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Abstract. In a paper by Burke, Lewis and Overton, a first order expansion has been given for
the minimum singular value of A−zI, z ∈ C, about a nonderogatory eigenvalue λ of A ∈ Cn×n. This
note investigates the relationship of the expansion with the Jordan canonical form of A. Furthermore,
formulas for the condition number of eigenvalues are derived from the expansion.
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1. Introduction. By πΣ(A) we denote the product of the nonzero singular val-
ues of the matrix A ∈ Cn×m, counting multiplicities. For the zero matrix 0 ∈ Cn×m

we set πΣ(0) = 1. If A is square then Λ(A) denotes the spectrum and πΛ(A) stands
for the product of the nonzero eigenvalues, counting multiplicities. If all eigenvalues
of A are zero then we set πΛ(A) = 1. The subject of this note is the ratio

q(A, λ) :=
πΣ(A − λ In)
|πΛ(A − λ In)| , λ ∈ Λ(A).

In [1] the following first order expansion has been given for the function

z �→ σmin(A − zIn), z ∈ C,

where σmin(·) denotes the minimum singular value and In is the n×n identity matrix.

Theorem 1.1. Let λ ∈ C be a nonderogatory eigenvalue of algebraic multiplicity
m of the matrix A ∈ Cn×n. Then

σmin(A − zIn) =
|z − λ|m
q(A, λ)

+O(|z − λ|m+1), z ∈ C.

The relevance of this result for the perturbation theory of eigenvalues is as follows.
The closed ε− pseudospectrum of A ∈ Cn×n with respect to the spectral norm, ‖ · ‖,
is defined by

Λε(A) = { z ∈ C | z ∈ Λ(A +∆), ∆ ∈ C
n×n, ‖∆‖ ≤ ε }.

In words, Λε(A) is the set of all eigenvalues of all matrices of the form A +∆ where
the spectral norm of the perturbation ∆ is bounded by ε > 0. It is well known [10]
that

Λε(A) = { z ∈ C | σmin(A − zI) ≤ ε }.
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Theorem 1.1 yields an estimate for the size of pseudospectra for small ε: Roughly
speaking if ε is small enough then the connected component of Λε(A) that contains
the eigenvalue λ is approximately a disk of radius ( q(A, λ) ε )1/m about λ. It follows
that q(A, λ)1/m is the Hölder condition number of λ. We discuss this in detail in
Section 4.

However, the main concern of this note is to establish the relationship of q(A, λ)
with the Jordan decomposition of A. For a simple eigenvalue the relationship is as
follows. Let x, y ∈ Cn \ {0} be a right and a left eigenvector of A to the eigenvalue λ
respectively, i.e. Ax = λx, y∗A = λ y∗, where y∗ denotes the conjugate transpose of
y. Then

P = (y∗x)−1xy∗ ∈ C
n×n

is a projection onto the one dimensional eigenspace C x. The kernel of P is the direct
sum of all generalized eigenspaces belonging to the eigenvalues different from λ. As is
well known [5, p.490],[3, p.202],[9, p.186], the condition number of λ equals the norm
of P . Combined with the considerations above this yields that

q(A, λ) = ‖P‖. (1.1)

In Section 3 we give an elementary proof of the identity (1.1) without using The-
orem 1.1. Furthermore, we show that for a nondegoratory eigenvalue of algebraic
multiplicity m ≥ 2,

q(A, λ) = ‖Nm−1‖, (1.2)

where N is the nilpotent operator associated with λ in the Jordan decomposition of
A. The formulas (1.1) and (1.2) are the main results of this note. The proofs also
show that the assumption that λ is nonderogatory is necessary.

The next section contains some preliminaries about the computation of the two
products πΣ(A) and πΛ(A) and about the relationship of the Schur form of A with
the Jordan decomposition.

Throughout this note, ‖ · ‖ stands for the spectral norm.

2. Preliminaries. Below we list some easily verified properties of πΛ(A), the
product of the nonzero eigenvalues of A, and of πΣ(A), the product of the nonzero
singular values of A. In the sequel AT and A∗ denote the transpose and the conjugate
transpose of A respectively.

