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PATTERNS OF COMMUTATIVITY: THE COMMUTANT OF THE
FULL PATTERN∗

CHARLES R. JOHNSON† AND MARIA DA GRAÇA MARQUES‡

Abstract. Identified are a number of conditions on square patterns that are closely related to
allowing commutativity with the full pattern. Implications and examples that show non-implications
are given, along with a graph that summarizes the provided information. A complete description of
commutativity with the full pattern is given in both the irreducible case and the reducible case in
which there are two irreducible components.
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1. Introduction, problem statement and notation. By a pattern P (re-
spectively, sign pattern S) we mean an array of ∗’s and 0’s (+’s, −’s and 0’s) in which
a ∗ (+ or −) indicates a nonzero (positive or negative) entry. A real matrix A = (ai,j)
belongs to pattern P (sign pattern S) if its dimensions agree with those of P (S) and
ai,j �= 0 if and only if the i, j entry of P is a ∗ (ai,j > 0, ai,j < 0 iff the i, j entry
of S is, respectively, + or −). We say that two n-by-n patterns P and Q (a pattern
P and a sign pattern S) commute (or allow commutativity) if there exist matrices
A ∈ P , B ∈ Q (∈ S) that commute, i.e., AB = BA. In general we say that a pattern
allows a given property if there exists a matrix of the pattern with that property (e.
g. we are considering pairs of patterns that allow commutativity); a pattern requires
a given property if every matrix of the pattern has that property. The commutant of
a pattern P (sign pattern S) is simply the set of all patterns Q that commute with
P (S). Let C (P) (C (S)) denote the commutant of P (S).

Our interest here lies in determining the commutant of the full (all ∗’s) pattern
F and of the all + sign pattern J . Of course C (J ) ⊆ C (F), but, as we will see later,
the opposite inclusion is not true.

We begin with a discussion of (new) conditions that are necessary for a pattern
to be in C (F), then identify several conditions (some familiar) that are sufficient and
identify implications (and non-implications) among these. We also discuss necessary
and sufficient conditions in terms of the number of components in the Frobenius
normal form of P .

Many matrix concepts and notation, such as irreducibility, submatrices, and mul-
tiplication by a permutation or diagonal matrix, extend in an unambiguous way to
patterns, and we use them in the context of patterns without comment.
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2. The irreducible case and general necessary conditions. First note:
Theorem 2.1. Each irreducible pattern lies in C (J ) .
Proof. If P is an n-by-n irreducible pattern, consider A ∈ P such that A ≥ 0

(entry-wise). As A is also irreducible, it follows that (I +A)n−1
> 0, i.e.,

(I +A)n−1 ∈ J . As this matrix is a polynomial in A, it commutes with A.
We can conclude from Theorem 2.1 that C (F) contains all irreducible patterns.

There exist, however, reducible patterns that do not lie in C (F) . We first state a
simple necessary condition for a pattern to belong to C (F) .

Theorem 2.2. If P is a pattern whose ith row (column) is all zeros and whose
jth column (row) has exactly one ∗, then P /∈C (F) .

Proof. For any A ∈ P and any B ∈ F , (AB)i,j = 0 ((AB)i,j �= 0) and (BA)i,j �= 0
((BA)i,j = 0).

The necessary condition stated in Theorem 2.2 is not sufficient:

Example 2.3. The reducible pattern
[ ∗ ∗
0 ∗

]
/∈ C (F) .

Another necessary condition for a pattern to belong to C (F) is what we call
the swath conditions. Any pattern P is permutation similar to an (“irreducible”)
Frobenius normal form

P ′ =




P1,1 P1,2 · · · P1,k

0 P2,2

...
...

. . . . . .
...

0 · · · 0 Pk,k




in which each Pi,i is a square and irreducible pattern (note that this includes the
possibility that Pi,i is 1-by-1 and either [0] or [∗], cases that will be important later).
Such a form is not necessarily unique. Since F is permutation similarity invariant,
P ∈ C (F) if and only if P ′ ∈ C (F) . We refer to the diagonal blocks of P ′, or their
index sets, as the irreducible components of P , or P ′.

Theorem 2.4. If P ′ ∈ C (F), then for each j, j = 1, . . . , k, there are either 0 or
2 or more ∗’s among the subpatterns:

P1,j , . . . ,Pj−1,j ,Pj,j+1, . . . ,Pj,k.

