隹

EIGENVALUE CONDITION NUMBERS AND A FORMULA OF BURKE, LEWIS AND OVERTON*

MICHAEL KAROW ${ }^{\dagger}$

Abstract

In a paper by Burke, Lewis and Overton, a first order expansion has been given for the minimum singular value of $A-z I, z \in \mathbb{C}$, about a nonderogatory eigenvalue λ of $A \in \mathbb{C}^{n \times n}$. This note investigates the relationship of the expansion with the Jordan canonical form of A. Furthermore, formulas for the condition number of eigenvalues are derived from the expansion.

Key words. Eigenvalue condition numbers, Jordan canonical form, Singular values.

AMS subject classifications. 15A18, 65F35.

1. Introduction. By $\pi_{\Sigma}(A)$ we denote the product of the nonzero singular values of the matrix $A \in \mathbb{C}^{n \times m}$, counting multiplicities. For the zero matrix $0 \in \mathbb{C}^{n \times m}$ we set $\pi_{\Sigma}(0)=1$. If A is square then $\Lambda(A)$ denotes the spectrum and $\pi_{\Lambda}(A)$ stands for the product of the nonzero eigenvalues, counting multiplicities. If all eigenvalues of A are zero then we set $\pi_{\Lambda}(A)=1$. The subject of this note is the ratio

$$
q(A, \lambda):=\frac{\pi_{\Sigma}\left(A-\lambda I_{n}\right)}{\left|\pi_{\Lambda}\left(A-\lambda I_{n}\right)\right|}, \quad \lambda \in \Lambda(A)
$$

In [1] the following first order expansion has been given for the function

$$
z \mapsto \sigma_{\min }\left(A-z I_{n}\right), z \in \mathbb{C}
$$

where $\sigma_{\min }(\cdot)$ denotes the minimum singular value and I_{n} is the $n \times n$ identity matrix.
Theorem 1.1. Let $\lambda \in \mathbb{C}$ be a nonderogatory eigenvalue of algebraic multiplicity m of the matrix $A \in \mathbb{C}^{n \times n}$. Then

$$
\sigma_{\min }\left(A-z I_{n}\right)=\frac{|z-\lambda|^{m}}{q(A, \lambda)}+\mathcal{O}\left(|z-\lambda|^{m+1}\right), \quad z \in \mathbb{C}
$$

The relevance of this result for the perturbation theory of eigenvalues is as follows. The closed $\epsilon-$ pseudospectrum of $A \in \mathbb{C}^{n \times n}$ with respect to the spectral norm, $\|\cdot\|$, is defined by

$$
\Lambda_{\epsilon}(A)=\left\{z \in \mathbb{C} \mid z \in \Lambda(A+\Delta), \Delta \in \mathbb{C}^{n \times n},\|\Delta\| \leq \epsilon\right\}
$$

In words, $\Lambda_{\epsilon}(A)$ is the set of all eigenvalues of all matrices of the form $A+\Delta$ where the spectral norm of the perturbation Δ is bounded by $\epsilon>0$. It is well known [10] that

$$
\Lambda_{\epsilon}(A)=\left\{z \in \mathbb{C} \mid \sigma_{\min }(A-z I) \leq \epsilon\right\}
$$

[^0]http://math.technion.ac.il/iic/el

Theorem 1.1 yields an estimate for the size of pseudospectra for small ϵ : Roughly speaking if ϵ is small enough then the connected component of $\Lambda_{\epsilon}(A)$ that contains the eigenvalue λ is approximately a disk of radius $(q(A, \lambda) \epsilon)^{1 / m}$ about λ. It follows that $q(A, \lambda)^{1 / m}$ is the Hölder condition number of λ. We discuss this in detail in Section 4.

However, the main concern of this note is to establish the relationship of $q(A, \lambda)$ with the Jordan decomposition of A. For a simple eigenvalue the relationship is as follows. Let $x, y \in \mathbb{C}^{n} \backslash\{0\}$ be a right and a left eigenvector of A to the eigenvalue λ respectively, i.e. $A x=\lambda x, y^{*} A=\lambda y^{*}$, where y^{*} denotes the conjugate transpose of y. Then

$$
P=\left(y^{*} x\right)^{-1} x y^{*} \in \mathbb{C}^{n \times n}
$$

is a projection onto the one dimensional eigenspace $\mathbb{C} x$. The kernel of P is the direct sum of all generalized eigenspaces belonging to the eigenvalues different from λ. As is well known [5, p.490],[3, p.202],[9, p.186], the condition number of λ equals the norm of P. Combined with the considerations above this yields that

$$
\begin{equation*}
q(A, \lambda)=\|P\| \tag{1.1}
\end{equation*}
$$

In Section 3 we give an elementary proof of the identity (1.1) without using Theorem 1.1. Furthermore, we show that for a nondegoratory eigenvalue of algebraic multiplicity $m \geq 2$,

$$
\begin{equation*}
q(A, \lambda)=\left\|N^{m-1}\right\| \tag{1.2}
\end{equation*}
$$

where N is the nilpotent operator associated with λ in the Jordan decomposition of A. The formulas (1.1) and (1.2) are the main results of this note. The proofs also show that the assumption that λ is nonderogatory is necessary.

The next section contains some preliminaries about the computation of the two products $\pi_{\Sigma}(A)$ and $\pi_{\Lambda}(A)$ and about the relationship of the Schur form of A with the Jordan decomposition.