(a) If A ∈ Cn×n is nonsingular then πΛ(A) = det(A).
(b) For any A ∈ Cn×n : πΛ(AT ) = πΛ(A) and πΛ(A∗) = πΛ(A).
(c) Let S ∈ Cn×n be nonsingular. Then for any A ∈ Cn×n, πΛ(SAS−1) = πΛ(A).
(d) Let A11 ∈ Cn×n, A22 ∈ Cm×m and A12 ∈ Cn×m. Then

πΛ

([
A11 A12

0 A22

])
= πΛ(A11)πΛ(A22).

(e) For any A ∈ Cn×m, πΣ(A)2 = πΛ(A∗A) = πΛ(AA∗).
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(f) If A ∈ Cn×n is nonsingular then πΣ(A) = |det(A)| = |πΛ(A)|.
(g) Let U ∈ Cn×n and V ∈ Cm×m be unitary. Then for any A ∈ Cn×m,

πΣ(UAV ) = πΣ(A).
In the next section we need the lemmas below.

Lemma 2.1. Let M ∈ Cn×n be nonsingular, X ∈ Cm×n and Y = XM−1. Then

πΣ

([
M
X

])
= πΣ(M)

√
det(In + Y ∗Y ).

Proof. We have

πΣ

([
M
X

])2

= πΛ

([
M∗ X∗] [

M
X

])
= det(M∗M + X∗X)
= det(M∗(In + Y ∗Y )M)
= det(M∗) det(M) det(In + Y ∗Y )
= πΣ(M)2 det(In + Y ∗Y ).

Lemma 2.2. Let Y ∈ Cm×n. Then ‖In + Y ∗Y ‖ = ‖Im + Y Y ∗‖ and det(In +
Y ∗Y ) = det(Im + Y Y ∗).

Proof. The case Y = 0 is trivial. Let Y �= 0. The matrices Y and Y ∗ have
the same nonzero singular values σ1 ≥ σ2 ≥ . . . ≥ σp > 0 say. The eigenvalues
different from 1 of both In + Y ∗Y and Im + Y Y ∗ are 1 + σ2

1 ≥ 1 + σ2
2 . . . ≥ 1 + σ2

p.
Thus ‖In + Y ∗Y ‖ = ‖Im + Y Y ∗‖ = 1 + σ2

1 and det(In + Y ∗Y ) = det(Im + Y Y ∗) =∏p
k=1(1 + σ2

k).
We proceed with remarks on the Jordan decomposition. Let λ1, . . . , λκ be the

pairwise different eigenvalues of A ∈ Cn×n. Let Xj = ker(A− λjIn)n be the general-
ized eigenspaces. By the Jordan decomposition theorem we have

A =
κ∑

j=1

(λjPj + Nj ), (2.1)

where P1, . . . , Pκ ∈ Cn×n are the projectors of direct decomposition Cn =
⊕κ

j=1 Xj ,
i.e.

P 2
j = Pj , range(Pj) = Xj , ker (Pj) =

κ⊕
k=1,k �=j

Xk,

and N1, . . . , Nκ ∈ Cn×n are the nilpotent matrices Nj = (A−λjIn)Pj . The eigenvalue
λj is said to be

• semisimple (nondefective) if Xj = ker(A − λjIn),
• simple if dimXj = 1,
• nonderogatory if dimker(A − λjIn) = 1.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 143-153, May 2006

http://math.technion.ac.il/iic/ela



ELA

146 Michael Karow

In the following m denotes the algebraic multiplicity of λj . Note that if m ≥ 2 then λj

is nonderogatory if and only if Nm−1
j �= 0. We now recall how to obtain the operators

Pj and Nj from a Schur form of A. We only consider the nontrivial case that A has
at least two different eigenvalues. By the Schur decomposition theorem there exists
a unitary matrix U ∈ Cn×n such that

U∗AU =
[
λjIm + T A12

0 A22

]
,

where A12 ∈ Cm×(n−m), A22 ∈ C(n−m)×(n−m), Λ(A22) = Λ(A) \ {λj} and T ∈ Cn×n

is strictly upper triangular,

T =



0 t12 . . . . . . t1m

. . . t23
...

. . . . . .
...

. . . tm−1,m

0


.

