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GRAPHS WHOSE MINIMAL RANK IS TWO: THE FINITE FIELDS
CASE∗
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Abstract. Let F be a finite field, G = (V, E) be an undirected graph on n vertices, and let
S(F, G) be the set of all symmetric n × n matrices over F whose nonzero off-diagonal entries occur
in exactly the positions corresponding to the edges of G. Let mr(F, G) be the minimum rank of all
matrices in S(F, G). If F is a finite field with pt elements, p �= 2, it is shown that mr(F, G) ≤ 2 if and
only if the complement of G is the join of a complete graph with either the union of at most (pt+1)/2
nonempty complete bipartite graphs or the union of at most two nonempty complete graphs and
of at most (pt − 1)/2 nonempty complete bipartite graphs. These graphs are also characterized as
those for which 9 specific graphs do not occur as induced subgraphs. If F is a finite field with 2t

elements, then mr(F, G) ≤ 2 if and only if the complement of G is the join of a complete graph with
either the union of at most 2t +1 nonempty complete graphs or the union of at most one nonempty
complete graph and of at most 2t−1 nonempty complete bipartite graphs. A list of subgraphs that
do not occur as induced subgraphs is provided for this case as well.

Key words. Rank 2, Minimum rank, Symmetric matrix, Forbidden subgraph, Bilinear sym-
metric form, Finite field.

AMS subject classifications. 05C50, 05C75, 15A03, 15A57.

1. Introduction. Let F be a field. For any graph G = (V,E) with V =
{1, 2, . . . , n} (all graphs in this paper are considered undirected and simple), let
S(F,G) be the set of all symmetric n × n matrices A = (ai,j) with entries in F
such that ai,j �= 0, i �= j, if and only if ij ∈ E. There is no restriction on the main
diagonal entries of A. Let

mr(F,G) = min{rankA | A ∈ S(F,G)}.

In this paper we identify, for any finite field F , those graphsG such that mr(F,G) ≤ 2.
This has been done in [1] for the case that F is an infinite field. We will use several
results from that paper.

We will use several concepts from graph theory. The complement of a graph
G = (V,E) is the graph Gc = (V,Ec). If G1 = (V1, E1) and G2 = (V2, E2) are two
graphs, the union of G1 and G2 is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). We
abbreviate G ∪ G ∪ · · · ∪ G (m times) to mG. The join of G1 and G2 is the graph
obtained from G1 ∪G2 by adding an edge between each vertex of G1 and each vertex
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of G2. We denote the join of G1 and G2 by G1 ∨ G2. So G1 ∨ G2 = (Gc
1 ∪ Gc

2)
c. A

vertex u of G is a dominating vertex if u is adjacent to all other vertices of G.
We denote the path on n vertices by Pn. The complete graph on n vertices will

be denoted by Kn and by a triangle we mean K3. The complete bipartite graph
Km,n is the complement of Km ∪Kn. We allow m or n to be equal to 0, in which
case Km,0 = mK1 and K0,n = nK1. The complete tripartite graph Kn1,n2,n3 is
the complement of Kn1 ∪ Kn2 ∪ Kn3 . Other graphs we will use are depicted in
Figure 1.1. Notice that Ŵ4 = (K2∪P3)c, paw = (K1∪P3)c, diamond = (2K1∪K2)c,
� = (diamond ∪K1)c, and dart = (K1 ∪ paw)c.

Ŵ4 diamond

� dart

paw

Fig. 1.1. Some special graphs

If F is a finite field with pt elements, p �= 2, we show that mr(F,G) ≤ 2 if and
only if the complement of G is the join of a complete graph with either the union of
at most (pt + 1)/2 nonempty complete bipartite graphs or the union of at most two
nonempty complete graphs and of at most (pt − 1)/2 nonempty complete bipartite
graphs. If F is a finite field with 2t elements, we show that mr(F,G) ≤ 2 if and only if
the complement of G is the join of a complete graph with either the union of at most
2t + 1 nonempty complete graphs or the union of at most one nonempty complete
graph and of at most 2t−1 nonempty complete bipartite graphs.