Throughout this note, $\|\cdot\|$ stands for the spectral norm.
2. Preliminaries. Below we list some easily verified properties of $\pi_{\Lambda}(A)$, the product of the nonzero eigenvalues of A, and of $\pi_{\Sigma}(A)$, the product of the nonzero singular values of A. In the sequel A^{T} and A^{*} denote the transpose and the conjugate transpose of A respectively.
(a) If $A \in \mathbb{C}^{n \times n}$ is nonsingular then $\pi_{\Lambda}(A)=\operatorname{det}(A)$.
(b) For any $A \in \mathbb{C}^{n \times n}: \pi_{\Lambda}\left(A^{T}\right)=\pi_{\Lambda}(A)$ and $\pi_{\Lambda}\left(A^{*}\right)=\overline{\pi_{\Lambda}(A)}$.
(c) Let $S \in \mathbb{C}^{n \times n}$ be nonsingular. Then for any $A \in \mathbb{C}^{n \times n}, \pi_{\Lambda}\left(S A S^{-1}\right)=\pi_{\Lambda}(A)$.
(d) Let $A_{11} \in \mathbb{C}^{n \times n}, A_{22} \in \mathbb{C}^{m \times m}$ and $A_{12} \in \mathbb{C}^{n \times m}$. Then

$$
\pi_{\Lambda}\left(\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]\right)=\pi_{\Lambda}\left(A_{11}\right) \pi_{\Lambda}\left(A_{22}\right)
$$

(e) For any $A \in \mathbb{C}^{n \times m}, \pi_{\Sigma}(A)^{2}=\pi_{\Lambda}\left(A^{*} A\right)=\pi_{\Lambda}\left(A A^{*}\right)$.
(f) If $A \in \mathbb{C}^{n \times n}$ is nonsingular then $\pi_{\Sigma}(A)=|\operatorname{det}(A)|=\left|\pi_{\Lambda}(A)\right|$.
(g) Let $U \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{m \times m}$ be unitary. Then for any $A \in \mathbb{C}^{n \times m}$, $\pi_{\Sigma}(U A V)=\pi_{\Sigma}(A)$.
In the next section we need the lemmas below.
LEmma 2.1. Let $M \in \mathbb{C}^{n \times n}$ be nonsingular, $X \in \mathbb{C}^{m \times n}$ and $Y=X M^{-1}$. Then

$$
\pi_{\Sigma}\left(\left[\begin{array}{c}
M \\
X
\end{array}\right]\right)=\pi_{\Sigma}(M) \sqrt{\operatorname{det}\left(I_{n}+Y^{*} Y\right)}
$$

Proof. We have

$$
\begin{aligned}
\pi_{\Sigma}\left(\left[\begin{array}{c}
M \\
X
\end{array}\right]\right)^{2} & =\pi_{\Lambda}\left(\left[\begin{array}{ll}
M^{*} & X^{*}
\end{array}\right]\left[\begin{array}{c}
M \\
X
\end{array}\right]\right) \\
& =\operatorname{det}\left(M^{*} M+X^{*} X\right) \\
& =\operatorname{det}\left(M^{*}\left(I_{n}+Y^{*} Y\right) M\right) \\
& =\operatorname{det}\left(M^{*}\right) \operatorname{det}(M) \operatorname{det}\left(I_{n}+Y^{*} Y\right) \\
& =\pi_{\Sigma}(M)^{2} \operatorname{det}\left(I_{n}+Y^{*} Y\right)
\end{aligned}
$$

Lemma 2.2. Let $Y \in \mathbb{C}^{m \times n}$. Then $\left\|I_{n}+Y^{*} Y\right\|=\left\|I_{m}+Y Y^{*}\right\|$ and $\operatorname{det}\left(I_{n}+\right.$ $\left.Y^{*} Y\right)=\operatorname{det}\left(I_{m}+Y Y^{*}\right)$.

Proof. The case $Y=0$ is trivial. Let $Y \neq 0$. The matrices Y and Y^{*} have the same nonzero singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{p}>0$ say. The eigenvalues different from 1 of both $I_{n}+Y^{*} Y$ and $I_{m}+Y Y^{*}$ are $1+\sigma_{1}^{2} \geq 1+\sigma_{2}^{2} \ldots \geq 1+\sigma_{p}^{2}$. Thus $\left\|I_{n}+Y^{*} Y\right\|=\left\|I_{m}+Y Y^{*}\right\|=1+\sigma_{1}^{2}$ and $\operatorname{det}\left(I_{n}+Y^{*} Y\right)=\operatorname{det}\left(I_{m}+Y Y^{*}\right)=$ $\prod_{k=1}^{p}\left(1+\sigma_{k}^{2}\right)$.

We proceed with remarks on the Jordan decomposition. Let $\lambda_{1}, \ldots, \lambda_{\kappa}$ be the pairwise different eigenvalues of $A \in \mathbb{C}^{n \times n}$. Let $\mathcal{X}_{j}=\operatorname{ker}\left(A-\lambda_{j} I_{n}\right)^{n}$ be the generalized eigenspaces. By the Jordan decomposition theorem we have

$$
\begin{equation*}
A=\sum_{j=1}^{\kappa}\left(\lambda_{j} P_{j}+N_{j}\right) \tag{2.1}
\end{equation*}
$$

where $P_{1}, \ldots, P_{\kappa} \in \mathbb{C}^{n \times n}$ are the projectors of direct decomposition $\mathbb{C}^{n}=\bigoplus_{j=1}^{\kappa} \mathcal{X}_{j}$, i.e.