We refer to the k conditions of Theorem 2.4 as the swath conditions for P ′ (or
for the original P). Note that the first swath is P1,2, . . . ,P1,k, as, for j = 1, no blocks
occur above P1,1, and the last swath is P1,k, . . . ,Pk−1,k as, for j = k, there are no
blocks beside Pk,k. All other swaths are “L” shaped.

Proof. Let A ∈ P ′ and B ∈ F be matrices such that AB = BA. Partition each
of A and B conformally with P ′, then equate the j, j block of AB with that of BA.
This gives

Aj,jBj,j +Aj,j+1Bj+1,j + · · ·+Aj,kBk,j =
Bj,1A1,j +Bj,2A2,j + · · ·+Bj,jAj,j .

(2.1)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 14, pp. 43-50, July 2005

www.math.technion.ac.il/iic/ela



ELA

Patterns of Commutativity: The Commutant of the Full Pattern 45

Since tr (Aj,jBj,j) = tr (Bj,jAj,j) , when we equate the traces of the two sides of (2.1),
we have

tr (Aj,j+1Bj+1,j) + · · ·+ tr (Aj,kBk,j) =
tr (Bj,1A1,j) + · · ·+ tr (Bj,j−1Aj−1,j) .

(2.2)

If it were the case that there were only 1 nonzero entry among the A blocks appearing
in (2.2), it would follow, as B ∈ F , that precisely 1 of the above traces is nonzero, a
contradiction to equality (2.1).

The swath conditions are not sufficient conditions for commutativity with the full
pattern:

Example 2.5. The pattern P =




∗ ∗ ∗ ∗
∗ ∗ 0 ∗
0 0 0 ∗
0 0 0 0


 satisfies the swath conditions,

but, according to Theorem 2.2, it does not belong to C (F) .
For a pattern P to be in C (F) there is an important consistency condition on the

first and last diagonal blocks of the Frobenius normal form. Each irreducible compo-
nent may be classified as follows: type 1 means that it allows a nonzero eigenvalue and
type 2 means that it allows the eigenvalue 0. Of course a pattern may be both type
1 and type 2. The only such pattern that is not type 1 is the type 2 pattern [0] . A
pattern that is type 1 and not type 2 must require nonsingularity. The patterns that
require nonsingularity are precisely those that are permutation equivalent (PAQ, P
and Q independent permutation matrices) to a triangular pattern with all diagonal
entries nonzero. It then follows from Theorem 2.2 that:

Corollary 2.6. Let P be an n-by-n pattern. If P ∈ C (F), then the first and
last blocks of any Frobenius normal form of P must share the same type.

Example 2.5 also shows that it is possible for the swath conditions, as well as the
first and last block conditions, to be met, without P ∈ C (F).

3. Sufficient conditions. In [1] a portion of C (S) has been determined, namely
those patterns Q that allow constant line sums and, thus, commutativity with the
all 1’s matrix J in J . The proof of the following theorem may be deduced from
[1]. For reference later we begin to identify particular properties of a pattern with
subscripted roman capital P’s. The strongest conditions on P , sufficient for P ∈ C (F)
are P1−P4 :

Theorem 3.1. Let P be an n-by-n pattern. The following properties are equiva-
lent:

P1 : P allows constant line sums;
P2 : P allows commutativity with J;
P3 : P allows right and left constant eigenvectors associated with the same eigen-

value;
P4 : P satisfies the J-S “single ∗” condition found in [1, Corollary 10].
It is clear that any of the conditions in Theorem 3.1 is sufficient for commutativity

with J , but the following example shows that they are not necessary:
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Example 3.2. The pattern Q =
[ ∗ ∗

∗ 0

]
is irreducible, so it belongs to C (J ) ,

but, clearly, it does not allow constant line sums.
Intermediate sufficient conditions are collected in the following:
Theorem 3.3. Let P be an n-by-n pattern. The following properties are equiva-

lent:
P5 : P allows positive right and left eigenvectors associated with the same eigen-

value;
P6 : P commutes with a positive rank 1 matrix;
P7 : P ∈ C (J ) .
Proof. To show that P5 implies P6, let A ∈ P be such that there are positive

vectors x and y satisfying Ax = λx and yTA = λyT . Clearly xyT is a full positive
rank 1 matrix, and A

(
xyT

)
= (Ax) yT = (λx) yT = x

(
λyT

)
=

(
xyT

)
A.

