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Abstract. This paper is continuation of previous work by the present author, where explicit
formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper
the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by Wen-
Chyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the
corresponding eigenvectors of tridiagonal matrices, is generalized. Expressions for the eigenvectors
are obtained that differ completely from those obtained by Yueh. The techniques used herein are
based on theory of recurrent sequences. The entries situated on each of the secondary diagonals are
not necessary equal as was the case considered by Yueh.
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1. Introduction. The subject of this paper is diagonalization of tridiagonal
matrices. We generalize a result obtained in [5] concerning the eigenvalues and the
corresponding eigenvectors of several tridiagonal matrices. We consider tridiagonal
matrices of the form

An =




−α+ b c1 0 0 ... 0
a1 b c2 0 ... 0

0 a2 b
. . . . . .

...

0 0
. . . . . . . . . 0

...
...

. . . . . . . . . cn−1

0 ... ... 0 an−1 −β + b



, (1)

where {aj}n−1
j=1 and {cj}n−1

j=1 are two finite subsequences of the sequences {aj}∞j=1 and
{cj}∞j=1 of the field of complex numbers C, respectively, and α, β and b are complex
numbers. We suppose that

ajcj =
{

d2
1, if j is odd

d2
2, if j is even j = 1, 2, ..., (2)

where d 1 and d2 are complex numbers. We mention that matrices of the form (1)
are of circulant type in the special case when α = β = a1 = a2 = ... = 0 and all
the entries on the subdiagonal are equal. They are of Toeplitz type in the special
case when α = β = 0 and all the entries on the subdiagonal are equal and those
on the superdiagonal are also equal (see U. Grenander and G. Szego [4]). When the
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entries on the principal diagonal are not equal, the calculi of the eigenvalues and the
corresponding eigenvectors becomes very delicate (see S. Kouachi [6]).
When a1 = a2 = ... = c1 = c2 = ... = 1, b = −2 and α = β = 0, the eigenvalues of An

has been constructed by J. F. Elliott [2] and R. T. Gregory and D. Carney [3] to be

λk = −2 + 2 cos
kπ

n+ 1
, k = 1, 2, ..., n.

When a1 = a2 = ... = c1 = c2 = ... = 1, b = −2 and α = 1 and β = 0 or β = 1, the
eigenvalues has been reported to be

λk = −2 + 2 cos
kπ

n
, k = 1, 2, ..., n,

and

λk = −2 + 2 cos
2kπ

2n+ 1
, k = 1, 2, ..., n,

respectively without proof.
W. Yueh[1] has generalized the results of J. F. Elliott [2] and R. T. Gregory and D.
Carney [3] to the case when a1 = a2 = ... = a, c1 = c2 = ... = c and α = 0, β =

√
ac

or α = 0, β = −√
ac or α = −β =

√
ac

α = β =
√
ac or α = β = −√

ac. He has calculated, in this case, the eigenvalues and
their corresponding eigenvectors

λk = b+ 2
√
ac cos θk, k = 1, .., n,

where θk = 2kπ
2n+1 ,

(2k−1)π
2n+1 , (2k−1)π

2n , kπ
n and (k−1)π

n , k = 1, .., n respectively.
In S. Kouachi[5], we have generalized the results of W. Yueh [1] to more general
matrices of the form (1) for any complex constants satisfying condition

ajcj = d2, j = 1, 2, ...,

where d is a complex number. We have proved that the eigenvalues remain the same as
in the case when the ai’s and the ci’s are equal but the components of the eigenvector
u(k) (σ) associated to the eigenvalue λk, which we denote by u(k)

j (σ) , j = 1, .., n , are
of the form

u
(k)
j (σ) = (−d)1−j

aσ1 ...aσj−1u
(k)
1

d sin(n− j + 1)θk − β sin(n− j)θk

d sinnθk − β sin(n− 1)θk
, j = 1, ..., n,

where θk is given by formula

d2 sin (n+ 1) θk − d (α+ β) sinnθk + αβ sin (n− 1) θk = 0, k = 1, ..., n.

Recently in S. Kouachi [6], we generalized the above results concerning the eigenvalues
of tridiagonal matrices (1) satisfying condition (2), but we were unable to calculate
the corresponding eigenvectors, in view of the complexity of their expressions. The
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matrices studied by J. F. Elliott [2] and R. T. Gregory and D. Carney [3] are special
cases of those considered by W. Yueh[1] which are, at their tour, special cases with
regard to those that we have studied in S. Kouachi [5]. All the conditions imposed
in the above papers are very restrictive and the techniques used are complicated and
are not (in general) applicable to tridiagonal matrices considered in this paper even
tough for small n. For example, our techniques are applicable for all the 7×7 matrices