$$
P_{j}^{2}=P_{j}, \quad \operatorname{range}\left(P_{j}\right)=\mathcal{X}_{j}, \quad \operatorname{ker}\left(P_{j}\right)=\bigoplus_{k=1, k \neq j}^{\kappa} \mathcal{X}_{k}
$$

and $N_{1}, \ldots, N_{\kappa} \in \mathbb{C}^{n \times n}$ are the nilpotent matrices $N_{j}=\left(A-\lambda_{j} I_{n}\right) P_{j}$. The eigenvalue λ_{j} is said to be

- semisimple (nondefective) if $\mathcal{X}_{j}=\operatorname{ker}\left(A-\lambda_{j} I_{n}\right)$,
- simple if $\operatorname{dim} \mathcal{X}_{j}=1$,
- nonderogatory if $\operatorname{dim} \operatorname{ker}\left(A-\lambda_{j} I_{n}\right)=1$.

In the following m denotes the algebraic multiplicity of λ_{j}. Note that if $m \geq 2$ then λ_{j} is nonderogatory if and only if $N_{j}^{m-1} \neq 0$. We now recall how to obtain the operators P_{j} and N_{j} from a Schur form of A. We only consider the nontrivial case that A has at least two different eigenvalues. By the Schur decomposition theorem there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$
U^{*} A U=\left[\begin{array}{cc}
\lambda_{j} I_{m}+T & A_{12} \\
0 & A_{22}
\end{array}\right],
$$

where $A_{12} \in \mathbb{C}^{m \times(n-m)}, A_{22} \in \mathbb{C}^{(n-m) \times(n-m)}, \Lambda\left(A_{22}\right)=\Lambda(A) \backslash\left\{\lambda_{j}\right\}$ and $T \in \mathbb{C}^{n \times n}$ is strictly upper triangular,

$$
T=\left[\begin{array}{ccccc}
0 & t_{12} & \cdots & \cdots & t_{1 m} \\
& \ddots & t_{23} & & \vdots \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & t_{m-1, m} \\
& & & & 0
\end{array}\right]
$$

If $m=1$ (i.e. λ_{j} is simple) then T is the 1×1 zero matrix. Since the spectra of T and $A_{22}-\lambda_{j} I_{n-m}$ are disjoint the Sylvester equation

$$
\begin{equation*}
R\left(A_{22}-\lambda_{j} I_{n-m}\right)-T R=A_{12} . \tag{2.2}
\end{equation*}
$$

has a unique solution $R \in \mathbb{C}^{m \times(n-m)}$.

Proposition 2.3. With the notation above the projector onto the generalized eigenspace and the nilpotent operator associated with λ_{j} are given by

$$
P_{j}=U\left[\begin{array}{cc}
I_{m} & -R \\
0 & 0
\end{array}\right] U^{*}, \quad \text { and } \quad N_{j}=U\left[\begin{array}{cc}
T & -T R \\
0 & 0
\end{array}\right] U^{*} .
$$

For any integer $\ell \geq 1$ we have

$$
N_{j}^{\ell}=U\left[\begin{array}{cc}
T^{\ell} & -T^{\ell} R \tag{2.3}\\
0 & 0
\end{array}\right] U^{*}
$$

The spectral norms of P_{j} and of N_{j}^{ℓ} satisfy

$$
\begin{align*}
\left\|P_{j}\right\| & =\left\|I_{m}+R R^{*}\right\|^{1 / 2} \tag{2.4}\\
\left\|N_{j}^{\ell}\right\| & =\left\|T^{\ell}\left(I_{m}+R R^{*}\right)\left(T^{*}\right)^{\ell}\right\|^{1 / 2} \tag{2.5}
\end{align*}
$$

Proof. Let $X_{1}:=U\left[\begin{array}{c}I_{m} \\ 0\end{array}\right] \in \mathbb{C}^{n \times m}, X_{2}:=U\left[\begin{array}{c}R \\ I_{n-m}\end{array}\right] \in \mathbb{C}^{n \times(n-m)}$. Then obviously $\mathbb{C}^{n}=\operatorname{range}\left(X_{1}\right) \oplus \operatorname{range}\left(X_{2}\right)$ and

$$
\begin{equation*}
A X_{1}=X_{1}\left(\lambda_{j} I_{m}+T\right) \tag{2.6}
\end{equation*}
$$

Furthermore, (2.2) yields that

$$
\begin{equation*}
A X_{2}=X_{2} A_{22} \tag{2.7}
\end{equation*}
$$

Hence, range $\left(X_{1}\right)$ and range $\left(X_{2}\right)$ are complementary invariant subspaces of A. The relations (2.6) and (2.7) imply that for any $\lambda \in \mathbb{C}$ and any integer $\ell \geq 1$,

$$
\begin{align*}
\left(A-\lambda I_{n}\right)^{\ell} X_{1} & =X_{1}\left(\left(\lambda_{j}-\lambda\right) I_{m}+T\right)^{\ell} \\
\left(A-\lambda I_{n}\right)^{\ell} X_{2} & =X_{2}\left(A_{22}-\lambda I_{n-m}\right)^{\ell} \tag{2.8}
\end{align*}
$$