It is obvious that P6 implies P7.
To show that P7 implies P5, suppose P ∈ C (J ) and A is a matrix of pattern

P that commutes with a positive matrix B. Then B ∈ J and AB = BA. Let λ be
the Perron eigenvalue of B and x and y be positive vectors such that Bx = λx and
yTB = λyT .

As B (Ax) = (BA) x = (AB) x = A (Bx) = A (λx) = λ (Ax) , if Ax �= 0, Ax
is also a right eigenvector of B associated with λ and, as the Perron eigenspace is
1-dimensional, there is a ρ such that Ax = ρx. Thus x is a right eigenvector of A
associated with ρ.

Similarly,
(
yTA

)
B = yT (AB) = yT (BA) =

(
yTB

)
A =

(
λyT

)
A = λ

(
yTA

)
, so

that, if yTA �= 0, yTA is also a left eigenvector of B associated with λ. Thus there is
a µ such that yTA = µyT and yT is a left eigenvector of A associated with µ.

It is enough now to conclude that ρ = µ. As ρyTx = yT (Ax) =
(
yTA

)
x = µyTx

and yTx �= 0, we conclude ρ = µ.
Using the above calculation and the fact that Ax and yTA are uniformly signed

when they are nonzero, it follows that if Ax = 0 (yTA = 0) then yTA (Ax) is also 0
and A has positive right and left eigenvectors associated with 0. This completes the
proof.

As we noted in the introduction, C (J ) ⊆ C (F), but using Theorem 3.3, we can
see that the opposite inclusion is not true:

Example 3.4. The pattern




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ 0
0 0 0 0


 commutes with F (the matrices



1 1 1 1
2 2 −1 2
0 0 3 0
0 0 0 0


 and




−1 2 2 2
1 1 1 1
1 1 1 1
2 −1 −1 −1


 commute) but it does not allow any

positive right eigenvector.
The following theorem gives another set of sufficient conditions for a pattern to

belong to C (F) , but Example 3.4 also shows that they are not necessary.
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Theorem 3.5. Let P be an n-by-n pattern. The following properties are equiva-
lent:

P8 : P allows totally nonzero right and left eigenvectors for the same eigenvalue;
P9 : P commutes with a totally nonzero, rank 1 matrix.
Proof. The proof that P8 implies P9 is similar to the proof that P5 implies P6,

replacing “positive” by “totally nonzero”. To show that P9 implies P8, let A ∈ P
and let B be a rank 1 full matrix such that AB = BA. There exist totally nonzero
vectors x and y such that B = xyT . As A and B commute, A

(
xyT

)
=

(
xyT

)
A. If

A
(
xyT

)
=

(
xyT

)
A = 0, then (Ax) yT = x

(
yTA

)
= 0 and, as x and y are totally

nonzero vectors, Ax = yTA = 0 and we conclude that x is a right eigenvector of A
for the eigenvalue 0 and that y is a left eigenvector for the eigenvalue 0. Suppose now
that AB �= 0. If yT =

[
y1 · · · yn

]
then

A
(
xyT

)
= (Ax) yT =

[
y1Ax y2Ax · · · ynAx

]
and(

xyT
)
A =

[ (
yTA

)
1
x

(
yTA

)
2
x · · · (

yTA
)
n
x

]
.

We can assume, without loss of generality, y1Ax �= 0 and so, as y1Ax =
(
yTA

)
1
x,

then Ax =
(
(yT A)1

y1

)
x and x is a right eigenvector of A for an eigenvalue λ �= 0. On

the other hand, if xT =
[
x1 · · · xn

]
, then

(
xyT

)
A =



x1y

TA
x2y

TA
...

xny
TA


 and A

(
xyT

)
=



(Ax)1 y

T

(Ax)2 y
T

...
(Ax)n y

T


 .

Again we can assume that x1y
TA �= 0 and so, as x1y

TA = (Ax)1 y
T and yTA =(

(Ax)1
x1

)
yT and y is a left eigenvector of A for an eigenvalue µ �= 0. As AxyT = λxyT ,

xyTA = µxyT and AxyT = xyTA, we conclude that λ = µ, which completes the
proof.