A7 =




5− 4
√
2 9 0 0 0 0 0

6 5 8 0 0 0 0
0 4 5 −3 0 0 0
0 0 −18 5 5 + i

√
7 0 0

0 0 0 5− i
√
7 5 −27i 0

0 0 0 0 2i 5 −1
0 0 0 0 0 −32 5− 3

√
6




and

A′
7 =




5− 4
√
2 54i 0 0 0 0 0

−i 5 −16 0 0 0 0
0 −2 5 6i 0 0 0
0 0 −9i 5 −8i

√
2 0 0

0 0 0 2i
√
2 5 −18i 0

0 0 0 0 3i 5 2 + 2i
0 0 0 0 0 8− 8i 5− 3

√
6



,

and guarantee that they possess the same eigenvalues and in addition they give their
exact expressions (formulas (15) lower) since condition (2) is satisfied:

λ1, λ4 = 5±
√(

3
√
6
)2

+
(
4
√
2
)2

+ 2
(
3
√
6
)(

4
√
2
)
cos

(
2π
7

)
,

λ2, λ5 = 5±
√(

3
√
6
)2

+
(
4
√
2
)2

+ 2
(
3
√
6
)(

4
√
2
)
cos

(
4π
7

)
,

λ3, λ6 = 5±
√(

3
√
6
)2

+
(
4
√
2
)2

+ 2
(
3
√
6
)(

4
√
2
)
cos

(
6π
7

)
,

λ7 = 5−
(
3
√
6 + 4

√
2
)
,

whereas the recent techniques are restricted to the limited case when the entries on
the subdiagonal are equal and those on the superdiagonal are also equal and the direct
calculus give the following characteristic polynomial

P (λ) = λ7 +
(
4
√

2 + 3
√

6 − 35
)

λ6 +
(
24

√
3 − 120

√
2 − 90

√
6 + 267

)
λ5 +(

684
√

2 − 600
√

3 + 447
√

6 + 2075
)

λ4 +
(
6320

√
2 + 1872

√
3 + 6060

√
6 − 23 893

)
λ3 +(

31 920
√

3 − 47 124
√

2 − 33 891
√

6 − 24 105
)

λ2
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+
(
369 185 − 98 568

√
3 − 114 090

√
6 − 44 760

√
2
)

λ

+
(
365 828

√
2 − 239 160

√
3 + 142 833

√
6 + 80 825

)
for which the roots are very difficult to calculate (degree of P ≥ 5).

If σ is a mapping (not necessary a permutation) from the set of the integers from
1 to (n− 1) into the set of the integers different of zero N∗, we denote by An (σ) the
n× n matrix

An (σ) =




−α+ b cσ1 0 0 ... 0
aσ1 b cσ2 0 ... 0

0 aσ2 b
. . . . . .

...

0 0
. . . . . . . . . 0

...
...

. . . . . . . . . cσn−1

0 ... ... 0 aσn−1 −β + b




(1.1)

and by ∆n (σ) = |∆n (σ)− λIn| its characteristic polynomial. If σ = i, where i is the
identity, then An (i) and its characteristic polynomial ∆n (i) will be denoted by An

and ∆n respectively. Our aim is to establish the eigenvalues and the corresponding
eigenvectors of the matrices An (σ).

2. The Eigenvalue Problem. Throughout this section we suppose d1d2 	= 0.In
the case when α = β = 0, the matrix An (σ) and its characteristic polynomial will
be denoted respectively by A0

n (σ) and ∆0
n (σ) and in the general case they will be

denoted by An and ∆n. We put

Y 2 = d2
1 + d2

2 + 2d1d2 cos θ, (3)

where

Y = b− λ. (3.1)

In S. Kouachi [6], we have proved the following result
Theorem 2.1. When d1d2 	= 0, the eigenvalues of the class of matrices An (σ) on

the form (1.1) are independent of the entries (ai, ci, i = 1, .., n−1) and of the mapping
σ provided that condition (2) is satisfied and their characteristic determinants are
given by

∆n = (d1d2)
m−1 d1d2(Y −α−β) sin(m+1)θ+(αβY −αd2

1−βd2
2) sin mθ

sin θ , (4.a)

when n = 2m+ 1 is odd and

∆n = (d1d2)
m−1

d1d2 sin(m+1)θ+[αβ+d2
2−(α+β)Y ] sin mθ+αβ

d1

d2
sin(m−1)θ

sin θ , (4.b)

when n = 2m is even.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 115-133, April 2006

http://math.technion.ac.il/iic/ela



ELA

Eigenvalues and Eigenvectors of Tridiagonal Matrices 119

Proof. When α = β = 0, formulas (4.a) and (4.b) become, respectively

∆0
n = (d1d2)

m
Y
sin (m+ 1) θ

sin θ
, (4.a.0)

when n = 2m+ 1 is odd and

∆0
n = (d1d2)

m
sin(m+ 1)θ +

d2

d1
sinmθ

sin θ
, (4.b.0)

when n = 2m is even. Since the right hand sides of formulas (4.a.0) and (4.b.0) are
independent of σ, then to prove that the characteristic polynomial of A0

n (σ), which
we denote by ∆0

n, is also, it suffices to prove them for σ = i. Expanding ∆0
n in terms

of it’s last column and using (2) and (3), we get

∆0
n = Y∆0

n−1 − d2
2∆

0
n−2, n = 3, ..., (4.a.1)

when n = 2m+ 1 is odd and

∆0
n = Y∆0

n−1 − d2
1∆

0
n−2, n = 3, ..., (4.b.1)

when n = 2m is even. Then by writing the expressions of ∆0
n for n = 2m + 1, 2m

and 2m− 1 respectively, multiplying ∆0
2m and ∆0

2m−1 by Y and d2
1 respectively and

adding the three resulting equations term to term, we get

∆0
2m+1 =

(
Y 2 − d2

1 − d2
2

)
∆0

2m−1 − d2
1d

2
2∆

0
2m−3, (4.a.2)