Using this and the fact that $\lambda_{j} \notin \Lambda\left(A_{22}\right)$ it is easily verified that range $\left(X_{1}\right)=\operatorname{ker}(A-$ $\left.\lambda_{j} I_{n}\right)^{n}$ and range $\left(X_{2}\right)=\bigoplus_{k=1, k \neq j}^{\kappa} \operatorname{ker}\left(A-\lambda_{k} I_{n}\right)^{n}$. The matrix

$$
P_{j}=U\left[\begin{array}{cc}
I_{m} & -R \tag{2.9}\\
0 & 0
\end{array}\right] U^{*}
$$

satisfies $P_{j}^{2}=P_{j}, P_{j} X_{1}=X_{1}$ and $P_{j} X_{2}=0$. Hence, P_{j} is the Jordan projector onto the generalized eigenspace $\operatorname{ker}\left(A-\lambda_{j} I_{n}\right)^{n}$. For the associated nilpotent matrix N_{j} one obtains

$$
N_{j}=\left(A-\lambda_{j} I_{n}\right) P_{j}=U\left[\begin{array}{cc}
T & -T R \tag{2.10}\\
0 & 0
\end{array}\right] U^{*}
$$

The formulas (2.3), (2.4) and (2.5) are immediate from (2.9) and (2.10).
We give an expression for $\left\|N_{j}^{m-1}\right\|$ which is a bit more explicit than formula (2.5). First note that if λ_{j} has algebraic multiplicity $m \geq 2$ then

$$
T^{m-1}=\left[\begin{array}{cccc}
0 & \ldots & 0 & \tau \\
\vdots & & \vdots & 0 \\
\vdots & & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right], \quad \text { where } \tau=\prod_{k=1}^{m-1} t_{k, k+1}
$$

Let $e_{m}^{T}=\left[\begin{array}{llll}0 & \ldots & 1\end{array}\right]^{T} \in \mathbb{C}^{m}$ and $r=e_{m}^{T} R$. Then r is the lower row of R. Since the lower row of $T R$ is zero it follows from the Sylvester equation (2.2) that

$$
\begin{equation*}
r=e_{m}^{T} A_{12}\left(A_{22}-\lambda_{j} I_{m}\right)^{-1} \tag{2.11}
\end{equation*}
$$

From (2.3) or (2.5) we obtain
Proposition 2.4. Suppose λ_{j} has algebraic multiplicity $m \in\{2, \ldots, n-1\}$. Then

$$
\left\|N_{j}^{m-1}\right\|=|\tau| \sqrt{1+\|r\|^{2}}
$$

3. Main result. We are now in a position to state and prove our main result on the ratio

$$
\begin{equation*}
q\left(A, \lambda_{j}\right)=\frac{\pi_{\Sigma}\left(A-\lambda_{j} I_{n}\right)}{\left|\pi_{\Lambda}\left(A-\lambda_{j} I_{n}\right)\right|}, \quad \lambda_{j} \in \Lambda(A) \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let $\lambda_{j} \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. Let P_{j} and N_{j} be the eigenprojector and the nilpotent operator associated with λ_{j}. Then the following holds.
(a) If λ_{j} is a semisimple eigenvalue then $q\left(A, \lambda_{j}\right)=\pi_{\Sigma}\left(P_{j}\right)$.
(b) If λ_{j} is a simple eigenvalue then $q\left(A, \lambda_{j}\right)=\left\|P_{j}\right\|$.
(c) If λ_{j} is a nonderogatory eigenvalue of algebraic multiplicity $m \geq 2$ then

$$
q\left(A, \lambda_{j}\right)=\left\|N_{j}^{m-1}\right\|
$$

Proof. First, we treat the case that A has at least two different eigenvalues. In view of Proposition 2.3 and since the products $\pi_{\Sigma}\left(A-\lambda_{j} I_{n}\right), \pi_{\Lambda}\left(A-\lambda_{j} I_{n}\right)$ are invariant under unitary similarity transformations we may assume that

$$
A=\left[\begin{array}{cc}
\lambda_{j} I_{m}+T & A_{12} \\
0 & A_{22}
\end{array}\right], \quad P_{j}=\left[\begin{array}{cc}
I_{m} & -R \\
0 & 0
\end{array}\right]
$$

where $\Lambda\left(A_{22}\right)=\Lambda(A) \backslash\left\{\lambda_{j}\right\}, T \in \mathbb{C}^{n \times n}$ is strictly upper triangular and $R \in \mathbb{C}^{m \times(n-m)}$ is the solution of the Sylvester equation $R\left(A_{22}-\lambda_{j} I_{n-m}\right)-T R=A_{12}$.
(a). Suppose λ_{j} is semisimple. Then $T=0$ and $R\left(A_{22}-\lambda_{j} I_{n-m}\right)=A_{12}$. Thus,

$$
\begin{aligned}
\left(A-\lambda_{j} I_{n}\right)^{*}\left(A-\lambda_{j} I_{n}\right) & =\left[\begin{array}{cc}
0 & 0 \\
0 & \left(A_{22}-\lambda_{j} I_{n-m}\right)^{*}\left(A_{22}-\lambda_{j} I_{n-m}\right)+A_{12}^{*} A_{12}
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & \left(A_{22}-\lambda_{j} I_{n-m}\right)^{*}\left(I_{n-m}+R^{*} R\right)\left(A_{22}-\lambda_{j} I_{n-m}\right)
\end{array}\right] .
\end{aligned}
$$

