation j′ meaning 3 − j. Since X� = A−1XA, we find two ways of writing X�

as a linear combination of two linear projections, namely

ρ1E
�
1 + ρ2E

�
2 = X� = ρ1A

−1E1A+ ρ2A
−1E2A

and there are two cases. In case 1 in which (2.1) has two real roots

E�
j = A−1EjA, ρj = ρj , j = 1, 2
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and in case 2 in which (2.2) has a pair of complex conjugate roots

E�
j = A−1Ej′A, ρj = ρj′ , j = 1, 2.

We note that in case 2, dim(V1) = dim(V2) which forces n to be even.
We examine the first part of the second order term which involves

tr(T−1[P,A]) tr(T−1[P,B])
= κ tr(A−1(I − κX)−1[P,A]) tr(A−1(I − κX)−1(PXA−XAP ))
= κ tr((I − κX)−1Z) tr(X(I − κX)−1Z)
= tr((c1E1 + c2E2)Z) tr(((c1 − 1)E1 + (c2 − 1)E2)Z)
= α1 + β1,

where using the notation cj = (1 − κρj)−1, α1 consists of the main terms

α1 = c1(c1 − 1) tr(E1Z)2 + c2(c2 − 1) tr(E2Z)2

and β1 consists of the cross terms

β1 = (c1(c2 − 1) + c2(c1 − 1)) tr(E1Z) tr(E2Z).

We observe that

c1(c2 − 1) + c2(c1 − 1) = κ
ρ1 + ρ2

(1 − κρ1)(1 − κρ2)
= ωλ

ρ1 + ρ2

κ− κ
.

since ρ1 + ρ2 is real and

λκ−2(1 − κρ1)(1 − κρ2)

is the result of substituting ρ = κ−1 into the left hand side of (2.2). So β1 will be
tangential if tr(E1Z) tr(E2Z) is real. In case 1

tr(EjZ) = tr((Ej −A−1EjA)P ) = tr((Ej − E�
j )P ), j = 1, 2,

which is real, and in case 2

tr(EjZ) = tr((Ej −A−1EjA)P ) = tr((Ej + E�
j − I)P ), j = 1, 2,

which is pure imaginary. In either case, the product tr(E1Z) tr(E2Z) is real.
The second part of the second order term involves

tr(T−1[P,A]T−1[P,B])
= κ tr(A−1(I − κX)−1(PA−AP )A−1(I − κX)−1(PXA−XAP ))
= κ tr(X(I − κX)−1P (I − κX)−1P ) − κ tr(X(I − κX)−1APA−1(I − κX)−1P )

−κ tr((I − κX)−1P (I − κX)−1XAPA−1)
+κ tr((I − κX)−1APA−1(I − κX)−1XAPA−1)

= κ tr(X(I − κX)−1P (I − κX)−1P ) + κ tr(X(I − κX)−1Q(I − κX)−1Q)
−2κ tr(X(I − κX)−1Q(I − κX)−1P )

= α2 + β2,
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where

α2 = c1(c1 − 1) tr(E1PE1P + E1QE1Q− 2E1PE1Q)
+c2(c2 − 1) tr(E2PE2P + E2QE2Q− 2E2PE2Q)

= c1(c1 − 1) tr(E1ZE1Z) + c2(c2 − 1) tr(E2ZE2Z)

and

β2 = (c1(c2 − 1) + c2(c1 − 1)) tr(E1PE2P + E1QE2Q)
−2c1(c2 − 1) tr(E2QE1P ) − 2c2(c1 − 1) tr(E1QE2P )

= (c1(c2 − 1) + c2(c1 − 1)) tr(E1ZE2Z)
+(c1(c2 − 1)− c2(c1 − 1)) tr(E1QE2P − E1PE2Q).

