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THE STRUCTURE OF LINEAR OPERATORS STRONGLY
PRESERVING MAJORIZATIONS OF MATRICES∗

AHMAD M. HASANI† AND MEHDI RADJABALIPOUR‡

Abstract. A matrix majorization relation A ≺r B (resp., A ≺� B) on the collection Mn of
all n × n real matrices is a relation A = BR (resp., A = RB) for some n × n row stochastic ma-
trix R (depending on A and B). These right and left matrix majorizations have been considered
by some authors under the names “matrix majorization” and “weak matrix majorization,” respec-
tively. Also, a multivariate majorization A ≺rmul B (resp., A ≺�mul B) is a relation A = BD
(resp., A = DB) for some n × n doubly stochastic matrix D (depending on A and B). The linear
operators T : Mn → Mn which strongly preserve each of the above mentioned majorizations are
characterized. Recall that an operator T : Mn → Mn strongly preserves a relation R on Mn when
R(T (X), T (Y )) if and only if R(X, Y ). The results are the sharpening of well-known representa-
tions TX = CXD or TX = CXtD for linear operators preserving invertible matrices.

Key words. Row stochastic matrix, Doubly stochastic matrix, Matrix majorization, Weak
matrix majorization, Left(right) multivariate majorization, Linear preserver.

AMS subject classifications. 15A04, 15A21, 15A51.

1. Introduction. A matrix R with nonnegative entries is called row stochastic
if the sum of every row of R is 1. A matrix D is called doubly stochastic if both A and
its transpose At are row stochastic. The following notation will be fixed throughout
the paper: Mnm for the collection of all n × m real matrices, Mn = Mnn for the
collection of all n × n real matrices, RS(n) for the set of all n × n row stochastic
matrices, DS(n) for the set of all n×n doubly stochastic matrices, P(n) for the set of
all n×n permutation matrices, R

n for the set of all real n×1 (column) vectors, and Rn

for the set of all real 1× n (row) vectors. The letter J stands for the (rank-1) square
matrix all of whose entries are 1. (The size of J is understood from the context.)

Let A,B ∈ Mnm. We write A ≺r B (resp. A ≺� B) if A = BR (resp. A = RB)
for some row stochastic matrix R. These relations may be referred to as matrix
majorizations from the right and the left, respectively. The right and the left matrix
majorizations have been already considered in the references [6] and [11] as “matrix
majorization” and “weak matrix majorization,” respectively. Also, we write A ≺rmul

B (resp. A ≺�mul B) if A = BD (resp. A = DB) for some doubly stochastic matrix
D. The latter majorizations are referred to as “multivariate majorizations.” Since
A ≺�mul B if and only if At ≺rmul Bt, we will restrict our attention to ≺�mul and
may abbreviate it as ≺m for convenience.

Let A be a linear space of matrices, T be a linear operator on A, and R be a
relation on A. We say T strongly preserves R when R(T (X), T (Y )) if and only if
R(X,Y ).
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In the present paper, we study the structure of linear strong preservers of the
above mentioned matrix majorizations on Mn or Mnm. In section 2 we show that
every linear mapping which strongly preserves multivariate matrix majorization≺�mul

has the form X 	→ PXR + JXS, for all X ∈ Mnm, where P ∈ P(n) and R,S ∈ Mm

are such that R(R + nS) is invertible. It follows that if T : Mnm → Mnm is a
linear strong preserver of ≺rmul, then TX = RXP + SXJ for all X ∈ Mnm, where
P ∈ P(m) and R,S ∈ Mn are such that R(R + mS) is invertible.

In section 3 we revisit a result of [2]; we study the linear strong preservers T :
Mn → Mn of ≺m which send matrices with nonnegative entries to matrices of the
same kind, and show that if n �= 2 and if TI = I, then TX = PXP t for all X ∈ Mn,
where P ∈ P(n). We also present counterexamples for the case n = 2.