Thus

$$
\begin{align*}
\pi_{\Sigma}\left(A-\lambda_{j} I_{n}\right)^{2} & =\pi_{\Lambda}\left(\left(A-\lambda_{j} I_{n}\right)^{*}\left(A-\lambda_{j} I_{n}\right)\right) \\
& =\operatorname{det}\left(\left(A_{22}-\lambda_{j} I_{n-m}\right)^{*}\left(I_{n-m}+R^{*} R\right)\left(A_{22}-\lambda_{j} I_{n-m}\right)\right) \tag{3.2}\\
& =\left|\operatorname{det}\left(A_{22}-\lambda_{j} I_{n-m}\right)\right|^{2} \operatorname{det}\left(I_{n-m}+R^{*} R\right) \\
& =\left|\pi_{\Lambda}\left(A-\lambda_{j} I_{n}\right)\right|^{2} \operatorname{det}\left(I_{n-m}+R^{*} R\right) \tag{3.3}
\end{align*}
$$

Furthermore we have $P_{j} P_{j}^{*}=\left[\begin{array}{cc}I_{m}+R R^{*} & 0 \\ 0 & 0\end{array}\right]$ and hence

$$
\begin{equation*}
\pi_{\Sigma}\left(P_{j}\right)^{2}=\operatorname{det}\left(I_{m}+R R^{*}\right)=\operatorname{det}\left(I_{n-m}+R^{*} R\right) \tag{3.4}
\end{equation*}
$$

The latter equation holds by Lemma 2.2. By combining (3.3) and (3.4) we obtain (a). (b). If $m=1$ then P_{j} has rank 1 and hence, $\pi_{\Sigma}\left(P_{j}\right)=\left\|P_{j}\right\|$. Thus (b) follows from (a).
(c) Suppose $m \geq 2$ and λ_{j} is nonderogatory. Then $T=\left[\begin{array}{c}0 \\ \vdots \\ \vdots \\ 0\end{array}\right]$, where $D \in$ $\mathbb{C}^{(m-1) \times(m-1)}$ is upper triangular and nonsingular. In the following we write $A_{12}=$ $\left[\begin{array}{l}\tilde{A} \\ a\end{array}\right]$, where a is the lower row of A_{12}. Let r denote the lower row of R. By Formula (2.11) we have

$$
\begin{equation*}
r=a\left(A_{22}-\lambda_{j} I\right)^{-1} \tag{3.5}
\end{equation*}
$$

Let us determine $\pi_{\Sigma}(A)$. Since removing of a column of zeros and a permutation of rows does not change the nonzero singular values of a matrix we have

$$
\pi_{\Sigma}\left(A-\lambda_{j} I_{n}\right)=\pi_{\Sigma}\left(\left[\begin{array}{cc}
0 & \tilde{A} \\
\vdots & \\
0 \ldots 0 & a \\
0 & A_{22}-\lambda_{j} I_{n-m}
\end{array}\right]\right)=\pi_{\Sigma}\left(\left[\begin{array}{cc}
D & \tilde{A} \\
0 & A_{22}-\lambda_{j} I_{n-m} \\
0 \ldots 0 & a
\end{array}\right]\right)
$$

Lemma 2.1 yields

$$
\begin{aligned}
\pi_{\Sigma}\left(\left[\begin{array}{cc}
D & \tilde{A} \\
0 & A_{22}-\lambda_{j} I_{n-m} \\
0 \ldots 0 & a
\end{array}\right]\right) & =\pi_{\Sigma}\left(\left[\begin{array}{cc}
D & \tilde{A} \\
0 & A_{22}-\lambda_{j} I
\end{array}\right]\right) \sqrt{\operatorname{det}\left(1+y y^{*}\right)} \\
& =\left|\operatorname{det}(D) \operatorname{det}\left(A_{22}-\lambda_{j} I\right)\right| \sqrt{1+\|y\|^{2}} \\
& =\left|\pi_{\Lambda}\left(A-\lambda_{j} I\right)\right||\operatorname{det}(D)| \sqrt{1+\|y\|^{2}}
\end{aligned}
$$

where

$$
y=\left[\begin{array}{ll}
0 \ldots 0 & a
\end{array}\right]\left[\begin{array}{cc}
D & \tilde{A} \\
0 & A_{22}-\lambda_{j} I
\end{array}\right]^{-1} .
$$

From (3.5) it follows that $y=\left[\begin{array}{ll}0 \ldots 0 & r\end{array}\right]$ and hence, $\|y\|=\|r\|$. In summary,

$$
\pi_{\Sigma}\left(A-\lambda_{j} I_{n}\right)=\left|\pi_{\Lambda}\left(A-\lambda_{j} I_{n}\right)\right||\operatorname{det}(D)| \sqrt{1+\|r\|^{2}}
$$

But $|\operatorname{det}(D)| \sqrt{1+\|r\|^{2}}=\left\|N_{j}^{m-1}\right\|$ by Proposition 2.4. Hence, (c) holds.
Finally, we treat the case that λ_{1} is the only eigenvalue of A. Let $U^{*} A U=\lambda_{1} I_{n}+T$ be a Schur decomposition. The eigenprojection is $P_{1}=I_{n}$ and the nilpotent operator is $N_{1}=A-\lambda_{1} I_{n}=U T U^{*}$. Since all eigenvalues of $A-\lambda_{1} I_{n}$ are zero we have $\pi_{\Lambda}\left(A-\lambda_{1} I_{n}\right)=1$ by definition. If λ_{1} is semisimple then also $\pi_{\Sigma}\left(A-\lambda_{1} I_{n}\right)=\pi_{\Sigma}(0)=$ 1. Hence, $q\left(A, \lambda_{1}\right)=1=\pi_{\Sigma}\left(P_{1}\right)$. Suppose $n \geq 2$ and λ_{1} is nonderogatory. Then