We have Z� = (P −APA−1)� = −P +A−1PA = A−1ZA. In case 1 we find

(E1ZE2Z)� = A−1ZAA−1E2AA
−1ZAA−1E1A = A−1ZE2ZE1A

so that tr(E1ZE2Z) is real. This is also correct in case 2 since then

(E1ZE2Z)� = A−1ZA(I −A−1E2A)A−1ZA(I −A−1E1A)

and therefore (using E1 + E2 = I)

tr(E1ZE2Z) = tr(Z(I − E2)Z(I − E1)) = tr(ZE1ZE2) = tr(E1ZE2Z).

Now

c1(c2 − 1) − c2(c1 − 1) = κ
ρ2 − ρ1

(1 − κρ1)(1 − κρ2)
= ωλ

ρ2 − ρ1

κ− κ
(3.1)

again since

λκ−2(1 − κρ1)(1 − κρ2) = (κ−2 − 1)ω.(3.2)

The quantity (3.1) is a pure imaginary multiple of ω in case 1 and real multiple of ω
in case 2.

It remains to show that tr(E1QE2P −E1PE2Q) is real in case 1 and pure imag-
inary in case 2. In case 1

(E1QE2P − E1PE2Q)�

= PA−1E2AA
−1PAA−1E1A−A−1PAA−1E2APA

−1E1A,

which gives

tr(E1QE2P − E1PE2Q) = tr(QE2PE1 − PE2QE1)

and in case 2,

tr(E1QE2P − E1PE2Q) = tr(QE1PE2 − PE1QE2).

Consequently the second order term is

c1(c1 − 1) tr(E1Z ∧ E1Z) + c2(c2 − 1) tr(E2Z ∧ E2Z) +
1
2
(β1 + β2).

The term 1
2 (β1 + β2) is always tangentially aligned.
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4. The Second Order Term — Equal Roots Case. We suppose that we
are in the second case of Proposition 2.1 to be designated case 3 in the sequel.

Proposition 4.1. With the hypotheses and notations of Proposition 2.1, for P
an arbitrary skew hermitian matrix we obtain for suitable scalars C1 and C2

�ω
(
u2 − C1 tr((NZ) ∧ (NZ)) − C2 tr(NZ2)

)
= 0,

where Q = APA−1 and Z = P −Q.
Proof. We have that (2.1) has a double root ρ and hence ρ is a real. In particular,

ρ �= κ−1. We have

X = ρI +N, N2 = 0.

We find that (I − κX)−1 = (1 − κρ)−1I + κ(1 − κρ)−2N and κX(I − κX)−1 =
(I−κX)−1− I = κρ(1−κρ)−1I+κ(1−κρ)−2N . So the first part of the second order
term involves

tr((I − κX)−1Z) tr(κX(I − κX)−1Z)
= tr(((1− κρ)−1I + κ(1 − κρ)−2N)Z) tr((κρ(1 − κρ)−1I + κ(1 − κρ)−2N)Z)

= κ2(1 − κρ)−4
(
tr(NZ)

)2

since tr(Z) = 0. The second part of the second order term involves

κ tr((I − κX)−1ZX(I − κX)−1Z)
= κ tr(((1 − κρ)−1I + κ(1 − κρ)−2N)Z(ρ(1 − κρ)−1I + (1 − κρ)−2N)Z)
= κρ(1 − κρ)−2 tr(Z2)

+κ(1 + κρ)(1 − κρ)−3 tr(NZ2) + κ2(1 − ρ)−4 tr(NZNZ).

Now Z2 = (P −APA−1)2 = P 2 −PAPA−1 −APA−1P +AP 2A−1 clearly has a real
trace. On the other hand, we have analogous to (3.2)

λκ−2(1 − κρ)2 = (κ−2 − 1)ω

so that

κρ(1 − κρ)−2 =
λω

κ− κ

and it follows that κρ(1 − κρ)−2 and κρ(1 − κρ)−2 tr(Z2) are tangentially aligned.