The class of graphs G satisfying mr(F,G) ≤ 2 can also be described in terms
of forbidden subgraphs. We say that a graph G is H-free if G does not contain
H as an induced subgraph. If F is a set of graphs, we say that G is F -free if G
is H-free for each H ∈ F . For any field F , a graph G satisfying mr(F,G) ≤ 2 is
{P4,�, dart, P3 ∪K2, 3K2}-free. Furthermore, if F has charF �= 2, then G is K3,3,3-
free, and if F has charF = 2, then G is (P3 ∪ 2K3)c-free. If F is an infinite field
with charF �= 2, then P4,�, dart, P3 ∪K2, 3K2,K3,3,3 is a complete list of forbidden
subgraphs for the class of graphs G with mr(F,G) ≤ 2. If F is an infinite field with
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charF = 2, then P4,�, dart, P3∪K2, 3K2, (P3∪2K3)c is such a list. See [1] for proofs
of these claims. In this paper we will give the forbidden subgraphs for the case that F
is a finite field. We will see that if F is a finite field with charF �= 2, there are 3 more
forbidden subgraphs. If F is a finite field with charF = 2, there are 4 more forbidden
subgraphs. These additional forbidden subgraphs depend on the number of elements
in F . However, if F is the field with two elements, three of these forbidden subgraphs
are redundant. In that case there are 7 forbidden subgraphs for graphs G satisfying
mr(F,G) ≤ 2. These are P4, dart,�, P3 ∪K2, 3K2, (2K2 ∪ 2K1)c, and (P3 ∪ 2K1)c.

As an illustration of the problem of identifying those graphsG with mr(F,G) ≤ 2,
we now take a closer look at two specific graphs, (P3 ∪ 2K1)c and (3K2 ∪K1)c. Let
F2, F3 be the finite fields with two and three elements, respectively.

If A ∈ S(F2, (P3 ∪ 2K1)c), then up to permutation similarity,

A =




d1 1 1 1 0
1 d2 1 1 0
1 1 d3 1 1
1 1 1 d4 1
0 0 1 1 d5


 .

Then rankA ≥ rankA[145|235] = rank


 1 1 0
1 1 1
0 1 d5


 = 3. If F �= F2, choose a ∈ F

such that a �= 0 and a �= −1. Then


1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 0


+




0 0 0 0 0
0 0 0 0 0
0 0 a a a
0 0 a a a
0 0 a a a


 ∈ S(F, (P3 ∪ 2K1)c)

and has rank 2.
Now consider (3K2 ∪ K1)c. Although it would be tedious to verify directly, it

follows from the results in [1] and those later in this paper that mr(F2, (3K2∪K1)c) =
mr(F3, (3K2∪K1)c) = 3, while mr(F, (3K2 ∪K1)c) = 2 for all other fields F . Indeed,
it follows from the results in this paper that there are infinitely many pairs of distinct
fields F, F ′ for which there exists a graph G such that mr(F,G) �= mr(F ′, G). Thus,
given an arbitrary finite field F , a systematic approach is needed to classify those
graphs G for which mr(F,G) ≤ 2.

2. Graphs G with mr(F,G) ≤ 2. We begin this section with an easy observa-
tion, which is also mentioned in [1].

Observation 1 Let F be a field and let G be a graph on n vertices. Then mr(F,G) ≤
1 if and only if G can be expressed as the union of a complete graph and an indepen-
dent set of vertices.

For any nonnegative integer n, let Sn(F ) be the set of all symmetric n×nmatrices
with entries in F .
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Lemma 2 Let A ∈ Sn(F ) with rank two. Then there is an invertible B ∈ S2(F ) such
that A = U tBU , where U is a 2× n matrix.

A proof of this elementary lemma is given in [1].
Let B ∈ S2(F ) be invertible. Then B defines a nondegenerate, bilinear symmetric

form by

(x, y)→ xtBy, x, y ∈ F 2.

A line in F 2 is a one dimensional subspace of F 2. If L is a line, we denote its
orthogonal complement (relative to the given form) by L⊥. We can now distinguish
two types of lines. Those for which L �= L⊥ and those for which L = L⊥. The latter
ones are called isotropic lines.

We denote the nonzero elements of a field F by F ∗.

Theorem 3 Let F be a field with pt elements, p prime and p �= 2, and let G = (V,E)
be a graph on n vertices. Then, if mr(F,G) ≤ 2, Gc is either of the form

(2.1) (Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for some appropriate nonnegative integers r, k, p1, q1, p2, q2, . . . , pk, qk with pi+qi > 0,
i = 1, 2, . . . , k and with k ≤ (pt + 1)/2, or of the form

(2.2) (Ks1 ∪Ks2 ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for some appropriate nonnegative integers r, s1, s2, k, p1, q1, p2, q2, . . . , pk, qk with
pi + qi > 0, i = 1, 2, . . . , k and with k ≤ (pt − 1)/2.

Proof. If a graph G satisfies mr(F,G) ≤ 1 then G is of the form Km ∪ Kc
n−m

for some nonnegative m ≤ n, which is a special case of (2.2). So we may assume
mr(F,G) = 2. In this case we follow the proof of Theorem 1 in [1]. Let A ∈ S(F,G)
with rankA = 2. Then according to Lemma 2, A can be written as U tBU , where B
is an invertible 2× 2 symmetric matrix over F and U is a 2× n matrix over F .