It is interesting to compare Theorem 3.5 with Theorem 3.3. Of course P5 im-
plies P8, but we do not know if a pattern satisfying P8 must also satisfy P5. If the
eigenvectors in question have positive Hadamard product, then a signature (diagonal,
orthogonal) similarity will convert them to both positive and not change the pattern.
Thus, in this event, P8 implies P5. Also, if the eigenvalue is 0, the sign pattern of
one eigenvector may be converted to that of the other (via multiplication by a signa-
ture matrix) without altering the problem; so that, again for the eigenvalue 0, P8 is
equivalent to P5.

4. The graph of implications. In what follows we say that a pattern satisfies
condition P12 if it does not have a zero row (column) together with a column (row)
with exactly one ∗ (Theorem 2.2) and that a pattern satisfies condition P11 if it
satisfies the swath conditions (Theorem 2.4). The conditions P1 to P9 are the ones
in Theorems 3.1, 3.3 and 3.5. We label the condition that P ∈ C (F) as P10. In the
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following graph an arrow means an implication in the indicated direction and the
horizontal lines mean equivalence. The general results and examples (for arbitrarily
many blocks in the Frobenius normal form) thus far, may be summarized as follows:
��������P1

��������P2

��

��������P3
��������P4

��������P5
��������P6

��

Example 3→

��

��������P7

��������P8

��

��������P9

��������P10

���
��

��
��

��
��

��
�

����
��

��
��

��
��

��

�������

���������←Example 4→

��

��������P11

Example 2→

��

��������P12

←Example 1

��

P1 − P allows constant line sums.

P2 − P allows commutativity with J.

P3 −P allows right and left constant eigenvectors associated with the same eigenvalue.

P4 − P satisfies the J-S “single ∗” condition found in [1, Corollary 10].

P5 − P allows positive right and left eigenvectors associated with the same eigenvalue.

P6 − P commutes with a positive rank 1 matrix.

P7 − P ∈ C (J ) .

P8 − P allows totally nonzero right and left eigenvectors for the same eigenvalue.

P9 − P commutes with a totally nonzero, rank 1 matrix.

P10 − P ∈ C (F) .

P11 − P satisfies the swath conditions.

P12 − P doesn’t have an all zeros row (column) together with a column (row) with a

single ∗.
5. The 2-by-2 block case. We next examine in detail the two-component case

of the Frobenius normal form. It is possible to satisfy the swath condition (very simple
in this case) and not the consistency of the first and last block (or the 0,∗ condition
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of Theorem 2.2). Thus, we assume such a condition, beyond the swath condition,
when relevant. The main result will be that the swath condition (P11) together with
condition P12 is necessary and sufficient in this case.

A useful observation that underlies the following key fact (that may be of in-
dependent interest) is that a vector lies in the column space or right hand range of
a matrix if and only if it is orthogonal to every vector in the left null space of the
matrix. Let gmB (µ) denote the geometric multiplicity of µ as an eigenvalue of the
matrix B.

Theorem 5.1. Let A =
[
A1,1 A1,2

0 A2,2

]
, A ∈ Mn, A1,1 ∈ Mk, A2,2 ∈ Mn−k.

Then, for any scalar λ, gmA (λ) ≤ gmA1,1 (λ) + gmA2,2 (λ) , with equality if and only
if yT

1 A1,2x2 = 0 whenever yT
1 A1,1 = λyT

1 and A2,2x2 = λx2. Moreover, in case of
equality, there is a basis for the left (right) eigenspace of A consisting of a basis of the
left (right) eigenspace of A2,2 (A1,1) extended by 0′s on the left (downward) together
with a basis of the left (right) eigenspace of A1,1 (A2,2) extended to the right (upward).

Proof. The inequality is known and follows from a simple analysis of the (right)
null space of A − λI. For the case of equality, suppose gmA1,1 (λ) = p and
gmA2,2 (λ) = q. For sufficiency we want to find p+q linearly independent vectors in the

RNS (A− λI) , the right null space of A − λI. There are p of the form
[
x1

0

]
,

x1 ∈ RNS (A1,1 − λI). Thus, we need q of the form
[
u1

x2

]
with 0 �= x2 ∈

RNS (A2,2 − λI). But

(A− λI)
[
u1

x2

]
=

[
(A1,1 − λI) u1 +A1,2x2

(A2,2 − λI)x2

]
=

[
(A1,1 − λI) u1 +A1,2x2

0

]
.