$$
q\left(A, \lambda_{1}\right)=\pi_{\Sigma}\left(A-\lambda_{1} I_{n}\right)=\pi_{\Sigma}(T)=|\operatorname{det}(D)|=\left\|T^{n-1}\right\|=\left\|N_{1}^{n-1}\right\|
$$

where $T=\left[\begin{array}{ccc}0 & D \\ \vdots & \\ 0 & \cdots & 0\end{array}\right] . \square$
4. Condition numbers. In this section we show that $q(A, \lambda)^{1 / m}$ equals the Hölder condition number of the nonderogatory eigenvalue λ of algebraic multiplicity m. To this end we introduce some additional notation. By $\mathcal{D}_{\lambda}(r)$ we denote the closed disk of radius $r>0$ about $\lambda \in \mathbb{C}$. If $\lambda \in \Lambda(A), A \in \mathbb{C}^{n \times n}$, then $\mathcal{C}_{\lambda}(\epsilon)$ denotes the connected component of the ϵ-pseudospectrum, $\Lambda_{\epsilon}(A)$, that contains λ. We define

$$
\begin{aligned}
& R_{\lambda}^{+}(\epsilon):=\inf \left\{r>0 \mid \mathcal{C}_{\lambda}(\epsilon) \subseteq \mathcal{D}_{\lambda}(r)\right\}, \\
& R_{\lambda}^{-}(\epsilon):=\sup \left\{r>0 \mid \mathcal{D}_{\lambda}(r) \subseteq \mathcal{C}_{\lambda}(\epsilon)\right\} .
\end{aligned}
$$

Then

$$
\mathcal{D}_{\lambda}\left(R_{\lambda}^{-}(\epsilon)\right) \subseteq \mathcal{C}_{\lambda}(\epsilon) \subseteq \mathcal{D}_{\lambda}\left(R_{\lambda}^{+}(\epsilon)\right)
$$

Theorem 4.1. Let $\lambda \in \Lambda(A)$ be a nonderogatory eigenvalue of algebraic multiplicity m. Then

$$
\begin{equation*}
R_{\lambda}^{ \pm}(\epsilon)=q(A, \lambda)^{1 / m} \epsilon^{1 / m}+o\left(\epsilon^{1 / m}\right) \tag{4.1}
\end{equation*}
$$

The proof uses Theorem 1.1 and the lemma below.
Lemma 4.2. Let $U \subseteq \mathbb{C}^{n}$ be an open neighborhood of $z_{0} \in \mathbb{C}^{n}$. Let f, g : $U \rightarrow[0, \infty)$ be continuous functions. For $\epsilon \geq 0$ let $S_{f}(\epsilon)$ and $S_{g}(\epsilon)$ denote the connected component containing z_{0} of the sublevel set $\{z \in U \mid f(z) \leq \epsilon\}$ and $\{z \in U \mid g(z) \leq \epsilon\}$ respectively. Assume that $0=g\left(z_{0}\right)$ is an isolated zero of g, and

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=1 \tag{4.2}
\end{equation*}
$$

Then there exists an $\epsilon_{0}>0$ and functions $h_{ \pm}:\left[0, \epsilon_{0}\right] \rightarrow[0, \infty)$ with $\lim _{\epsilon \rightarrow 0} h_{ \pm}(\epsilon)=1$ such that for all $\epsilon \in\left[0, \epsilon_{0}\right]$,

$$
\begin{equation*}
S_{g}\left(h_{-}(\epsilon) \epsilon\right) \subseteq S_{f}(\epsilon) \subseteq S_{g}\left(h_{+}(\epsilon) \epsilon\right) \tag{4.3}
\end{equation*}
$$

We postpone the proof of the lemma to the end of this section.
Proof of Theorem 4.1: Let in Lemma 4.2, $z_{0}=\lambda$ and

$$
f(z)=\sigma_{\min }\left(A-z I_{n}\right), \quad g(z)=\frac{|z-\lambda|^{m}}{q(A, \lambda)}, \quad z \in \mathbb{C}
$$

Then $S_{f}(\epsilon)=\mathcal{C}_{\lambda}(\epsilon)$ and $S_{g}(\epsilon)=\mathcal{D}_{\lambda}\left((q(A, \lambda) \epsilon)^{1 / m}\right)$. Theorem 1.1 yields $\lim _{z \rightarrow \lambda} \frac{f(z)}{g(z)}=$ 1. Hence, by the lemma there are functions $h_{ \pm}$with $\lim _{\epsilon \rightarrow 0} h_{ \pm}(\epsilon)=1$ and

$$
\mathcal{D}_{\lambda}\left(\left(q(A, \lambda) h_{-}(\epsilon) \epsilon\right)^{1 / m}\right) \subseteq \mathcal{C}_{\lambda}(\epsilon) \subseteq \mathcal{D}_{\lambda}\left(\left(q(A, \lambda) h_{+}(\epsilon) \epsilon\right)^{1 / m}\right)
$$

This shows (4.1).
Now, we give the definition for the Hölder condition number of an eigenvalue of arbitrary multiplicity (see [2]). For $\lambda \in \mathbb{C}, m \in \mathbb{N}$ and $\widetilde{A} \in \mathbb{C}^{n \times n}$ we set

$$
d_{m}(\widetilde{A}, \lambda):=\min \left\{r \geq 0 \mid \mathcal{D}_{\lambda}(r) \text { contains at least } m \text { eigenvalues of } \widetilde{A}\right\}
$$