We will prove by induction in m that formula (4.a.0) is true.
If n = 2m+ 1 is odd, for m = 0 and m = 1 formula (4.a.0) is satisfied. Suppose that
it is satisfied for all integers < m, then from (4.a.2) and using (3), we get

∆0
2m+1 = Y (d1d2)

m 2 sinmθ cos θ − sin (m− 1) θ
sin θ

.

Using the well known trigonometric formula

2 sin η cos ζ = sin (η + ζ) + sin (η − ζ) , (*)

for η = mθ and ζ = θ, we deduce formula (4.a.0).
When n = 2m is even, applying formula (4.a.1) for n = 2m+ 1, we get

∆0
2m =

∆0
2m+1 + d2

2∆0
2m−1

Y
.

By direct application of (4.a.0) two times, for n = 2m + 1 and n = 2m − 1, to the
right hand side of the last expression, we deduce (4.b.0).

If we suppose that α 	= 0 or β 	= 0, then expanding ∆n in terms of the first
and last columns and using the linear property of the determinants with regard to its
columns, we get
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∆n = ∆0
n − α

∣∣E2
n−1

∣∣− β
∣∣E1

n−1

∣∣+ αβ

∣∣∣∣∣∣∣∣∣∣∣∣∣

Y c2 0 ... 0

a2 Y
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . cn−2

0 ... 0 an−2 Y

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where E1
n−1 and E2

n−1 are the (n− 1) square matrices of the form (1)

Ei
n−1 =




Y ci 0 ... 0

ai Y
. . . . . .

...

0
. . .

. . .
. . . 0

...
. . . . . . . . . cn+i−3

... ... 0 an+i−3 Y



, i = 1, 2.

Since all the entries ai’s on the subdiagonal and ci’s on the superdiagonal satisfy
condition (2), then using formulas (4.a.0) and (4.b.0) and taking in the account the
order of the entries ai’s and ci’s, we deduce the general formulas (4.a) and (4.b).

Before proceeding further, let us deduce from formula (4.b) a proposition for the
matrix Bn (σ) which is obtained from An (σ) by interchanging the numbers α and β.

Proposition 2.2. When n is even, the eigenvalues of Bn (σ) are the same as
An (σ).

Let us see what formula (4) says and what it does not say. It says that if a
′
i, c

′
i, i =

1, .., n− 1 are other constants satisfying condition (2) and

A
′
n =




−α+ b c
′
1 0 0 ... 0

a
′
1 b c

′
2 0 ... 0

0 a
′
2 b

. . . . . .
...

0 0
. . . . . . . . . 0

...
...

. . .
. . .

. . . c
′
n−1

0 ... ... 0 a
′
n−1 −β + b




then the matrices An, A
′
n and An (σ) possess the same characteristic polynomial and

hence the same eigenvalues. Therefore we have this immediate consequence of formula
(4)

Corollary 2.3. The class of matrices An (σ), where σ is a mapping from the
set of the integers from 1 to (n− 1) into N∗ are similar provided that all the entries
on the subdiagonal and on the superdiagonal satisfy condition (2).

The components of the eigenvector u(k) (σ) , k = 1, ..., n associated to the eigen-
value λk, k = 1, ..., n , which we denote by u

(k)
j , j = 1, .., n , are solutions of the
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linear system of equations




(−α+ ξk)u
(k)
1 + cσ1u

(k)
2 = 0,

aσ1u
(k)
1 + ξku

(k)
2 + cσ2u

(k)
3 = 0,

...

aσn−1u
(k)
n−1 + (−β + ξk)u

(k)
n = 0,

(5)

where ξk = Y is given by formula (3) and θk, k = 1, ..., n are solutions of

d1d2 (ξk − α− β) sin (m+ 1) θk +
(
αβξk − αd2

1 − βd2
2

)
sinmθk = 0, (6.a)

when n = 2m+ 1 is odd and

d1d2 sin(m+ 1)θk +
[
αβ + d2

2 − (α+ β) ξk

]
sinmθk + αβ

d1

d2
sin(m− 1)θk = 0, (6.b)

when n = 2m is even.
Since these n equations are linearly dependent, then by eliminating the first equa-

tion we obtain the following system of (n−1) equations and (n−1) unknowns, written
in a matrix form as



ξk cσ2 0 ... 0

aσ2 ξk

. . .
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . cσn−1

0 ... 0 aσn−1 (−β + ξk)







u
(k)
2

u
(k)
3
...
...