If m = 1 (i.e. λj is simple) then T is the 1 × 1 zero matrix. Since the spectra of T
and A22 − λjIn−m are disjoint the Sylvester equation

R(A22 − λjIn−m)− TR = A12. (2.2)

has a unique solution R ∈ Cm×(n−m).

Proposition 2.3. With the notation above the projector onto the generalized
eigenspace and the nilpotent operator associated with λj are given by

Pj = U

[
Im −R
0 0

]
U∗, and Nj = U

[
T −TR
0 0

]
U∗.

For any integer " ≥ 1 we have

N �
j = U

[
T � −T �R
0 0

]
U∗. (2.3)

The spectral norms of Pj and of N �
j satisfy

‖Pj‖ = ‖Im + RR∗‖1/2 (2.4)

‖N �
j ‖ = ‖T �(Im + RR∗)(T ∗)�‖1/2. (2.5)

Proof. Let X1 := U

[
Im

0

]
∈ Cn×m, X2 := U

[
R

In−m

]
∈ Cn×(n−m). Then obviously

Cn = range(X1)⊕ range(X2) and

AX1 = X1 (λjIm + T ). (2.6)
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Furthermore, (2.2) yields that

AX2 = X2 A22. (2.7)

Hence, range(X1) and range(X2) are complementary invariant subspaces of A. The
relations (2.6) and (2.7) imply that for any λ ∈ C and any integer " ≥ 1,

(A − λIn)�X1 = X1((λj − λ)Im + T )�,

(A − λIn)�X2 = X2(A22 − λIn−m)�.
(2.8)

Using this and the fact that λj �∈ Λ(A22) it is easily verified that range(X1) = ker (A−
λj In)n and range(X2) =

⊕κ
k=1,k �=j ker (A − λk In)n. The matrix

Pj = U

[
Im −R
0 0

]
U∗, (2.9)

satisfies P 2
j = Pj , PjX1 = X1 and PjX2 = 0. Hence, Pj is the Jordan projector onto

the generalized eigenspace ker (A − λj In)n. For the associated nilpotent matrix Nj

one obtains

Nj = (A − λj In)Pj = U

[
T −T R
0 0

]
U∗. (2.10)

The formulas (2.3), (2.4) and (2.5) are immediate from (2.9) and (2.10).
We give an expression for ‖Nm−1

j ‖ which is a bit more explicit than formula (2.5).
First note that if λj has algebraic multiplicity m ≥ 2 then

T m−1 =


0 . . . 0 τ
...

... 0
...

...
...

0 . . . 0 0

 , where τ =
m−1∏
k=1

tk,k+1.

Let eT
m = [0 . . . 0 1]T ∈ Cm and r = eT

mR. Then r is the lower row of R. Since
the lower row of TR is zero it follows from the Sylvester equation (2.2) that

r = eT
mA12(A22 − λjIm)−1. (2.11)

From (2.3) or (2.5) we obtain
Proposition 2.4. Suppose λj has algebraic multiplicity m ∈ {2, . . . , n − 1}.

Then

‖Nm−1
j ‖ = |τ |

√
1 + ‖r‖2.
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3. Main result. We are now in a position to state and prove our main result
on the ratio

q(A, λj) =
πΣ(A − λjIn)
|πΛ(A − λjIn)| , λj ∈ Λ(A). (3.1)

Theorem 3.1. Let λj ∈ C be an eigenvalue of A ∈ Cn×n. Let Pj and Nj be
the eigenprojector and the nilpotent operator associated with λj. Then the following
holds.

(a) If λj is a semisimple eigenvalue then q(A, λj) = πΣ(Pj).
(b) If λj is a simple eigenvalue then q(A, λj) = ‖Pj‖.
(c) If λj is a nonderogatory eigenvalue of algebraic multiplicity m ≥ 2 then

q(A, λj) = ‖Nm−1
j ‖.