In section 4 we show that a linear mapping T : Mn → Mn strongly preserves ≺r,
if and only if there exist a permutation matrix P and an invertible matrix L such
that TX = LXP for all X ∈ Mn. This is an extension of Theorem 2.5 of [4]. Finally,
in section 5 we show that a linear mapping T : Mn → Mn strongly preserves ≺�, if
and only if there exist a permutation matrix P and an invertible matrix L such that
TX = PXL for all X ∈ Mn. Although the proofs of the last two sections have some
ideas in common, however, unlike the case of multivariate majorizations ≺�mul and
≺rmul, there are still essential differences between ≺� and ≺r.

For more information on majorization we refer the reader to the references cited
at the end of the paper. We are mostly concentrating on the open questions raised
in [2], [3], [4]. Exact references to the related works are given in the appropriate
places. The references [5], [6], [7], [11] are included as general references related to
the subject.

2. Linear preservers and multivariate majorization. In this section we
characterize linear operators T : Mnm → Mnm which strongly preserve ≺m. First we
need some known facts and lemmas.

Lemma 2.1. Let T : Mnm → Mnm be a linear operator that strongly preserves
one of the majorizations ≺m, ≺r or ≺�. Then T is invertible.

The case of ≺r is proved in [4] and the proof of the other cases is similar.
Theorem 2.2. (Birkhoff’s Theorem [10]) The totality of extreme points of the

collection of all doubly stochastic matrices is the set of all permutation matrices.
Moreover, the set of doubly stochastic matrices is the convex hull of the permutation
matrices.

Theorem 2.3. (Li and Poon [9]) Let T : Mnm → Mnm be a linear operator.
The following are equivalent.

(a) TX ≺m TY whenever X ≺m Y for X,Y ∈ Mnm.
(b) Either

(i) there exist A1, . . . , Am ∈ Mnm such that T (X) =
m∑

j=1

(
n∑

i=1

xij)Aj for all X =

[xij ] ∈ Mnm; or
(ii) there exist R,S ∈ Mm and P ∈ P(n) such that T (X) = PXR+ JXS for all

X ∈ Mnm.
We now prove the main result of this section.
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Theorem 2.4. Let T : Mnm → Mnm be a linear operator. The following asser-
tions are equivalent.

(a) T is invertible and preserves multivariate majorization ≺m.
(b) T has the form

X 	→ PXR + JXS, X ∈ Mnm,

where P ∈ P(n) and R,S ∈ Mm are such that R(R + nS) is invertible.
(c) T strongly preserves multivariate majorization ≺m.
Proof. Assume (a) holds. Then one of the cases (i) or (ii) of part (b) of Theorem

2.3 holds. The case (i) cannot hold for n ≥ 2 as one can always find a nonzero matrix
X the sum of each of whose columns is zero. For such an X we have TX = 0; a
contradiction. If (i) holds for n = 1, then writing Aj = [aj1, . . . , ajm] yields TX = XA
and, thus, (ii) holds with R = A and S = 0. (Here, A = [aij ] ∈ Mm.) In general, if
(ii) holds for n = 1, then TX = X(R + S) for all X ∈ M1m and hence (R + S) must
be invertible. Thus (b) holds with R replaced by R + S and S replaced by 0.

Therefore, to complete the proof of (a) ⇒ (b) it remains to prove the invertibility
of R and R + nS in case n ≥ 2. If R is not invertible, there exists a nonzero row
vector X1 ∈ Rm such that X1R = 0. Let X ∈ Mnm be a matrix whose rows are all
equal to X1, and let Y ∈ Mnm be a matrix whose first row is nX1 and the rest are
zero. It is clear that X �= Y , Y R = 0 = XR, and JY = JX . Thus

T (X) = PXR + JXS = JXS = JY S
= PY R + JY S = T (Y );(2.1)

a contradiction.
Similarly, if R + nS is not invertible, there exists a nonzero row vector Z1 ∈ Rm

such that Z1(R+nS) = 0. Let Z ∈ Mnm be a matrix whose rows are all equal to Z1.
Then Z �= 0, Z(R + nS) = 0, and nZ = JZ. Hence