u
(k)
n




=




−aσ1u
(k)
1

0
...
...
0



. (7)

The determinant of this system is given by formulas (4) for α = 0 and n replaced by
n− 1 and equal to

∆(k)
n−1 = (d1d2)

m−1 d1d2 sin(m+ 1)θk +
[
d2
1 − βξk

]
sinmθk

sin θk
, (8.a)

when n = 2m+ 1 is odd and

∆(k)
n−1 = (d1d2)

m−1
(ξk − β) sinmθk − β

d1

d2
sin(m− 1)θk

sin θk
, (8.b)

when n = 2m is even, for all k = 1, ..., n.

u
(k)
j (σ) =

Γ(k)
j (σ)

∆(k)
n−1

, j, k = 1, ..., n, (9)
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where

Γ(k)
j (σ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξk cσ2 0 ... −aσ1u
(k)
1 0 ... 0

aσ2 ξk

. . . . . . 0 0 ...
...

0
. . . . . . cσj−2

...
... ...

...

0 0 aσj−2 ξk 0 0 ...
...

...
...

. . . aσj−1 0 cσj

. . .
...

...
...

. . . . . . 0 ξk

. . . 0
...

... ...
. . .

... aσj+1
. . . . . . cσn−1

0 ... ... ... 0 0 aσn−1 (−β + ξk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

j = 2, ..., n, k = 1, ..., n. By permuting the j − 2 first columns with the (j − 1)-th
one and using the properties of the determinants, we get

u
(k)
j (σ) = (−1)j−2 Λ(k)

j (σ)
∆n−1

, j = 2, ..., n, (10)

where Λ(k)
j (σ) is the determinant of the matrix

C
(k)
j (σ) =

(
T

(k)
j−1 (σ) 0
0 S

(k)
n−j (σ)

)
,

where

T
(k)
j−1 (σ) =




−aσ1u
(k)
1 ξk cσ2 0 · · · 0

0 aσ2

. . .
. . .

. . .
...

...
. . . . . . . . . . . . 0

... 0
. . . . . . . . . cσj−2

... 0 0
. . . . . . ξk

0 · · · · · · · · · 0 aσj−1




is the supertriangular matrix of order j − 1 with diagonal (−aσ1u
(k)
1 , aσ2 , ..., aσj−1 )

and

S
(k)
n−j (σ) =




ξk cσj+1 0 · · · 0

aσj+1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . cσn−1

0 · · · 0 aσn−1 (−β + ξk)



,
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is a tridiagonal matrix of order n − j belonging to the class of the form (1.1) and
satisfying condition (2). Thus∣∣∣C(k)

j (σ)
∣∣∣ = ∣∣∣T (k)

j−1 (σ)
∣∣∣ ∣∣∣S(k)

n−j (σ)
∣∣∣ (11)

= −aσ1 ...aσj−1u
(k)
1 ∆(k)

n−j , j = 2, ..., n and k = 1, ..., n,

where ∆(k)
n−j (σ) is given by formulas (4) for α = 0 and n− 1 replaced by n− j

∆(k)
n−j =




(d1d2)
n−j

2 −1 d1d2 sin( n−j
2 +1)θk+(d2

1−βξk) sin
n−j

2 θk

sin θk
,when j is odd,

(d1d2)
n−j−1

2
(ξk−β) sin( n−j+1

2 )θk−β
d2
d1

sin( n−j−1
2 )θk

sin θk
, when j is even,

(12.a)
when n is odd and

∆(k)
n−j =




(d1d2)
n−j−1

2

(ξk−β) sin( n−j−1
2 )θk−β

d1

d2
sin( n−j−1

2 )θk

sin θk
,when j is odd,

(d1d2)
n−j

2 −1 d1d2 sin( n−j
2 +1)θk+(d2

2−βξk) sin n−j
2 θk

sin θk
, when j is even,

(12.b)
when n is even, for all j = 2, ..., n and k = 1, ..., n. Using formulas (9)-(12), we get

u
(k)
j (σ) = (−1)j−1

aσ1 ...aσj−1u
(k)
1

∆(k)
n−j

∆(k)
n−1

, j = 2, ..., n and k = 1, ..., n. (13)

Finally

u
(k)
j (σ) = µj (σ)u

(k)
1




d1d2 sin( n−j
2 +1)θk+(d2

1−βξk) sin n−j
2 θk

d1d2 sin( n+1
2 )θk+(d2

1−βξk) sin(n−1
2 )θk

,when j is odd,

√
d1d2

(ξk−β) sin( n−j+1
2 )θk−β

d2
d1

sin( n−j−1
2 )θk

d1d2 sin( n+1
2 )θk+(d2

1−βξk) sin(n−1
2 )θk

, when j is even,

(13.a)
when n is odd and

u
(k)
j (σ) = µj (σ)u

(k)
1




(ξk−β) sin( n−j−1
2 )θk−β

d1

d2
sin( n−j−1

2 )θk

(ξk−β) sin n
2 θk−β

d1

d2
sin( n

2 −1)θk

,when j is odd,

1√
d1d2

d1d2 sin( n−j
2 +1)θk+(d2

2−βξk) sin n−j
2 θk

(ξk−β) sin n
2 θk−β

d1

d2
sin( n

2 −1)θk

, when j is even,

(13.b)
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for all j = 2, ..., n and k = 1, ..., n, when n is even, where

µj (σ) =
(
−
√
d1d2

)1−j

aσ1 ...aσj−1 , j = 2, ..., n, (†)

ξk = Y and θk are given respectively by (3) and formulas (6).