Proof. First, we treat the case that A has at least two different eigenvalues.
In view of Proposition 2.3 and since the products πΣ(A − λjIn), πΛ(A − λjIn) are
invariant under unitary similarity transformations we may assume that

A =
[
λjIm + T A12

0 A22

]
, Pj =

[
Im −R
0 0

]
,

where Λ(A22) = Λ(A)\{λj}, T ∈ Cn×n is strictly upper triangular and R ∈ Cm×(n−m)

is the solution of the Sylvester equation R(A22 − λjIn−m)− TR = A12.
(a). Suppose λj is semisimple. Then T = 0 and R(A22 − λjIn−m) = A12. Thus,

(A − λjIn)∗(A − λjIn) =
[
0 0
0 (A22 − λjIn−m)∗(A22 − λjIn−m) + A∗

12A12

]

=
[
0 0
0 (A22 − λjIn−m)∗(In−m + R∗R)(A22 − λjIn−m)

]
.

Thus

πΣ(A − λjIn)2 = πΛ((A − λjIn)∗(A − λjIn))
= det((A22 − λjIn−m)∗(In−m + R∗R)(A22 − λjIn−m)) (3.2)
= |det(A22 − λjIn−m)|2 det(In−m + R∗R)
= |πΛ(A − λjIn)|2 det(In−m + R∗R). (3.3)

Furthermore we have PjP
∗
j =

[
Im + RR∗ 0

0 0

]
and hence

πΣ(Pj)2 = det(Im + RR∗) = det(In−m + R∗R). (3.4)

The latter equation holds by Lemma 2.2. By combining (3.3) and (3.4) we obtain (a).
(b). If m = 1 then Pj has rank 1 and hence, πΣ(Pj) = ‖Pj‖. Thus (b) follows from
(a).
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(c) Suppose m ≥ 2 and λj is nonderogatory. Then T =

 0

.

.

.

D

0 . . . 0

, where D ∈

C(m−1)×(m−1) is upper triangular and nonsingular. In the following we write A12 =[
Ã
a

]
, where a is the lower row of A12. Let r denote the lower row of R. By Formula

(2.11) we have

r = a(A22 − λjI)−1. (3.5)

Let us determine πΣ(A). Since removing of a column of zeros and a permutation of
rows does not change the nonzero singular values of a matrix we have

πΣ(A − λjIn) = πΣ




0

.

.

.

D Ã

0 . . . 0 a
0 A22 − λjIn−m


 = πΣ

 D Ã
0 A22 − λjIn−m

0 . . . 0 a

 .

Lemma 2.1 yields

πΣ

 D Ã
0 A22 − λjIn−m

0 . . . 0 a

 = πΣ

([
D Ã
0 A22 − λjI

]) √
det(1 + yy∗)

= |det(D)det(A22 − λjI)|
√
1 + ‖y‖2

= |πΛ(A − λjI)| |det(D)|
√
1 + ‖y‖2,

where

y =
[
0 . . . 0 a

] [
D Ã
0 A22 − λjI

]−1

.

From (3.5) it follows that y =
[
0 . . . 0 r

]
and hence, ‖y‖ = ‖r‖. In summary,

πΣ(A − λjIn) = |πΛ(A − λjIn)| |det(D)|
√

1 + ‖r‖2.

But |det(D)|√1 + ‖r‖2 = ‖Nm−1
j ‖ by Proposition 2.4. Hence, (c) holds.

Finally, we treat the case that λ1 is the only eigenvalue ofA. Let U∗AU = λ1In+T
be a Schur decomposition. The eigenprojection is P1 = In and the nilpotent operator
is N1 = A − λ1In = UTU∗. Since all eigenvalues of A − λ1In are zero we have
πΛ(A−λ1In) = 1 by definition. If λ1 is semisimple then also πΣ(A−λ1In) = πΣ(0) =
1. Hence, q(A, λ1) = 1 = πΣ(P1). Suppose n ≥ 2 and λ1 is nonderogatory. Then

q(A, λ1) = πΣ(A − λ1In) = πΣ(T ) = |det(D)| = ‖T n−1‖ = ‖Nn−1
1 ‖,

where T =

 0

.

.

.

D

0 . . . 0

 .
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4. Condition numbers. In this section we show that q(A, λ)1/m equals the
Hölder condition number of the nonderogatory eigenvalue λ of algebraic multiplicity
m. To this end we introduce some additional notation. By Dλ(r) we denote the closed
disk of radius r > 0 about λ ∈ C. If λ ∈ Λ(A), A ∈ Cn×n, then Cλ(ε) denotes the
connected component of the ε-pseudospectrum, Λε(A), that contains λ. We define

R+
λ (ε) := inf{r > 0 | Cλ(ε) ⊆ Dλ(r) },

R−
λ (ε) := sup{r > 0 | Dλ(r) ⊆ Cλ(ε)}.

