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Abstract. The concept of the Perron complement of a nonnegative and irreducible matrix was
introduced by Meyer in 1989 and it was used to construct an algorithm for computing the stationary
distribution vector for Markov chains. Here properties of the generalized Perron complement of an
n×n irreducible Z-matrix K are considered. First the result that the generalized Perron complements
of K are irreducible Z-matrices is shown, and other properties are presented.
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1. Introduction. An n × n real matrix K = (ki,j) is called a Z-matrix if the
off-diagonal entries are non-positive. A Z-matrix K can be written as

K = sI − M, M is nonnegative.

These matrices arise in many problems in the mathematical and physical sciences.
Some of the best-known subclasses of Z-matrices are the class of M -matrices. Since
in this paper we often investigate the smallest real eigenvalue, which we denote by
n(K), then n(K) = s − ρ(M), where ρ(·) denotes the spectral radius.

Let K ∈ Rn,n be the space of all real n×n matrices. And let γ and δ be nonempty
ordered subsets of 〈n〉 := {1, 2, · · · , n}, both of strictly increasing integers. By K[γ, δ]
we shall denote the submatrix of K whose rows and columns are determined by γ and
δ, respectively. In the special case when γ = δ, we shall use K[γ] to denote K[γ, γ],
the principal submatrix of K based on γ.

Suppose that β ⊂ 〈n〉. If K[β] is nonsingular, then the Schur complement of K[β]
in K is given by

ϕ(K/K[β]) = K[α]− K[α, β](K[β])−1K[β, α], α = 〈n〉 \β.

In connection with a divide and conquer algorithm for computing the stationary
distribution vector for a Markov chain, Meyer introduced, for an n × n nonnegative
and irreducible matrix K, the notion of the Perron complement. Again, let β ⊂ 〈n〉,
α = 〈n〉 \β. Then the Perron complement of K[β] in K is given by

P (K/K[β]) = K[α] +K[α, β](ρ(K)I − K[β])−1K[β, α].

Meyer [1] has derived several interesting and useful properties of P (K/K[β]).
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In this paper we will discuss the generalized Perron complement of a Z-matrix and
its properties. In section two we will introduce that if K = sI − M is an irreducible
Z-matrix, t satisfies x < −ρ(M [α]) + t, then the generalized Perron complement
Pt(K/K[α]) is an irreducible Z-matrix. And n(Pt(K/K[α])) is a strict decreasing
function of t, it also has a close relationship with n(K). For brevity in our proofs, we
shall adopt the following notations: if K ∈ Rn,n, β ⊂ 〈n〉, α = 〈n〉 \β, then

A = K[α], B = K[α, β], C = K[β, α], D = K[β, β].

2. Generalized Perron complements. Fiedler and Markham [5] introduced
the following classification of Z-matrices:

Definition 2.1. Let Ls (for s = 0, · · · , n) denote the class of matrices consisting
of real n × n matrices which have the form

K = tI − M, where M ≥ 0 and ρs(M) ≤ t < ρs+1(M).

Here

ρs(M) := max{ρ(M̃) : M̃ is an s × s principal submatrix of M},

and we set ρ0(M) := −∞ and ρn+1(M) := ∞.
We now introduce some properties of the Perron complements of nonnegative

matrices.
Lemma 2.2. ([3]) If A is a nonnegative irreducible matrix, then for any t >

ρ(A[β]) the generalized Perron complement Pt(A/A[β]) is also a nonnegative irre-
ducible matrix.

Lemma 2.3. ([3]) If A is a nonnegative irreducible matrix, then the Perron root
ρ(Pt(A/A[β])) of the generalized Perron complement is a strictly decreasing function
of t on (ρ(A[β]),∞).

Lemma 2.4. ([3]) If A is a nonnegative irreducible matrix, then

ρ(Pt(A/A[α]))




< ρ(A), if t > ρ(A),
= ρ(A), if t = ρ(A),
> ρ(A), if ρ(A[α]) < t < ρ(A).

Now we begin with our first main result:
Theorem 2.5. Let K = tI − M be an irreducible Z-matrix and K ∈ Ls. Then

the generalized Perron complement Px(K/K[α]) is an irreducible Z-matrix for x <
−ρ(M [α]) + t.

Proof. Since K = tI − M is an irreducible Z-matrix and K ∈ Ls, then M is a

nonnegative irreducible matrix. Let M =
[

A B
C D

]
. Then

K = tI − M =
[

tI − A −B
−C tI − D

]
.
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Set M [α] = A, we can get that

Px(K/tI − A) = tI − D + (−C)[xI − (tI − A)]−1(−B)
= tI − D − C(tI − xI − A)−1B.

By x < −ρ(M [α]) + t,

t − x > ρ(M [α]).

So

Pt−x(M/A) = D + C(tI − xI − A)−1B

is a nonnegative irreducible matrix. Since irreducibility is independent of the diagonal
entries, so

Px(K/tI − A) = tI − D − C(tI − xI − A)−1B
= tI − Pt−x(M/A)

is an irreducible Z-matrix.
From the proof of Theorem 2.5 we can see that, when K ∈ Ls, it means that

ρs(M) ≤ t < ρs+1(M). Under such a condition, if

|α| > n − s (or |β| < s),

then

ρ(M [β]) < ρs(M) ≤ t.

It is easy to show that

lim
x→−∞Pt−x(M/A) = lim

x→−∞(D + C(tI − xI − A)−1B)

= D = M [β].