5. The Second Order Term — Conclusion. Surprisingly, case 2 is the easiest
of the three cases to settle.

Proposition 5.1. Assume that we are in case 2 arising in the proof of Propo-
sition 3.1. It is possible to choose a skew hermitian matrix P such that E1ZE1 and
E2ZE2 are simultaneously rank one and tr(E1Z) = − tr(E2Z) �= 0. Consequently,
the entire second order term is tangential and the underlying extreme point is flat.
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Proof. We have E�
j = A−1Ej′A and we simply set P = iξ ⊗ ξ� where say ξ ∈ E1

is a nonzero vector. We note that EjZEj = Ej [P,A]E�
j′A

−1, so it will suffice to show
that Ej [P,A]E�

j′ is rank one and that tr(Ej [P,A]E�
j′A

−1) �= 0. We obtain

[P,A] = i
(
ξ ⊗ (Aξ)� − (Aξ) ⊗ ξ�

)

so that

E1[P,A]E�
2 = iξ ⊗ (E2Aξ)� and E2[P,A]E�

1 = −i(E2Aξ) ⊗ ξ�

both of which are rank one. Furthermore,

tr(E1[P,A]E�
2A

−1) = iξ�AE�
2A

−1ξ = iξ�E1ξ = i‖ξ‖2 �= 0
tr(E2[P,A]E�

1A
−1) = −iξ�A−1E2Aξ = −iξ�E�

1ξ = −i‖ξ‖2 �= 0.

These terms are easily seen to be equal and opposite in any case. We have

tr
(
(EjZ) ∧ (EjZ)

)
= tr

(
(Ej ∧ Ej)(Z ∧ Z)

)
= tr

(
(Ej ∧ Ej)(Z ∧ Z)(Ej ∧Ej)

)

= tr
(
(EjZEj) ∧ (EjZEj)

)
= 0,

since (Ej ∧ Ej)2 = (Ej ∧Ej). It follows from Proposition 3.1 that �ωu2 = 0.
Lemma 5.2. Let α1, . . . , αn be distinct non-zero complex numbers such that αj +

αk �= 0 for all j, k. Let β1, . . . , βn be complex numbers. Suppose that
n∑

j=1

αm
j =

n∑
j=1

βm
j for m = 1, 3, 5, . . .

Then there exists σ ∈ Sn such that βj = ασ(j) for j = 1, . . . , n.
Sketch of proof.
The hypotheses can be used to show that

n∏
j=1

1 + αjz

1 − αjz
=

n∏
j=1

1 + βjz

1 − βjz
(5.1)

for all complex z. To prove this, take logarithms for |z| small and expand as a power
series in z. Since

ln
(

1 + z

1 − z

)
= 2

∞∑
m=1

m odd

zm

m

we have
n∑

j=1

ln
(

1 + αjz

1 − αjz

)
= 2

∞∑
m=1

m odd

∑n
j=1 α

m
j

m
zm

= 2
∞∑

m=1
m odd

∑n
j=1 β

m
j

m
zm =

n∑
j=1

ln
(

1 + βjz

1 − βjz

)
.
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Analytic continuation then shows that the two functions in (5.1) agree as rational
functions. Since the hypotheses imply that cancelation on the left in (5.1) is impossible
and since the left hand side has a full complement of n distinct poles, matching poles
on the right gives the result.

Proposition 5.3. Assume that we are in case 1 arising in the proof of Propo-
sition 3.1. It is possible to choose a skew hermitian matrix P such that E1ZE1 and
E2ZE2 are simultaneously both of rank one and such that tr(E1Z) = − tr(E2Z) �= 0.
Consequently, the entire second order term is tangential and the underlying extreme
point is flat.

Proof. We again take P = iξ ⊗ ξ� and obtain

EjZEj = iEjξ ⊗ ξ�Ej − iEjAξ ⊗ ξ�A−1Ej .

To make this of rank one, we choose ξ to satisfy (A − α1E1 − α2E2)ξ = 0 on the
assumption that αj (j = 1, 2) are nonzero complex numbers such that A−α1E1−α2E2

is singular. It follows that EjAξ = αjEjξ forcing EjZEj to be rank one for both
j = 1, 2. Our result will follow unless tr(EjZ) = 0 for all such ξ. Now we have

tr(EjZ) = tr(EjZEj)

= i
(
ξ�Ejξ − ξ�A−1EjAξ

)

= i
(
ξ�Ejξ − αjξ

�A−1Ejξ
)

= i
(
ξ�Ejξ − αjξ

�E�
jA

−1ξ
)

= i
(
ξ�Ejξ − αj

αj
ξ�AE�

jA
−1ξ

)

= i

(
1 − αj

αj

)
ξ�Ejξ.