3. Special Cases. From now on, we put

ρj (σ) =
(
−
√
d1d2

)n−1

µj (σ) , j = 1, ..., n, (‡)

where µj (σ) is given by (†).
3.1. Case when n is odd. If α = β = 0, we have

Theorem 3.1. If α = β = 0,the eigenvalues λk (σ) , k = 1, ..., n of the class of
matrices An (σ) on the form (1.1)are independent of the entries (ai, ci, i = 1, .., n−1)
and of σ provided that condition (2) is satisfied and they are given by

λk =




b+
√
d2
1 + d2

2 + 2d1d2 cos θk, k = 1, ...,m,

b−√
d2
1 + d2

2 + 2d1d2 cos θk, k = m+ 1, ..., 2m,

b, k = n.

(14)

The corresponding eigenvectors u(k) (σ) =
(
u

(k)
1 (σ) , ..., u(k)

n (σ)
)t

, k = 1, .., n− 1 are
given by

u
(k)
j (σ) = ρj (σ)




d1d2 sin(n−j
2 + 1)θk + d2

1 sin
n−j

2 θk,when is j odd,

√
d1d2(b− λk) sin(n−j+1

2 )θk, when is j even,
(14.a)

and

u
(k)
j (σ) =




aσ1 ...aσj−1

(−d2
2

)n−j
2 ,when j is odd,

0, when j is even,
(14.b)

j = 1, ...n, where ρj (σ) is given by (‡) and

θk =




2kπ
n+1 , k = 1, ...,m,

2(k−m)π
n+1 , k = m+ 1, ..., 2m.

.

Proof, We take aσ0 = a0 = 1. The eigenvalues λk, k = 1, ..., 2m are trivial
consequence of (4) by putting (m + 1)θ = kπ, k = 1, ...,m and using (3). The
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eigenvalue λn is a consequence of (4) and (3.1) by putting Y = 0. Formula (14.a) is
a trivial consequence of (13.a) by taking β = 0 and choosing

u
(k)
1 =

(
−
√
d1d2

)n−1
[
d1d2 sin(

n+ 1
2

)θk + d2
1 sin

(
n− 1
2

)
θk

]
, k = 1, ..., n− 1.

Concerning the n−th eigenvector, we solve directly system (7) and choose

u
(n)
1 =

(−d2
2

)n−1
2 .

If α = d2 and β = d1 or β = −d1 and α = −d2, then using the trigonometric
formula (*) for η = (2m+1

2 )θk and ζ = θk

2 , formula (6.a) becomes

(ξk ± (d1 + d2)) sin
(2m+ 1)

2
θk cos

θk

2
= 0, (6.a.1)

then we get
Theorem 3.2. If α = d2 and β = d1 or β = −d1 and α = −d2,the eigenvalues

λk (σ) , k = 1, ..., n of the class of matrices An (σ) on the form (1.1)are independent
of the entries (ai, ci, i = 1, .., n− 1) and of σ provided that condition (2) is satisfied
and they are given by

λk =




b+
√
d2
1 + d2

2 + 2d1d2 cos θk, k = 1, ...,m,

b−√
d2
1 + d2

2 + 2d1d2 cos θk, k = m+ 1, ..., 2m,

b− (α + β), k = n.

(15)

The corresponding eigenvectors u(k) (σ) =
(
u

(k)
1 (σ) , ..., u(k)

n (σ)
)t

, k = 1, .., n are
given by

u
(k)
j (σ) = ρj (σ)




d2 sin(n−j
2 + 1)θk + [d1 − b+ λk] sin n−j

2 θk, j is odd,

−
√

d2
d1

[
(d1 − b+ λk) sin(n−j+1

2 )θk + d2 sin(n−j−1
2 )θk

]
,j is even,

(15.a)
k = 1, ..n− 1 and

u
(n)
j (σ) = ρj (σ)




1,when j is odd,

√
d2
d1
, when j is even,

j = 1, .., n, when α = d2 and β = d1 and

u
(k)
j (σ) = ρj (σ)




d2 sin(n−j
2 + 1)θk + [d1 + b− λk] sin n−j

2 θk, j is odd,

√
d2
d1

[
(d1 + b− λk) sin(n−j+1

2 )θk + d2 sin(n−j−1
2 )θk

]
,j is even,

(15.b)
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k = 1, ..n− 1 and

u
(n)
j (σ) = ρj (σ)




1,when j is odd,

−
√

d2
d1
, when j is even,

j = 1, .., n, when β = −d1 and α = −d2, j = 1, .., n, where ρj (σ) is given by (‡)
and

θk =




2kπ
n , k = 1, ...,m,

2(k−m)π
n , k = m+ 1, ..., 2m.