Hence there exists an x̃ satisfying

ρ(Pt−x̃(M/M [α])) < t.

So we can get that, when x ≤ x̃, the matrix

Px(K/tI − A) = tI − D − C(tI − xI − A)−1B
= tI − Pt−x(M/A)

is a nonsingular M -matrix.
Otherwise, if |β| ≥ s, it depends on whether there is ρ(Pt−x̃(M/M [α])) < t? In

other words, whether ρ(M [β]) ≤ ρs(M)? Take |β| = s for example.
1) If such β satisfies

ρ(M [β]) = ρs(M),
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then only when x → −∞,

Px(K/tI − A) = tI − D − C(tI − xI − A)−1B
= tI − Pt−x(M/A)

belongs to M -matrix (which is a singular M -matrix) when t = ρs(M). Otherwise if
ρs(M) < t < ρs+1(M), it is a nonsingular M -matrix.

2) In another case, if such β satisfies ρ(M [β]) < ρs(M), there exists an x̃ satisfying

ρ(Pt−x̃(M/M [α])) < t.

So we can get that when x ≤ x̃, it is a nonsingular M -matrix.
It is also easy to show that ρ(M [α]) is different when α has changed. So even we

have x < −ρ(M [α]) + t, it is hard to determine x. For simplicity of computing, we
change x < −ρ(M [α]) + t to x < −ρn−1(M) + t, then

t − x > ρn−1(M) ≥ ρ(M [α]).

Now it becomes easier to compute.
Theorem 2.6. Let K = sI − M be an irreducible Z-matrix and K ∈ Ls.

Then, for x < −ρ(M [α])+ t, n(Px(K/K[α])) is a strictly decreasing function of x on
(−∞,−ρ(M [α]) + t).

Proof. Let x1 < x2 < −ρ(M [α]) + t. From the proof of Theorem 2.5, we can get

Px1(K/tI − A) = tI − Pt−x1(M/A),

Px2(K/tI − A) = tI − Pt−x2(M/A).

Since x1 < x2 < −ρ(M [α]) + t, then

t − x1 > t − x2 > ρ(M [α]).

So

ρ(Pt−x1(M/A)) < ρ(Pt−x2(M/A)),

n(Px1(K/K[α])) = t − ρ(Pt−x1(M/A))
> t − ρ(Pt−x2(M/A))
= n(Px2(K/K[α])).

That is n(Px(K/K[α])) is a strictly decreasing function of t on

(−∞,−ρ(M [α]) + t).

Theorem 2.7. Let K = sI − M be an irreducible Z-matrix and K ∈ Ls. Then,
for x < −ρ(M [α]) + t,

n(Px(K/K[α]))




< n(K), if − ρ(M) + t < x < −ρ(M [α]) + t,
= n(K), if x = −ρ(M) + t,
> n(K), if x < −ρ(M) + t.
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Proof. Since

Px(K/tI − A) = tI − D − C(tI − xI − A)−1B
= tI − Pt−x(M/A),

by −ρ(M) + t < x < −ρ(M [α]) + t, we have

ρ(M [α]) < t − x < ρ(M),

ρ(Pt−x(M/A)) > ρ(M),

n(Px(K/tI − A)) = t − ρ(Pt−x(M/A))
< t − ρ(M) = n(K).

By x = −ρ(M) + t,

t − x = ρ(M),

ρ(Pt−x(M/A)) = ρ(M),

n(Px(K/K[α])) = n(K).

By x < −ρ(M) + t,

t − x > ρ(M),

ρ(Pt−x(M/A)) < ρ(M),

n(Px(K/tI − A)) = t − ρ(Pt−x(M/A))
> t − ρ(M) = n(K).

Hence

n(Px(K/K[α]))




< n(K), if − ρ(M) + t < x < −ρ(M [α]) + t,
= n(K), if x = −ρ(M) + t,
> n(K), ifx < −ρ(M) + t.

Theorem 2.8. Let K = sI − M be an irreducible Z-matrix and K ∈ Ls, satisfy
x < −ρ(M [α]) + t. Then, for |α| < s, the following ordering holds between the three
matrices K[β], Px(K/K[α]) and ϕ[K/K(α)]:




K[β] > ϕ(K/K[α]) ≥ Px(K/K[α]), if x < 0,
K[β] > Px(K/K[α]) = ϕ(K/K[α]), if x = 0,
K[β] > Px(K/K[α]) ≥ ϕ(K/K[α]), if 0 < x < −ρ(M [α]) + t.
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Proof. Since x < −ρ(M [α]) + t, |α| < s, we have

−ρ(M [α]) + t ≥ ρs(M)− ρ(M [α]) ≥ 0,

K[β] = tI − D,

ϕ(K/K[α]) = tI − D − C(tI − A)−1B,

Px(K/K[α]) = tI − D − C(tI − xI − A)−1B.

When x = 0, it is easy to show that

K[β] > Px(K/K[α]) = ϕ(K/K[α]).

When x < 0, tI − xI − A ≥ tI − A, we can get that

(tI − A)−1 ≥ (tI − xI − A)−1,

so

K[β] > Px(K/K[α]) ≥ ϕ(K/K[α]).

When 0 < x < −ρ(M [α]) + t, tI − xI − A ≤ tI − A, it follows that

(tI − A)−1 ≤ (tI − xI − A)−1,

so

K[β] > ϕ(K/K[α]) ≥ Px(K/K[α]).
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