Then

Dλ(R−
λ (ε)) ⊆ Cλ(ε) ⊆ Dλ(R+

λ (ε)).

Theorem 4.1. Let λ ∈ Λ(A) be a nonderogatory eigenvalue of algebraic multi-
plicity m. Then

R±
λ (ε) = q(A, λ)1/m ε1/m + o(ε1/m). (4.1)

The proof uses Theorem 1.1 and the lemma below.
Lemma 4.2. Let U ⊆ Cn be an open neighborhood of z0 ∈ Cn. Let f, g :

U → [0,∞) be continuous functions. For ε ≥ 0 let Sf (ε) and Sg(ε) denote the
connected component containing z0 of the sublevel set { z ∈ U | f(z) ≤ ε } and
{ z ∈ U | g(z) ≤ ε } respectively. Assume that 0 = g(z0) is an isolated zero of g, and

lim
z→z0

f(z)
g(z)

= 1. (4.2)

Then there exists an ε0 > 0 and functions h± : [0, ε0] → [0,∞) with limε→0 h±(ε) = 1
such that for all ε ∈ [0, ε0],

Sg(h−(ε) ε ) ⊆ Sf (ε) ⊆ Sg(h+(ε) ε ). (4.3)

We postpone the proof of the lemma to the end of this section.

Proof of Theorem 4.1: Let in Lemma 4.2, z0 = λ and

f(z) = σmin(A − zIn), g(z) =
|z − λ|m
q(A, λ)

, z ∈ C.

Then Sf (ε) = Cλ(ε) and Sg(ε) = Dλ((q(A, λ)ε)1/m). Theorem 1.1 yields limz→λ
f(z)
g(z) =

1. Hence, by the lemma there are functions h± with limε→0 h±(ε) = 1 and

Dλ( (q(A, λ)h−(ε)ε )1/m ) ⊆ Cλ(ε) ⊆ Dλ( (q(A, λ)h+(ε)ε )1/m ).

This shows (4.1).
Now, we give the definition for the Hölder condition number of an eigenvalue of

arbitrary multiplicity (see [2]). For λ ∈ C, m ∈ N and Ã ∈ C
n×n we set

dm(Ã, λ) := min{ r ≥ 0 | Dλ(r) contains at least m eigenvalues of Ã }.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 143-153, May 2006

http://math.technion.ac.il/iic/ela



ELA

Eigenvalue Condition Numbers 151

If λ is an eigenvalue of A ∈ Cn×n of algebraic multiplicity m then the Hölder condition
number of λ to the order α > 0 is defined by

condα(A, λ) = lim
ε↘0

sup
‖∆‖≤ε

dm(A +∆, λ)
‖∆‖α

.

It is easily seen that 0 �= condα(A, λ) �= ∞ for at most one order α > 0.
Theorem 4.3. Let λ ∈ Λ(A) be a nonderogatory eigenvalue of multiplicity m.

Then

cond1/m(A, λ) = q(A, λ)1/m =

{
‖P‖ if m = 1,
‖Nm−1‖1/m otherwise,

(4.4)

where P ∈ Cn×n is the eigenprojector onto the generalized eigenspace ker(A−λ In)m,
and N = (A − λ Im)P .

Proof. Let ∆ ∈ Cn×n with ‖∆‖ ≤ ε. Then the continuity of eigenvalues yields,
that for any t ∈ [0, 1] at least m eigenvalues of A+ t∆ are contained in Cλ(ε) counting
multiplicities. Hence

dm(A +∆, λ) ≤ R+
λ (ε) = q(A, λ)1/mε1/m + o(ε1/m).

By letting ε = ‖∆‖ we obtain that for all ∆ ∈ Cn×n,

dm(A +∆, λ)
‖∆‖1/m

≤ q(A, λ)1/m + o(‖∆‖1/m)‖∆‖−(1/m).