Since charF �= 2, we can assume that

B =
[
d1 0
0 d2

]

for certain d1, d2 ∈ F ∗; see [2, pages 253–254]. A line L spanned by the vector
x = [x1, x2] is isotropic if and only if x2

1 + (d2/d1)x2
2 = 0. Hence isotropic lines exist

in F 2 if and only if −d2/d1 is a square in F . Moreover, if −d2/d1 is a square in F ,
there are exactly two isotropic lines, those spanned by [x1, x2]t and [x1,−x2]t, where
x1, x2 ∈ F ∗ satisfy x2

1 + (d2/d1)x2
2 = 0.

Let wi, for i = 1, 2, . . . , n, be the ith column of U . For any i, j ∈ V with i �= j
we have

ij ∈ E(Gc)↔ wt
iBwj = 0.
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Suppose that r of the vectors w1, w2, . . . , wn are 0; we may assume wn−r+1 = wn−r+2

= · · · = wn = 0. Then Gc = H ∨Kr. It remains to determine the structure of H .
Now, if −d2/d1 is not a square, there are no isotropic lines in F 2 and the number

of pairs (L,L⊥) with L not isotropic is (pt+1)/2. (The number of lines in F 2 is pt+1
and the orthogonal complement of each line is distinct from the line itself.) For each
pair (L,L⊥) with L not isotropic, consider those i, j ∈ V such that Spwi = L and
Spwj = L⊥. These vertices induce a graph in H which is either empty or a complete
bipartite graph. Hence H can be expressed as the union of at most (pt+1)/2 complete
bipartite graphs, and so Gc is of the form (2.1). If −d2/d1 is a square, there are two
isotropic lines in F 2 and the number of pairs (L,L⊥) with L not isotropic is (pt−1)/2.
Denote the isotropic lines by L1 and L2. The vertices i ∈ V such that Spwi = L1

induce a clique in H , and similarly the vertices i ∈ V such that Spwi = L2 induce a
clique. For each pair (L,L⊥) with L not isotropic, consider those i, j ∈ V such that
Spwi = L and Spwj = L⊥. This induces a complete bipartite graph in H . Hence H
can be expressed as the union of at most 2 complete graphs and of at most (pt − 1)/2
complete bipartite graphs, and so Gc is of the form (2.2).

Theorem 4 Let F be a field with pt elements, p prime and p �= 2, and let G be a
graph whose complement is of the form (2.1) or of the form (2.2). Then mr(F,G) ≤ 2.

Proof. Let us first assume that G has the form (2.1). Take an element −d of
F which is not a square in F . Let E =

[
1 0
0 d

]
. It suffices to show there exists a

U ∈ F 2,n such that A = U tEU ∈ S(F,G). Since −d is not a square, we know that
no line in F 2 is isotropic with respect to the bilinear form defined by E. The number
of pairs (L,L⊥) with L not isotropic is (pt+1)/2. Take from each such pair one line,
and denote them by L1, L2, . . . , L(pt+1)/2. Let x(i) be a vector spanning Li and let
y(i) be a nonzero vector orthogonal to x(i). Let wi, i = 1, 2, . . . , n denote the columns
of U . Choose wn−r+1 = wn−r+2 = · · · = wn = 0. Among w1, w2, . . . , wn−r we pick
the first p1 equal to x(1) and the q1 after these equal to y(1). Since k ≤ (pt + 1)/2,
we can continue this process for all p1, q1, p2, q2, . . . , pk, qk and obtain a matrix A of
rank ≤ 2 in S(F,G).

We now assume that G has the form (2.2). Let

E =
[
1 0
0 −1

]
.

It suffices to show there exists a U ∈ F 2,n such that A = U tEU ∈ S(F,G). This time
there are two isotropic lines in F 2, namely the line spanned by f1 = [1, 1]t and the
line spanned by f2 = [1,−1]t. The number of pairs (L,L⊥) with L not isotropic, is
(pt−1)/2. Take from each such pair one line, and denote them by L1, L2, . . . , L(pt−1)/2.
Let x(i) be a vector spanning Li and let y(i) be a nonzero vector orthogonal to x(i).
Let wi, i = 1, 2, . . . , n denote the columns of U . Choose wn−r+1 = wn−r+2 = · · · =
wn = 0. Choose w1, w2, . . . , ws1 = f1 and choose ws1+1, ws1+2, . . . , ws1+s2 = f2.
Among ws1+s2+1, ws1+s2+2, . . . , wn−r we pick the first p1 equal to x(1) and the q1
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after these equal to y(1). Since k ≤ (pt − 1)/2, we can continue this process for all
p1, q1, p2, q2, . . . , pk, qk and obtain a matrix A of rank ≤ 2 in S(F,G).