T (Z) = PZR + JZS = PZ(R + nS) = 0;(2.2)

a contradiction. Thus (a) ⇒ (b).
To prove (b) ⇒ (c), we show that T is invertible and T−1 satisfies the same

condition as T with P replaced by P t, R replaced by R−1 and S replaced by −(R +
nS)−1SR−1. Define T ′ : Mnm → Mnm by T ′(X) = P tXR−1 − JX(R+nS)−1SR−1.
Then

(T ′T )(X) = T ′(T (X)) = P tT (X)R−1 − JT (X)(R + nS)−1SR−1

= P t(PXR + JXS)R−1 − J(PXR + JXS)(R + nS)−1SR−1

= X + JXSR−1 − JX(R + nS)(R + nS)−1SR−1

= X + JXSR−1 − JXSR−1 = X,

(2.3)

which implies that T ′ = T−1. In view Theorem 2.3, (b) ⇒ (c) is proven.
The proof of (c) ⇒ (a) follows from Lemma 2.1.
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Corollary 2.5. Let T : Mnm → Mnm be a linear operator. The following
assertions are equivalent.

(a) T is invertible and preserves multivariate majorization ≺rmul.
(b) T has the form

X 	→ RXP + SXJ, X ∈ Mnm,

where P ∈ P(m) and R,S ∈ Mn are such that R(R + mS) is invertible.
(c) T strongly preserves multivariate majorization ≺rmul.
Proof. Define τ : Mmn → Mmn by τ(X) = [T (Xt)]t for all X ∈ Mmn and observe

that Theorem 2.4 is applicable to τ .

3. Linear preservers and matrices with nonnegative entries. In this sec-
tion we obtain the following result of Beasley, Lee, and Lee[2] as a corollary to our
Theorem 2.4. We will also construct counterexamples for case n = 2.

Corollary 3.1. (Beasley-Lee-Lee[2]) Let n �= 2 and assume T : Mn → Mn

strongly preserves multivariate majorization ≺m. Moreover, assume T (I) = I, and
T preserves the collection of matrices with nonnegative entries (i.e.; TMn(R+) ⊂
Mn(R+)). Then there exists a permutation matrix P such that T (X) = PXP t for all
X ∈ Mn. The conclusion is false for n = 2.

Proof. The case n = 1 being clear, we assume without loss of generality that
n ≥ 2. Let P,R and S be as in Theorem 2.4 and define τ : Mn → Mn by τ(X) =
P tT (X)P for all X ∈ Mn. Then τ(X) = XRP + JXSP . Replacing T by τ , we
can assume without loss of generality that P = I and that T (X) = XR + JXS for
all X ∈ Mn. For a fixed pair (p, q) ∈ {1, . . . , n} × {1, . . . , n}, let X = Epq , where
Epq ∈ Mn is the matrix whose (p, q)-entry is 1, and the rest are 0. Then

T (Epq) = EpqR + JEpqS =
∑
i,j

rijEpqEij +
∑
α,β

Eαβ

∑
i,j

sijEpqEij

=
∑

j

rqjEpj +
∑

α

∑
j

sqjEαj

=
∑

j

(rqj + sqj)Epj +
∑
α�=p

∑
j

sqjEαj

=
∑

j

(rqj + sqj)Epj +
∑

j

∑
i�=p

sqjEij .