.

Proof. Formula (15) is a simple consequence of (6.a.1). Using (13.a), the expres-
sions (15.a) and (15.b) are trivial by choosing

u
(k)
1 =

(
−
√
d1d2

)n−1
[
d2 sin(

n+ 1
2

)θk + [d1 − b+ λk] sin
(
n− 1
2

)
θk

]
,

if α = d2 and β = d1 and

u
(k)
1 =

(
−
√
d1d2

)n−1
[
d2 sin(

n+ 1
2

)θk + [d1 + b− λk] sin
(
n− 1
2

)
θk

]
,

when β = −d1 and α = −d2.The last eigenvector is obtained by choosing

u
(n)
1 (σ) =

(
−
√
d1d2

)n−1

aσ1 ...aσj−1 .

When α = d2 and β = −d1 or α = −d2 and β = d1, then using the trigonometric

formula

2 cosη sin ζ = sin(η + ζ)− sin(η − ζ), (**)

for η = (2m+1
2 )θk and ζ = θk

2 , formula (4.a) becomes

(ξk ± (d2 − d1)) cos
(2m+ 1)

2
θk sin

θk

2
= 0, (6.a.2)

then we get

Theorem 3.3. If α = −d2 and β = d1 or β = −d1 and α = d2,the eigenvalues
λk (σ) , k = 1, ..., n of the class of matrices An (σ) on the form (1.1)are independent
of the entries (ai, ci, i = 1, .., n− 1) and of σ provided that condition (2) is satisfied
and they are given by

λk =




b+
√
d2
1 + d2

2 + 2d1d2 cos θk, k = 1, ...,m,

b−√
d2
1 + d2

2 + 2d1d2 cos θk, k = m+ 1, ..., 2m,

b− (α + β), k = n.

(16)
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The corresponding eigenvectors u(k) (σ) =
(
u

(k)
1 (σ) , ..., u(k)

n (σ)
)t

, k = 1, .., n are
given by (15.a) and

u
(n)
j (σ) = ρj (σ)


 (−1)

j−1
2 ,when j is odd,√

d2
d1

(−1)
j+2
2 , when j is even,

j = 1, .., n,

when α = −d2 and β = d1 and (15.b) and

u
(n)
j (σ) = ρj (σ)


 (−1)

j−1
2 ,when j is odd,√

d2
d1

(−1)
j
2 , when j is even,

j = 1, .., n,

when β = −d1 and α = d2,where ρj (σ) is given by (‡) and

θk =

{
(2k−1)π

n , k = 1, ...,m,
(2(k−m)−1)π

n , k = m+ 1, ..., 2m.
.

Proof. Formula (16) is trivial by solving (6.a.2). Concerning the eigenvectors,
following the same reasoning as in the case when α = d2 and β = d1 or β = −d1 and
α = −d2 and since we use formula (13.a) to find the components of the eigenvectors
which depend only of β, we deduce the same results. The last eigenvector is obtained
by passage to the limit in formula (13.a) when θk tends to π and choosing the first
component as in the previous case.

3.2. Case when n is even. If αβ = d2
2, then using (*) for η = mθk and ζ = θk,

formula (6.b) becomes
[
2d1d2 cos θk + αβ + d2

2 − (α+ β) ξk

]
sinmθk = 0.

Using (3), we get
[
ξ2

k − (α+ β) ξk + d2
2 − d2

1

]
sinmθk = 0, (6.b.1)

which gives

sinmθk = 0

and

ξ2k − (α+ β) ξk + d2
2 − d2

1 = 0, (3.2)

then we get
Theorem 3.4. If αb = d2

2 ,the eigenvalues λk (σ) , k = 1, ..., n of the class of
matrices An (σ) on the form (1.1)are independent of the entries (ai, ci, i = 1, .., n−1)
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and of σ provided that condition (2) is satisfied and they are given by

λk =




b+
√
d2
1 + d2

2 + 2d1d2 cos θk, k = 1, ...,m− 1,

b−√
d2
1 + d2

2 + 2d1d2 cos θk, k = m, ..., 2m− 2,

b+
(α+ β) +

√
(α− β)2 + 4d2

1

2
, k = n− 1,

b +
(α+ β)−

√
(α− β)2 + 4d2

1

2
, k = n.

(17)

The corresponding eigenvectors u(k) (σ) =
(
u

(k)
1 (σ) , ..., u(k)

n (σ)
)t

, k = 1, .., n− 2 are
given by

u
(k)
j (σ) = ρj (σ)




(b− λk − β) sin(n−j−1
2 )θk − β

d1

d2
sin(n−j−1

2 )θk, j is odd,

1√
d1d2

[
d1d2 sin(n−j

2 +1)θk +
(
d2
2 − β (b− λk)

)
sin n−j

2 θk

]
, jeven

(17.a)
where ρj (σ) , j = 1, ..., n is given by (‡) and

θk =




2kπ
n , k = 1, ...,m− 1,

2(k−m+1)π
n , k = m, ..., 2m− 2.