This last quantity must vanish for both j = 1 and j = 2 since tr(E1Z) + tr(E2Z) =
tr(Z) = 0. But ξ�E1ξ + ξ�E2ξ = ‖ξ‖2 �= 0. It follows that either 1− α1

α1
= 0 or

1 − α2

α2
= 0. In other words, either α1 or α2 is real. To finish the proof, let m ≥ 3

be an odd integer, t > 0 and consider the characteristic roots ν of (E1 + tzE2)A =
(E1 + t−1z−1E2)−1A where z is a primitive mth root of unity. For each such ν,
A − νE1 − t−1z−1νE2 is singular. It follows that each such characteristic root ν
is either real or a real multiple of z. Consequently ((E1 + tzE2)A)m has only real
characteristic roots and indeed tr

(
((E1 + tzE2)A)m

)
is real. Let k be an integer with

0 < k < m. Since tr
(
((E1 + tzE2)A)m

)
is a polynomial in the positive variable t,

the coefficient of tk in this expression will also be real. This means that zk tr(Wk)
is real where Wk is the coefficient of tk in ((E1 + tE2)A)m. By working with two
different primitive mth roots z1 and z2 such that zk

1z
−k
2 is not real (possible since

m ≥ 3 is odd) we see that tr(Wk) = 0 for k = 1, 2, . . . ,m − 1. Therefore we deduce
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that tr
(
((z1E1 +z2E2)A)m

)
= zm

1 tr((E1A)m)+zm
2 tr((E2A)m) for m an odd integer

m ≥ 1.
Observe that if nj = dim(Vj) = rank(Ej), then n = n1 +n2 and EjA has exactly

nj non-zero characteristic roots (counted according to multiplicity). It cannot have
fewer since n = rank(A) ≤ rank(E1A)+rank(E2A). Taking z1 = z2 = 1 and applying
Lemma 5.2, we see that the non-zero characteristic roots of E1A and of E2A make
up the eigenvalues of A. But, recalling that B = (κρ1E1 + κρ2E2)A, we see also
that tr(Bm) = (κρ1)m tr((E1A)m) + κ(ρ2)m tr((E2A)m) for m odd m ≥ 1. Applying
Lemma 5.2 again, allows the bj to be identified. It follows that the eigenvalues bj of B
have the form κρτ(j)aσ(j) where τ : {1, 2, . . . , n} −→ {1, 2} takes the value 1 n1 times
and the value 2 n2 times and σ ∈ Sn. But for n ≥ 3 this contradicts our hypothesis
that the quantities bja−1

k are all distinct.
Proposition 5.4. Assume that we are in case 3. It is possible to choose a skew

hermitian matrix P such that NZ has rank one, tr(NZ2) = 0 and such that tr(NZ) �=
0. Consequently, the entire second order term is tangential and the underlying extreme
point is flat.

Proof. First we need to find N�. Since X = ρI + N and ρ is real, we have that
N� = A−1NA. Now suppose that α and β are such that A − αI − βN is a singular
matrix and suppose that ξ is a vector such that Aξ = αξ+βNξ. We take P = iξ⊗ξ�.
We obtain,

Z = i(ξ ⊗ ξ� −Aξ ⊗ ξ�A−1)
= i(ξ ⊗ ξ� − αξ ⊗ ξ�A−1 − βNξ ⊗ ξ�A−1)

NZ = iNξ ⊗ (ξ� − αξ�A−1)

since N2 = 0. So NZ has rank one. Furthermore

NZ2 = −Nξ ⊗ ξ�(I − αA−1)(ξ ⊗ ξ� −Aξ ⊗ ξ�A−1)
tr(NZ2) = −(ξ�Nξ)(ξ�(I − αA−1)ξ) + (ξ�A−1Nξ)(ξ�(I − αA−1)Aξ)

= −(ξ�Nξ)(ξ�(I − αA−1)ξ) + (ξ�A−1Nξ)(ξ�(A− αI)ξ)
= −(ξ�Nξ)(ξ�(I − αA−1)ξ) + β(ξ�A−1Nξ)(ξ�Nξ)
= (ξ�Nξ)(ξ�(βA−1N − I + αA−1)ξ)
= (ξ�Nξ)(ξ�(A−1(A− αI) − I + αA−1)ξ) = 0.