(3.1)

Thus T preserves Mn(R+) if and only if

−rqj ≤ sqj , sqj ≥ 0 for q, j = 1, . . . , n.(3.2)

Now, assume T (I) = I. Then

I = T (I) =
∑

p T (Epp) =
∑

p,j(rpj + spj)Epj +
∑

p,j

∑
i�=p spjEij

=
∑

i,j(rij + sij)Eij +
∑

i,j

∑
p�=i spjEij

=
∑

i,j(rij + sij +
∑

p�=i spj)Eij .
(3.3)
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Let i, j = 1, 2, . . . , n and i �= j. Then rij + sij +
∑

p�=i spj = 0. This, in view of 3.2,
implies that

rij = −sij , and spj = 0 for all p �= i.(3.4)

In particular, sii = 0. Also, rii + sii +
∑

p�=i spi = 1, which implies that

rii = 1 −
∑
p�=i

spi.(3.5)

If n ≥ 3, then, for i, j = 1, 2, . . . , n and i �= j,

sij = 0, rii = 1 and rij = 0.(3.6)

Hence S = 0, R = I, and thus TX = X for all X ∈ Mn.
If n = 2, then to have TM2(R+) ⊂ M2(R+) and T (I) = I for a strong preserver

of multivariate majorization, it is necessary and sufficient to have

0 ≤ s21 = 1 − r11 = −r21 ≤ 1, 0 ≤ s12 = 1 − r22 = −r12 ≤ 1,(3.7)

s11 = s22 = 0, det(R) = det(R + 2S) = 1 − s12 − s21 �= 0.(3.8)

In particular, T (E11) = E11R + JE11S = (1 − s21)E11 + s12E22 which is of rank 2
if, moreover, s21 �= 1 and s12 �= 0. Thus for such cases, T cannot be of the form
X 	→ CXD for any invertible matrices C and D.

The next example shows that, for any n ≥ 2, there exists an operator T : Mn →
Mn which strongly preserves multivariate majorization as well as the matrices of
nonnegative entries but T is not of the form X 	→ CXD for any invertible matrices
C,D ∈ Mn. (cf. Theorem 2.8 of [3].)

Example 3.2. Assume n ≥ 2 and define T : Mn → Mn by T (X) = X +
JX(I + E12) for all X ∈ Mn. Since R(R + nS) = (1 + n)I + nE12 is invertible, T
strongly preserves multivariate majorization. It is easy to see that T preserves the
nonnegativity of the entries. However, since T sends the rank-1 matrix E11 to a rank-
2 matrix, it follows that T is not of the form X 	→ CXD for any invertible matrices
C and D.

Corollary 3.3. Let T : Mn → Mn be a linear Operator that strongly preserves
multivariate majorization. Then the restriction of T to span (DS(n)) has the form
X 	→ PXL for some P ∈ P(n) and some L ∈ Mn. The matrix L need not be
invertible.

Proof. Let T (X) = PXR+JXS where P ∈ P(n) and R(R+nS) is invertible. If
X ∈ DS(n), then JX = J = PJ = PXJ and, hence, TX = PXL, where L = R+JS.
To show that L may be singular, let P = R = I and S = −E21. Note that R(R+nS)
is invertible and, hence, T strongly preserves multivariate majorization. However,
T (I) is a matrix of rank n− 1 and, hence, the restriction of T to the span of DS(n)
cannot be represented as X 	→ CXD for any invertible matrices C,D.
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4. Linear preservers and right matrix majorization. In this section we
generalize the following result.

Theorem 4.1. (Beasley-Lee-Lee[4]) If the linear operator T : Mn(R) → Mn(R)
strongly preserves the matrix majorization ≺r, then there exist a permutation matrix
P and an invertible matrix L in Mn such that T (X) = LXP for all X ∈ span RS(n).

Here, we will show that the representation of T given in Theorem 4.1 remains
valid throughout Mn. To see the nontriviality of such extensions, cf. Theorem 2.4
and Corollary 3.3. To prove the main result, we need to state some known facts.

Theorem 4.2. ([8]) A linear operator T : Mn → Mn maps the set of invertible
matrices into itself if and only if there exist invertible matrices C,D such that TX =
CXD for all X ∈ Mn or TX = CXtD for all X ∈ Mn.

In the following, coU denotes the convex hull of a subset U of a real vector space,
and extV denotes the set of all extreme points of a convex set V .