If F is a finite field with char(F ) = 2, then each element is a square.

Theorem 5 Let F be a field with 2t elements and let G be a graph on n vertices.
Then, if mr(F,G) ≤ 2, Gc is either of the form

(2.3) (Ks1 ∪Ks2 ∪ · · · ∪Ksk
) ∨Kr

for some appropriate nonnegative integers k, r, s1, s2, . . . , sk with k ≤ 2t+1, or of the
form

(2.4) (Ks1 ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for some appropriate nonnegative integers k, r, s1, p1, q1, p2, q2, . . . , pk, qk with
k ≤ 2t−1.

Proof. The same proof as the proof of Theorem 3 can be used here. Let A ∈
S(F,G) with rank 2. Let B = (bi,j) be a 2×2 symmetric matrix and U a 2×n matrix
such that A = U tBU . If b1,1 �= 0 or b2,2 �= 0, we can diagonalize B by a congruence.
So in this case we may assume

B =
[
d1 0
0 d2

]
,

for certain d1, d2 ∈ F ∗. A line spanned by a nonzero vector x = [x1, x2]t is isotropic if
and only if d1x

2
1 + d2x

2
2 = 0. Since each element of F is a square, there is an element

β ∈ F ∗ such that β2 = −d2/d1. Then (x1 + βx2)(x1 − βx2) = 0; that is, there is
exactly one isotropic line in F . If b1,1 = 0 and b2,2 = 0, we can assume

B =
[
0 1
1 0

]
.

In this case a line spanned by a nonzero vector x = [x1, x2]t is isotropic if and only if
xtBx = x1x2 + x2x1 = 0. Hence every line is isotropic.

Now if each line in F 2 is isotropic, we are in case (2.3) and if there is one isotropic
line in F 2, we are in case (2.4).

Theorem 6 Let F be a field with 2t elements and let G be a graph whose complement
is of the form (2.3) or (2.4). Then mr(F,G) ≤ 2.

Proof. The proof is analogous to the proof of Theorem 4. In the case of (2.3) we
take

(2.5) E =
[
0 1
1 0

]
,

and in the case of (2.4) we take

(2.6) E =
[
1 0
0 1

]
.
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3. Forbidden subgraphs. Let F be a finite field. In the previous section we
described the complements of the graphs whose symmetric matrices with entries in
F have minimum rank at most 2. These graphs can also be described by means of
forbidden subgraphs.

Proposition 7 [1] A graph G can be expressed as the union of complete graphs and
of complete bipartite graphs if and only if G is (P4, paw, diamond)-free.

Proposition 8 A graph G can be expressed as either the union of at most 2 complete
graphs and of at most m complete bipartite graphs or as the union of at most m+ 1
complete bipartite graphs if and only if G is (3K3,K2 ∪ 2K1 ∪mP3,K1 ∪ (m+ 1)P3,
(m+ 2)K2 ∪K1, P4, paw, diamond)-free.

Proof. (⇒). From Proposition 7 it follows that P4, paw, and diamond are forbid-
den subgraphs. If G has (m+ 2)K2 as an induced subgraph, then G has no isolated
vertices, and hence G is (m + 2)K2 ∪K1-free. Since G has at most two components
which are complete graphs on 3 or more vertices, 3K3 is a forbidden subgraph. If
G has K2 ∪ K1 ∪ mP3 as an induced subgraph, then G must be the union of two
nonempty complete graphs and of m nonempty complete bipartite graphs, and hence
G is K2 ∪ 2K1 ∪ mP3-free. If G has (m + 1)P3 as an induced subgraph, then G
must be the union of m + 1 nonempty complete bipartite graphs, and hence G is
K1 ∪ (m+ 1)P3-free.

(⇐). By Proposition 7, G is of the form

E1 ∪ · · · ∪ Ej ∪H1 ∪ · · · ∪Hl ∪W, 0 ≤ j ≤ 2, 0 ≤ l ≤ m+ 1

where the Ei for i = 1, . . . , j are complete graphs containing a triangle, the Hi for
i = 1, 2, . . . , l are complete bipartite graphs containing a P3 as an induced subgraph,
and W is a collection of single edges and isolated vertices. Here we have used the
assumption that G is 3K3-free to conclude that j ≤ 2, and we have used the as-
sumption that G is K1 ∪ (m + 1)P3-free to conclude that l ≤ m + 1. Since G is
(m+ 2)K2 ∪K1-free, the number of single edges in W is at most m+ 2− j − l.