If λ is an eigenvalue of $A \in \mathbb{C}^{n \times n}$ of algebraic multiplicity m then the Hölder condition number of λ to the order $\alpha>0$ is defined by

$$
\operatorname{cond}_{\alpha}(A, \lambda)=\lim _{\epsilon \searrow 0} \sup _{\|\Delta\| \leq \epsilon} \frac{d_{m}(A+\Delta, \lambda)}{\|\Delta\|^{\alpha}}
$$

It is easily seen that $0 \neq \operatorname{cond}_{\alpha}(A, \lambda) \neq \infty$ for at most one order $\alpha>0$.
Theorem 4.3. Let $\lambda \in \Lambda(A)$ be a nonderogatory eigenvalue of multiplicity m. Then

$$
\operatorname{cond}_{1 / m}(A, \lambda)=q(A, \lambda)^{1 / m}= \begin{cases}\|P\| & \text { if } m=1 \tag{4.4}\\ \left\|N^{m-1}\right\|^{1 / m} & \text { otherwise }\end{cases}
$$

where $P \in \mathbb{C}^{n \times n}$ is the eigenprojector onto the generalized eigenspace $\operatorname{ker}\left(A-\lambda I_{n}\right)^{m}$, and $N=\left(A-\lambda I_{m}\right) P$.

Proof. Let $\Delta \in \mathbb{C}^{n \times n}$ with $\|\Delta\| \leq \epsilon$. Then the continuity of eigenvalues yields, that for any $t \in[0,1]$ at least m eigenvalues of $A+t \Delta$ are contained in $\mathcal{C}_{\lambda}(\epsilon)$ counting multiplicities. Hence

$$
d_{m}(A+\Delta, \lambda) \leq R_{\lambda}^{+}(\epsilon)=q(A, \lambda)^{1 / m} \epsilon^{1 / m}+o\left(\epsilon^{1 / m}\right)
$$

By letting $\epsilon=\|\Delta\|$ we obtain that for all $\Delta \in \mathbb{C}^{n \times n}$,

$$
\frac{d_{m}(A+\Delta, \lambda)}{\|\Delta\|^{1 / m}} \leq q(A, \lambda)^{1 / m}+o\left(\|\Delta\|^{1 / m}\right)\|\Delta\|^{-(1 / m)}
$$

This yields

$$
\operatorname{cond}_{1 / m}(A, \lambda) \leq q(A, \lambda)^{1 / m}
$$

Let $r>0$ be such that $\mathcal{D}_{\lambda}(r) \cap \Lambda(A)=\{\lambda\}$. Then by the continuity of eigenvalues there is an ϵ_{0} such that the following holds for all $\epsilon<\epsilon_{0}$,
(a) $\mathcal{D}_{\lambda}(r) \cap \Lambda_{\epsilon}(A)=\mathcal{C}_{\lambda}(\epsilon)$.
(b) For any $\Delta \in \mathbb{C}^{n \times n}$ with $\|\Delta\| \leq \epsilon$, the set $\mathcal{C}_{\lambda}(\epsilon)$ contains precisely m eigenvalues of $A+\Delta$ counting multiplicities.
Let $\epsilon<\epsilon_{0}$ and let $z_{\epsilon} \in \mathbb{C}$ be a boundary point of $\mathcal{C}_{\lambda}(\epsilon)$. Then $\sigma_{\min }\left(A-z_{\epsilon} I_{n}\right)=\epsilon$. Let $\Delta_{\epsilon}=-\epsilon u v^{*}$, where $u, v \in \mathbb{C}^{n}$ is a pair of normalized left and right singular vectors of $A-z_{\epsilon} I_{n}$ belonging to the minimum singular value, i.e.

$$
\left(A-z_{\epsilon} I_{n}\right) v=\epsilon u, \quad u^{*}\left(A-z_{\epsilon} I_{n}\right)=\epsilon v^{*}, \quad\|u\|=\|v\|=1
$$

Then $\left\|\Delta_{\epsilon}\right\|=\epsilon$ and $z_{\epsilon} \in \Lambda\left(A+\Delta_{\epsilon}\right)$ since $\left(A+\Delta_{\epsilon}\right) v=z_{\epsilon} v$. Thus, by (a) and (b),

$$
\begin{aligned}
d_{m}\left(A+\Delta_{\epsilon}, \lambda\right) & \geq\left|z_{\epsilon}-\lambda\right| \\
& \geq R_{\lambda}^{-}(\epsilon) \\
& =q(A, \lambda)^{1 / m} \epsilon^{1 / m}+o\left(\epsilon^{1 / m}\right)
\end{aligned}
$$

and therefore

$$
\frac{d_{m}\left(A+\Delta_{\epsilon}, \lambda\right)}{\left\|\Delta_{\epsilon}\right\|^{1 / m}} \geq q(A, \lambda)^{1 / m}+o\left(\epsilon^{1 / m}\right) \epsilon^{-(1 / m)}
$$