Lemma 4.3. Let n be a natural number and assume that {e1, . . . , en} is the
standard basis of Rn and e = [1, 1, . . . , 1]. For each k = 1, . . . , n, define X(k) to
be the (unique) n × n row stochastic matrix whose kth column is et. Moreover, let
E ∈ Mn be an invertible matrix. The following assertions are true.

(a) |ext RS(n)| = nn.
(b) If E−1X(k)tE ∈ RS(n) for all k = 1, . . . , n, then n = 1.
(c) If E−1X(k)E and EX(k)E−1 belong to RS(n) for all k = 1, . . . , n, then

E = aQ for some nonzero real number a and some permutation matrix Q.
Proof.
(a) Each X ∈ RS(n) corresponds to the n-tuple [X1, . . . , Xn] ∈ (Rn)n, where Xi

is the ith row of X (i = 1, . . . , n). Then

RS(n) ∼= (co{e1, . . . , en})n
= co({e1, . . . , en}n),(4.1)

which proves (a).
(b) We assume n ≥ 2 and reach a contradiction. Let E−1 = [fij ]. Fix j = 1, . . . , n.

Then the ith row of E−1X(j)tE is fijeE (i = 1, . . . , n). Since E−1X(j)tE ∈ RS(n),
it follows that f1j = . . . = fnj . Thus, rank E−1 = 1 < n; a contradiction.

(c) Let E = [eij ] and E−1 = F . For a fixed i = 1, . . . , n, the matrix E−1X(i)E is a
rank-one row stochastic matrix Y (i) whose rows are all equal to a single (nonnegative
row) vector (yi1, . . . , yin) with

∑
j yij = 1. Writing down the entries of the equation

X(i)E = EY (i) yields eij = yij

∑
q epq for all j, p = 1, . . . , n. Hence, E = cR, where

R is the row stochastic matrix [yij ] and c =
∑

j e1j = . . . =
∑

j enj . By the symmetry
of the assumption, F = dS for some row stochastic matrix S and some constant d.
Since e = EFe = cdRSe = cde, it follows that, d = c−1 and, hence, RS = I. Thus R
and R−1 are both row stochastic and, hence, they are permutation matrices [4].

We are now ready to prove the main result of the section.
Theorem 4.4. A linear operator T : Mn → Mn Strongly preserves the matrix

majorization ≺r if and only if there exist a permutation matrix P and an invertible
matrix L in Mn such that TX = LXP for all X ∈ Mn.
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Proof. The fact that the condition TX = LXP for all X ∈ Mn is sufficient for
T to be a strong preserver of ≺r is easy to prove. So we prove the necessity of the
condition.

We first show that a strong preserver of the right matrix majorization preserves
invertible matrices. Let A ∈ Mn be invertible. We assume TA is singular and reach
a contradiction. It follows that

{(TA)R : R ∈ RS(n)} = T {AS : S ∈ RS(n)} = (TMA)(RS(n)),

Where MA : Mn → Mn is the mapping defined by MAX = AX for all X ∈ Mn.
Since TMA is bijective,

|ext (TA)(RS(n)| = |ext RS(n)| = nn.

(See part (a) of Lemma 4.3.) Also, since TA is not invertible, there exists a nonzero
(column) vector a = (a1, . . . , an)t ∈ R

n such that −1 ≤ ai ≤ +1, and (TA)a = 0.
Define

R =




c1 (1 − c1) 0 . . . 0
c2 (1 − c2) 0 . . . 0
...

...
...

. . .
...

cn (1 − cn) 0 . . . 0


 , S =




d1 (1 − d1) 0 . . . 0
d2 (1 − d2) 0 . . . 0
...

...
...

. . .
...

dn (1 − dn) 0 . . . 0


 ,

where ci = ai and di = 0 if ai > 0, and ci = 1+ ai and di = 1 if ai ≤ 0 (i = 1, . . . , n).
Then R,S ∈ RS(n), R �= S, but (TA)R = (TA)S. Since S ∈ ext RS(n) and since
ext (TA)(RS(n)) ⊂ (TA)(ext RS(n)), it follows that |ext (TA)(RS(n))| < nn; a
contradiction.