This yields

cond1/m(A, λ) ≤ q(A, λ)1/m.

Let r > 0 be such that Dλ(r) ∩ Λ(A) = {λ}. Then by the continuity of eigenvalues
there is an ε0 such that the following holds for all ε < ε0,

(a) Dλ(r) ∩ Λε(A) = Cλ(ε).
(b) For any ∆ ∈ Cn×n with ‖∆‖ ≤ ε, the set Cλ(ε) contains precisely m eigen-

values of A+∆ counting multiplicities.
Let ε < ε0 and let zε ∈ C be a boundary point of Cλ(ε). Then σmin(A−zε In) = ε. Let
∆ε = −ε u v∗, where u, v ∈ Cn is a pair of normalized left and right singular vectors
of A − zε In belonging to the minimum singular value, i.e.

(A − zε In) v = ε u, u∗(A − zε In) = ε v∗, ‖u‖ = ‖v‖ = 1.

Then ‖∆ε‖ = ε and zε ∈ Λ(A +∆ε) since (A +∆ε)v = zε v. Thus, by (a) and (b),

dm(A +∆ε, λ) ≥ |zε − λ|
≥ R−

λ (ε)

= q(A, λ)1/mε1/m + o(ε1/m).
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and therefore

dm(A +∆ε, λ)
‖∆ε‖1/m

≥ q(A, λ)1/m + o(ε1/m)ε−(1/m).

Hence, cond1/m(A, λ) ≥ q(A, λ)1/m.
Remark 4.4. In [7] (see also [2, 4]) the following generalization of Theorem 4.3

has been shown. Let λ be an arbitrary eigenvalue of A. If λ is semisimple then

cond1(A, λ) = ‖P‖.

If λ is not semisimple then

cond1/m(A, λ) = ‖Nm−1‖1/m,

where m denotes the index of nilpotency of N , i.e. Nm = 0, Nm−1 �= 0.

Proof of Lemma 4.2: By Br we denote the closed ball of radius r > 0 about z0. The
condition that z0 is an isolated zero of g combined with (4.2) yields that z0 is also an
isolated zero of f . Hence, there is an r0 > 0 such that f(z) > 0 for all z ∈ Br0 \ {z0}.
This implies that εr := minz∈∂Br f(z) > 0 for any r ∈ (0, r0]. If ε < εr then ∂Br does
not intersect the sublevel sets { z ∈ U | f(z) ≤ ε }. Thus Sf (ε) is contained in the
interior of Br. Note that Sf (ε) being a connected component of a closed set is closed.
It follows that Sf (ε) is compact if ε < εr0 . Now, let

φ±(z) :=

{
(1± ‖z − z0‖) g(z)

f(z) z ∈ Br0 \ {z0},
1, z = z0.

Condition (4.2) yields that the functions φ± : U → R are continuous. For ε < εr0 let

h−(ε) := min
z∈Sf (ε)

φ−(z), h+(ε) := max
z∈Sf (ε)

φ+(z).

Then we have for all ε < εr,

min
z∈Br

φ±(z) ≤ h±(ε) ≤ max
z∈Br

φ±(z).

As r tends to 0 the max and the min tend to φ±(z0) = 1. This yields limε→0 h±(ε) = 1.
If z ∈ ∂Sf (ε) then f(z) = ε and g(z) > (1 − ‖z − z0‖) g(z)

f(z)f(z) ≥ h−(ε)ε. Thus
∂Sf (ε) does not intersect E := { z ∈ U | g(z) ≤ h−(ε)ε }. Thus Sg(h−(ε)ε) being
a connected component of E is either contained in the interior of Sf (ε) or in the
complement of Sf (ε). The latter is impossible since z0 ∈ Sf (ε) ∩ Sg(h−(ε)ε). Hence,
Sg(h−(ε)ε) ⊂ Sf (ε). This proves the first inclusion in (4.3). To prove the second
suppose z0 �= z ∈ ∂Sg(h+(ε)ε) ∩ Sf (ε). Then g(z) = h+(ε)ε and 0 < f(z) ≤ ε.
Hence g(z)/f(z) ≥ h+(ε), a contradiction. Thus Sf (ε) is contained in the interior of
Sg(h+(ε)ε).
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