So our result will follow unless tr(NZ) = 0 in all these situations. We note that

tr(NZ) = iξ�(I − αA−1)Nξ
= iξ�(A− αI)A−1Nξ

= iξ�(α− α)A−1Nξ + iξ�βN�A−1Nξ

= i(α− α)ξ�A−1Nξ

since N�A−1N = A−1NAA−1N = A−1N2 = 0. We claim that α is real. If not then
ξ�A−1Nξ = 0. So 0 = ξ�A−1βNξ = ξ�A−1(A − αI)ξ or ‖ξ‖2 = αξ�A−1ξ and it
follows that α is real after all.
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Now consider the characteristic roots of (I+zN)A where z is an arbitrary complex
number. If ν is a characteristic root, then there exists a vector ξ such that (I +
zN)Aξ = νξ or Aξ = ν(I−zN)ξ. It follows that ν is real. Therefore, for every integer
m, and every complex z, tr((I + zN)A)m is real. It follows that tr((I + zN)A)m =
tr(Am) for m = 0, 1, 2, . . .. Applying Lemma 5.2 we deduce that (I + zN)A has
precisely the same characteristic roots as A. But BA−1 = κX = κρI +κN and ρ �= 0
since B is non-singular. Choosing z = ρ−1, we find that the eigenvalues of B are
proportional to those of A. But this eventuality is not allowed by our hypotheses.

6. Final Steps. Proof of Theorem 1.2. We prove the result by strong induction
on n. For n = 1 and n = 2 the result is easy to verify by direct calculation.

Let n ≥ 3. We suppose that a1, . . . , an and c1, . . . , cn are real and that bj = κaj

for some fixed κ ∈ C \ R with |κ| = 1. We consider Conjecture 1.1 in this case.
It is clear that OMC is stable under perturbations. Explicitly, this means that if
OMC holds for a(k)

1 , a
(k)
2 , . . . , b

(k)
n for every k = 1, 2, . . . and if limk→∞ a

(k)
j = aj and

limk→∞ b
(k)
j = bj for j = 1, 2, . . . , n then it also holds for a1, a2, . . . , bn. It therefore

suffices to establish our conjectures for generic sets of eigenvalues as described in
Proposition 2.1.

Now suppose that ∆ �⊆ ∆0. Then it follows from Lemma 1.4 that there is an
extreme point z of co(∆) which is not almost flat and such that z /∈ ∆0. We can
assert that z �= 0 since OMC is known in this case [3]. Let A and B be the corre-
sponding matrices. Applying Propositions 2.1, 3.1 and 4.1, we can conclude that A
and B possess a common nontrivial invariant linear subspace. The orthogonal com-
plement is also simultaneously invariant. The fact that the eigenvalue sets consist of
distinct elements allows the matrices (or rather the corresponding operators) to be
decomposed simultaneously on spaces of lower dimension. This allows a contradiction
to be established from the strong induction hypothesis. Hence ∆ ⊆ ∆0 as required.
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[5] N. Bebiano, A. Kovačec, and J. da Providência. The validity of the Marcus–de Oliveira con-

jecture for essentially Hermitian matrices. Second Conference of the International Linear
Algebra Society (ILAS) (Lisbon, 1992). Linear Algebra Appl., 197/198:411-427, 1994.

[6] Miroslav Fiedler. Bounds for the determinant of the sum of hermitian matrices. Proc. Amer.
Math. Soc., 30:27–31, 1971.
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