Thus T sends invertible matrices to invertible matrices and, hence, there exist
invertible matrices C,D ∈ Mn such that either n ≥ 1 and TX = CXD for all
X ∈ Mn, or n ≥ 2 and TX = CXtD for all X ∈ Mn. In the latter case, let
X = X(i) be as in the statement of Lemma 4.3. Since X(i) ≺r I, it follows that
D−1X(i)tD ∈ RS(n) for all i = 1, . . . , n. In view of part (b) of Lemma 4.3, n = 1; a
contradiction.

Thus TX = CXD for all X ∈ Mn and, hence, D−1X(i)D ∈ RS(n) for all
i = 1, . . . , n. Hence, in view of part (c) of Lemma 4.3, D is a multiple of a permutation
matrix Q.

The following corollary is proved in [4] under the additional condition TMn(R+) ⊂
Mn(R+).

Corollary 4.5. If T : Mn → Mn strongly preserves ≺r and if TI = I, then
there exists P ∈ P(n) such that TX = P tXP for all X ∈ Mn.

Proof. With the notation of the theorem, I = TI = LP and, hence, L = P t.

5. Linear preservers and left matrix majorization. Finally, we prove a
result similar to Theorem 4.4 for ≺�. As we mentioned earlier, there is no duality
between the two cases and the proofs are basically different. For the proof of the main
result of this section we further need the following known results. Proofs are given
for reader’s convenience.
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Lemma 5.1. For every natural number n the following assertions are true.
(a) dim span RS(n) = n2 − n + 1.
(b) dim span {X ∈ Mn : X ≺� A} ≤ n(rank A) for all A ∈ Mn.
Proof. (a) The span of RS(n) consists of all matrices with the property that all

the row sums are equal. The dimension of this subspace is clearly n2 − n + 1.
(b) If X ≺� A, then every row of X is a linear combination of the rows of A.
We are now ready to prove the main result of this section.
Theorem 5.2. A linear operator T : Mn → Mn strongly preserves the matrix

majorization ≺� if and only if there exist a permutation matrix P and an invertible
matrix L in Mn such that TX = PXL for all X ∈ Mn. Moreover, if TI = I, then
L = P t.

Proof. The fact that the condition TX = PXL for all X ∈ Mn is sufficient for T
to be a strong preserver of ≺� is easy to prove. So we prove only the necessity of the
condition.

We first show that a strong preserver of a left matrix majorization preserves
invertible matrices. Let A ∈ Mn be invertible. We assume TA is singular and reach
a contradiction. It follows, in view of parts (a,b) of Lemma 5.1, that

n2 − n ≥ dim span {Y ∈ Mn : Y ≺� TA} = dim span {X ∈ Mn : X ≺� A}
= dim(span {X ∈ Mn : X ≺� A})A−1 = dim span {X ∈ Mn : X ≺� I}
= dim span RS(n) = n2 − n + 1;

(5.1)
a contradiction. Thus T sends invertible matrices to invertible matrices and, hence,
there exist invertible matrices C,D ∈ Mn such that either n ≥ 1 and TX = CXD
for all X ∈ Mn or n ≥ 2 and TX = CXtD for all X ∈ Mn. In the latter case, let
X = X(i) be as in the statement of Lemma 4.3. Since X(i) ≺� I, it follows that
CX(i)tC−1 ∈ RS(n) for all i = 1, . . . , n. It now follows from part (b) of Lemma 4.3
that n = 1; a contradiction.

Thus TX = CXD for all X ∈ Mn and, hence, CX(i)C−1 ∈ RS(n) for all
i = 1, . . . , n. Hence, in view of part (c) of Lemma 4.3, the matrix C is a multiple of
a permutation matrix Q.

Acknowledgment. Thanks to the referee and other experts whose comments
made some of the proofs simpler and clearer.
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