.

The eigenvectors u(n−1) (σ) and u(n) (σ) associated respectively with the eigenvalues
λn−1 and λn are given by formula (13.b), where θk is given by (3), (3.1) and (3.2).

Proof. Formula (17) is a consequence of (6.b.1). The eigenvectors are a conse-
quence of formula (13.b) by choosing

u
(k)
1 =

(
−
√
d1d2

)n−1



(b− λk − β) sin n

2 θk − β
d1

d2
sin(n

2 − 1)θk, when j is odd,

(b− λk − β) sin n
2 θk − β

d1

d2
sin(n

2 − 1)θk, when j is even.

When α = −β = ±d2, then, using (**), formula (6.b) gives

2d1d2 cosmθ = 0, (6.b.2)

then we have
Theorem 3.5. If α = −β = ±d2,the eigenvalues λk (σ) , k = 1, ..., n of the

class of matrices An (σ) on the form (1.1)are independent of the entries (ai, ci, i =
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1, .., n− 1) and of σ provided that condition (2) is satisfied and they are given by

λk =




b+
√
d2
1 + d2

2 + 2d1d2 cos θk, k = 1, ...,m,

b−√
d2
1 + d2

2 + 2d1d2 cos θk, k = m+ 1, ..., n,
(18)

The corresponding eigenvectors u(k) (σ) =
(
u

(k)
1 (σ) , ..., u(k)

n (σ)
)t

, k = 1, .., n are
given by

u
(k)
j (σ) = ρj (σ)




(b− λk − d2) sin(n−j−1
2 )θk − d1 sin(n−j−1

2 )θk, j is odd,

d1d2 sin(n−j
2 + 1)θk +

[
d2
2 − d2 (b− λk)

]
sin n−j

2 θk, j is even,
(18.a)

when α = −β = −d2 and

u
(k)
j (σ) = ρj (σ)




(b− λk + d2) sin(n−j−1
2 )θk + d1 sin(n−j−1

2 )θk, j is odd,

d1d2 sin(n−j
2 + 1)θk +

[
d2
2 + d2 (b− λk)

]
sin n−j

2 θk, j is even,
(18.b)

when α = −β = d2 where ρj (σ) , j = 1, ..., n is given by (‡) and

θk =




(2k−1)π
n , k = 1, ...,m,

(2k−2m−1)π
n , k = m+ 1, ..., n.

Proof. Formula (18) is a consequence of (6.b.2).The eigenvectors are a conse-
quence of formula (13.b) by choosing

u
(k)
1 =

(
−
√
d1d2

)n−1




(b− λk − d2) sin n
2 θk − d1 sin(n

2 − 1)θk,when j = 2l+ 1

√
d1d2

[
(b− λk − d2) sin n

2 θk − d1 sin(n
2 − 1)θk

]
,when j = 2l

when α = −β = −d2

u
(k)
1 =

(
−
√
d1d2

)n−1




(b− λk + d2) sin n
2 θk + d1 sin(n

2 − 1)θk,when j = 2l+ 1

√
d1d2

[
(b− λk + d2) sin n

2 θk + d1 sin(n
2 − 1)θk

]
,when j = 2l

when α = −β = d2.

4. Case when d1d2 = 0. In this case, we have proved in S. Kouachi [6], the
following.

Proposition 4.1. When d1d2 = 0,the eigenvalues λk (σ) , k = 1, ..., n of the
class of matrices An (σ) on the form (1.1) are independent of the entries (ai, ci, i =
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1, .., n − 1) and of σ provided that condition (2) is satisfied and their characteristic
polynomials are given by

∆n =




(
ξ2 − d2

2

)n−1
2 −1

(ξ − α)
(
ξ2 − βξ − d2

2

)
,when n is odd;

(
ξ2 − d2

2

)n
2 −1 (

ξ2 − (α+ β) ξ + αβ
)
,when n is even,

(19.a)

when d1 = 0 and

∆n =




(
ξ2 − d2

1

)n−1
2 −1

(ξ − β)
(
ξ2 − αξ − d2

1

)
,when n is odd;

(
ξ2 − d2

1

)n
2 −2 (

ξ2 − αξ − d2
1

) (
ξ2 − βξ − d2

1

)
,when n is even,

(19.b)

when d2 = 0, where ξ = Y is given by (3)
An immediate consequence of this proposition is
Proposition 4.2. If d1d2 = 0,the eigenvalues λk (σ) , k = 1, ..., n of the class of

matrices An (σ) on the form (1.1)are independent of the entries (ai, ci, i = 1, .., n−1)
and of σ provided that condition (2) is satisfied:
1) When α = β = 0, they are reduced to three eigenvalues

{ b± d2, b}
when d1 = 0 or when n is odd and d2 = 0

{ b± d1, b}
and only two eigenvalues

{ b± d1}
when n is even and d2 = 0.
2) When α 	= 0 or β 	= 0, they are reduced to five eigenvalues

:
{
b± d2, b− α, b− 1

2
β ± 1

2

√
β2 + 4d2

2

}

when n is odd and d1 = 0, five also{
b± d1, b− β, b− 1

2
α± 1

2

√
α2 + 4d2

1

}

when n is odd and d2 = 0, four

{b ± d2, b− α, b− β}
when n is even and d1 = 0 and six eigenvalues{

b± d1, b− 1
2
α± 1

2

√
α2 + 4d2

1, b−
1
2
β ± 1

2

√
β2 + 4d2

1

}
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when n is even and d2 = 0.