Hence, $\operatorname{cond}_{1 / m}(A, \lambda) \geq q(A, \lambda)^{1 / m}$. \square
Remark 4.4. In [7] (see also [2, 4]) the following generalization of Theorem 4.3 has been shown. Let λ be an arbitrary eigenvalue of A. If λ is semisimple then

$$
\operatorname{cond}_{1}(A, \lambda)=\|P\|
$$

If λ is not semisimple then

$$
\operatorname{cond}_{1 / m}(A, \lambda)=\left\|N^{m-1}\right\|^{1 / m}
$$

where m denotes the index of nilpotency of N, i.e. $N^{m}=0, N^{m-1} \neq 0$.
Proof of Lemma 4.2: By B_{r} we denote the closed ball of radius $r>0$ about z_{0}. The condition that z_{0} is an isolated zero of g combined with (4.2) yields that z_{0} is also an isolated zero of f. Hence, there is an $r_{0}>0$ such that $f(z)>0$ for all $z \in B_{r_{0}} \backslash\left\{z_{0}\right\}$. This implies that $\epsilon_{r}:=\min _{z \in \partial B_{r}} f(z)>0$ for any $r \in\left(0, r_{0}\right]$. If $\epsilon<\epsilon_{r}$ then ∂B_{r} does not intersect the sublevel sets $\{z \in U \mid f(z) \leq \epsilon\}$. Thus $S_{f}(\epsilon)$ is contained in the interior of B_{r}. Note that $S_{f}(\epsilon)$ being a connected component of a closed set is closed. It follows that $S_{f}(\epsilon)$ is compact if $\epsilon<\epsilon_{r_{0}}$. Now, let

$$
\phi_{ \pm}(z):= \begin{cases}\left(1 \pm\left\|z-z_{0}\right\|\right) \frac{g(z)}{f(z)} & z \in B_{r_{0}} \backslash\left\{z_{0}\right\} \\ 1, & z=z_{0}\end{cases}
$$

Condition (4.2) yields that the functions $\phi_{ \pm}: U \rightarrow \mathbb{R}$ are continuous. For $\epsilon<\epsilon_{r_{0}}$ let

$$
h_{-}(\epsilon):=\min _{z \in S_{f}(\epsilon)} \phi_{-}(z), \quad h_{+}(\epsilon):=\max _{z \in S_{f}(\epsilon)} \phi_{+}(z)
$$

Then we have for all $\epsilon<\epsilon_{r}$,

$$
\min _{z \in B_{r}} \phi_{ \pm}(z) \leq h_{ \pm}(\epsilon) \leq \max _{z \in B_{r}} \phi_{ \pm}(z)
$$

As r tends to 0 the max and the min tend to $\phi_{ \pm}\left(z_{0}\right)=1$. This yields $\lim _{\epsilon \rightarrow 0} h_{ \pm}(\epsilon)=1$. If $z \in \partial S_{f}(\epsilon)$ then $f(z)=\epsilon$ and $g(z)>\left(1-\left\|z-z_{0}\right\|\right) \frac{g(z)}{f(z)} f(z) \geq h_{-}(\epsilon) \epsilon$. Thus $\partial S_{f}(\epsilon)$ does not intersect $E:=\left\{z \in U \mid g(z) \leq h_{-}(\epsilon) \epsilon\right\}$. Thus $S_{g}\left(h_{-}(\epsilon) \epsilon\right)$ being a connected component of E is either contained in the interior of $S_{f}(\epsilon)$ or in the complement of $S_{f}(\epsilon)$. The latter is impossible since $z_{0} \in S_{f}(\epsilon) \cap S_{g}\left(h_{-}(\epsilon) \epsilon\right)$. Hence, $S_{g}\left(h_{-}(\epsilon) \epsilon\right) \subset S_{f}(\epsilon)$. This proves the first inclusion in (4.3). To prove the second suppose $z_{0} \neq z \in \partial S_{g}\left(h_{+}(\epsilon) \epsilon\right) \cap S_{f}(\epsilon)$. Then $g(z)=h_{+}(\epsilon) \epsilon$ and $0<f(z) \leq \epsilon$. Hence $g(z) / f(z) \geq h_{+}(\epsilon)$, a contradiction. Thus $S_{f}(\epsilon)$ is contained in the interior of $S_{g}\left(h_{+}(\epsilon) \epsilon\right)$.
http://math.technion.ac.il/iic/et

REFERENCES

[1] J. V. Burke, A. S. Lewis, and M. L. Overton. Optimization and pseudospectra, with applications to robust stability. SIAM J. Matrix Anal. Appl., 25:80-104, 2003
[2] F. Chaitin-Chatelin, A. Harrabi, and A. Ilahi. About Hölder condition numbers and the stratification diagram for defective eigenvalues. Math. Comput. Simul., 54(4-5):397-402, 2000
[3] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, 1988
[4] A. Harrabi. Pseudospectres d'Operateurs Intégraux et Différentiels: Application a la Physique Mathematique. Thesis. Universite des Sciences Sociales de Toulouse, May 1998.
[5] D. Hinrichsen and A. J. Pritchard. Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Springer-Verlag, Berlin, 2005.
[6] R. A. Horn, and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1985.
[7] M. Karow. Geometry of spectral value sets. Ph.D. thesis. University of Bremen, Germany, July 2003.
[8] J. Moro, J. V. Burke, and M. L. Overton. On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure. SIAM J. Matrix Anal. Appl., 18(4):793-817, 1997
[9] G. W. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, San Diego, 1990.
10] L. N. Trefethen. Pseudospectra of linear operators. SIAM Review, 39:383-406, 1997.
[11] L. N. Trefethen and M. Embree. Spectra and Pseudospectra. The behavior of nonnormal matrices and operators. Princeton University Press, Princeton, 2005.

[^0]: *Received by the editors 11 January 2006. Accepted for publication 25 April 2006. Handling Editor: Michael Neumann.
 \dagger Berlin University of Technology, Institute for Mathematics, Straße des 17.Juni 136, D-10623 Berlin, Germany (karow@math.TU-Berlin.de).