So, we want (A1,1 − λI) u1 + A1,2x2 = 0 to have q linearly independent solutions;
so, consider the linear systems (A1,1 − λI)u1 = −A1,2x2 as x2 runs through the
q-dimensional set RNS (A2,2 − λI). Since yT

1 A1,2x2 = 0 whenever y1 ∈
LNS (A1,1 − λI) , each such −A1,2x2 ∈ Range (A1,1 − λI) and there is a solution u1

to (A1,1 − λI) u1 = −A1,2x2 for each such x2. For necessity, if gmA(λ) = p + q,
we must have p + q linearly independent left (resp; right) null vectors for (A −
λI). There are p right ones of the form

[
x1

0

]
, x1 ∈ RNS (A1,1 − λI) and q

left ones of the form
[
0
y2

]T

, yT
2 ∈ LNS (A2,2 − λI). Others must be of the

form
[
u1

x2

]
,
[
y1
v2

]T

, resp., with x2 ∈ RNS (A2,2 − λI), yT
1 ∈ LNS (A1,1 − λI) .

But 0 =
[
yT
1 vT

2

]
(A− λI)

[
u1

x2

]
=

[
yT
1 vT

2

] [
(A1,1 − λI)u1 +A1,2x2

(A2,2 − λI) x2

]
=

[
yT
1 vT

2

] [
(A1,1 − λI)u1 +A1,2x2

0

]
= yT

1 (A1,1 − λI)u1 + yT
1 A1,2x2.

As yT
1 (A1,1 − λI) = 0, yT

1 A1,2x2 = 0, whenever x2 ∈ RNS (A2,2 − λI) , and
yT
1 ∈ LNS (A1,1 − λI).
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We may now apply Theorem 5.1 to the two-component case. First:

Corollary 5.2. Suppose that P =
[ P1,1 P1,2

0 P2,2

]
is a pattern and that A1,1 ∈

P1,1 and A2,2 ∈ P2,2 may be chosen, so that, for a common eigenvalue λ ∈ σ (A1,1)∩
σ (A2,2) with geometric multiplicity 1 in each, A1,1 has a positive left and right eigen-
vector associated with λ, as does A2,2. Then, if P1,2 has 0 or 2 or more nonzeros,
A ∈ P may be chosen so that it has positive left and right eigenvectors associated with
the same eigenvalue.

Proof. To apply Theorem 5.1, we let the upper left block of A be A1,1 and the
lower right be A2,2. Then, because λ has geometric multiplicity 1 in each, Theorem 5.1
requires only one linear condition upon the entries of A1,2 ∈ P1,2, namely yT

1 A1,2x2 =
0 for y1 a left eigenvector of A1,1 and x2 a right eigenvector of A2,2. If P1,2 has 0 or 2
or more nonzeros it is clear that this linear system may be satisfied, to determine an
A1,2 and thus A ∈ P .

Corollary 5.3. Suppose that P is an n-by-n pattern with precisely two compo-
nents. If these two components share the same type, then P ∈ C (F) if and only if its
irreducible form satisfies the swath condition.

Proof. If the components are both type 1, then by taking all their stars to be pos-
itive, and scaling them so as to achieve a common Perron root, the Perron-Frobenius
theory assures that the hypothesis of Corollary 5.2 is satisfied. The necessity of the
swath condition has been shown, in general, in Theorem 2.4 and its sufficiency in this
case follows from Corollary 5.2.

We close by noting that, in general, a certain strengthening of the swath condi-
tions on P is sufficient for P ∈ C (F), by virtue of sufficiency for P5. Thus, P5−P11

are equivalent in this event.
Theorem 5.4. Let P be an n-by-n pattern with k components in its Frobenius

normal form

P ′ =




P1,1 P1,2 · · · P1,k

0 P2,2

...
...

. . . . . .
...

0 · · · 0 Pk,k


 .

Then P ′ allows positive left and right eigenvectors associated with a common
eigenvalue if (1) P1,1,P2,2, . . . ,Pk,k share a common type and (2) each Pi,j , i < j,
contains 0 or two or more ∗’s.
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