3) All the corresponding eigenvectors u(k) (σ) =
(
u

(k)
1 (σ) , ..., u(k)

n (σ)
)t

, k = 1, .., n
are are simple and given by
3.1)When λk is simple

u
(k)
j (σ) = νj (σ)







[
(b− λk)

2 − d2
2

]n−j
2

, when j is odd,

[
(b− λk)

2 − d2
2

]n−j−1
2

(b− λk) , when j is even,

, n is odd,




[
(b− λk)

2 − d2
2

] 1+n−j
2

, when j is odd,

[
(b− λk)

2 − d2
2

]n−j
2

(b− λk) , when j is even,

, n is even,

,

(20.a)
when d1 = 0 and

u
(k)
j (σ) = νj (σ)







(b− λk)
[
(b− λk)

2 − d2
1

]n−j
2

, when j is odd,

[
(b− λk)

2 − d2
1

]n−j−1
2 +1

, when j is even,

, n is odd,




(b− λk)
[
(b− λk)

2 − d2
1

]n−1−j
2

, when j is odd,

[
(b− λk)

2 − d2
1

]n−j
2

, when j is even,

, n is even,

(20.b)
when d2 = 0, j = 2, ..., n and k = 1, ..., n,where

νj (σ) = (−1)n−j
aσ1 ...aσj−1 , j = 2, ..., n.

3.2) When λk is multiple, then all the components are zero except the last four ones
at most and which we calculate directly.

Proof. The expressions of the eigenvalues are trivial by annulling the correspond-
ing characteristic determinants. Following the same reasoning as the case d1d2 	= 0,
by solving system (7), we get the expressions of the eigenvectors by formulas (13)

u
(k)
j (σ) = (−1)n−1

νj (σ) u
(k)
1

[[
∆(k)

n−j

∆(k)
n−1

]]
, j = 2, ..., n and k = 1, ..., n,

where [[ .]] denote the reduced fraction.

∆(k)
n−1 =




(
ξ2k − d2

2

)m−2 (
ξ2k − d2

2

) (
ξ2

k − βξk − d2
2

)
,when n = 2m+ 1 is odd,

(
ξ2k − d2

2

)m−2
(ξk − β)

(
ξ2k − d2

2

)
,when n = 2m is even,

,
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when d1 = 0 and

∆(k)
n−1 =




(
ξ2k − d2

1

)m−1 (
ξ2k − βξ

)
k
,when n = 2m+ 1 is odd,

(
ξ2k − d2

1

)m−2
ξk

(
ξ2k − βξk − d2

1

)
,when n = 2m is even,

when d2 = 0.

∆(k)
n−j =







(
ξ2

k − d2
2

)n−j
2 −2 (

ξ2k − d2
2

) (
ξ2k − βξk − d2

2

)
, when j is odd,

(
ξ2k − d2

2

)n−j−1
2 −1

ξk

(
ξ2k − βξk − d2

2

)
, when j is even

n is odd,




(
ξ2k − d2

2

)n−j−1
2 −1

(ξk − β)
(
ξ2k − d2

2

)
, when j is odd,

(
ξ2k − d2

2

)n−j
2 −1 (

ξ2k − βξk

)
, when j is even,

n is even,

when d1 = 0 and

∆(k)
n−j =







(
ξ2k − d2

1

)n−j
2 −1 (

ξ2k − βξk

)
, when j is odd,

(
ξ2

k − d2
1

)n−j−1
2 −1

(ξk − β)
(
ξ2k − d2

1

)
, when j is even

n is odd;




(
ξ2k − d2

1

)n−j−1
2 −1

ξk

(
ξ2

k − βξk − d2
1

)
, when j is odd,

(
ξ2k − d2

1

)n−j
2 −2 (

ξ2k − d2
1

) (
ξ2k − βξk − d2

1

)
, when j is even

n is even,

when d2 = 0. Then, when d1 = 0, we have

u
(k)
j (σ) = (−1)n−1

νj (σ)







(
ξ2k − d2

2

) 1−j
2 , when j is odd,

(
ξ2k − d2

2

)−j
2 ξk, when j is even

n is odd,




(
ξ2k − d2

2

) 1−j
2 , when j is odd,

(
ξ2

k − d2
2

)−j
2 ξk, when j is even,

n is even.

,

j = 2, ..., n and k = 1, ..., n. By putting j = n, calculating u(k)
1 according to u(k)

n (σ)
and choosing

u(k)
n (σ) = aσ1 ...aσn−1 ,
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we get (20.a).
Following the same reasoning as in the case when d1 = 0, we deduce (20.b).
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