We first assume that j > 0. Then l ≤ m or else K2∪2K1∪mP3 would be induced.
If W has m + 2 − j − l single edges, then W has no isolated vertices, and we may
add 2 − j single edges to the collection of complete graphs and m − l single edges
to the collection of complete bipartite graphs. Now suppose that W has fewer than
2 − j +m− l single edges and l = m so that j = 1. Then as G is K2 ∪ 2K1 ∪mP3-
free, W is either empty or contains exactly one vertex. If W is nonempty, we add
the vertex to the collection of complete graphs. It remains to consider the case in
which l < m and W has 2 − j + k single edges, where k < m − l. Add 2 − j single
edges to the collection of complete graphs, k single edges to the collection of complete
bipartite graphs and all the isolated vertices (as one bipartite graph) to the collection
of complete bipartite graphs. In each case we have shown that G can be expressed as
the union of at most 2 complete graphs and of at most m complete bipartite graphs.

Next assume that j = 0. Then the number of single edges inW is at mostm+2−l.
If W has this number of single edges, then W contains at least one single edge and W
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has no isolated vertices. Since G is 2K1 ∪K2 ∪mP3-free, we know that l ≤ m in this
case. We add 2 single edges to the collection of complete graphs and m−l single edges
to the collection of complete bipartite graphs. It remains to consider the case that the
number of single edges inW is at mostm+1−l. If l = m+1, then G can be expressed
as the union of m+1 complete bipartite graphs, as G is K1∪ (m+1)P3-free. If l = m
and W contains one single edge, then W contains at most one isolated vertex, as G
is 2K1 ∪K2 ∪mP3-free. In this case we add the elements of W to the collection of
complete graphs. If l = m andW contains no single edge, then we add all the isolated
vertices (as one bipartite graph) to the collection of complete bipartite graphs. Now
suppose that l < m and that W contains m + 1 − l single edges. We take 2 of the
single edges to be complete graphs, each of the remaining m − 1 − l single edges to
be a complete bipartite graph, and all of the isolated vertices to be one complete
bipartite graph. If l < m and W contains at most m − l single edges, then we may
regard each single edge as a complete bipartite graph, and all the isolated vertices to
be one complete bipartite graph.

Theorem 9 [1] A graph G has the form

(3.1) (Ks1 ∪Ks2 ∪ · · · ∪Kst ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for nonnegative integers t, s1, s2, . . . , st, k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0,
i = 1, 2, . . . , k if and only if G is (P4, paw ∪K1, diamond ∪K1, Ŵ4,K2,2,2)-free.

Theorem 10 A graph G is either of the form (2.1) or of the form (2.2) if and only
if G is (P4, paw∪K1, diamond∪K1, Ŵ4,K2,2,2, 3K3, (m+2)K2∪K1,K2∪2K1∪mP3,
K1 ∪ (m+ 1)P3)-free, where m = (pt − 1)/2.

Proof. (⇒). From Theorem 9 it follows that P4, paw ∪ K1, diamond ∪ K1, Ŵ4,
K2,2,2 are forbidden subgraphs. Let

F = {3K3, (m+ 2)K2 ∪K1,K2 ∪ 2K1 ∪mP3,K1 ∪ (m+ 1)P3},

let D be the set of dominating vertices of G, and let C = V \D. Since no graph in F
has a dominating vertex, a graph of F is induced in G only if it is induced in G[C].
From Proposition 8 it follows that no graph of F is induced in G[C].

(⇐). By Theorem 9, G has the form (3.1). Let D be the set of dominating
vertices of G, and let C = V \ D. Then G[C] can be expressed as the union of
complete graphs and of complete bipartite graphs. So G[C] is (paw, diamond)-free.
Since G[C] is (P4, 3K3, (m + 2)K2 ∪ K1,K2 ∪ 2K1 ∪ mP3,K1 ∪ (m + 1)P3)-free, it
follows from Proposition 8 that G[C] can be expressed as either the union of at most
2 complete graphs and of at most m complete bipartite graphs or as the union of at
most m+ 1 complete bipartite graphs. Hence, G is either of the form (2.1) or of the
form (2.2).

Theorem 11 Let G be a graph and let F be a finite field with pt elements, p prime
and p �= 2. Then the following are equivalent:
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1. mr(F,G) ≤ 2,
2. Gc is either of the form (2.1) or of the form (2.2), and
3. G is (P4, dart,�, P3∪K2, 3K2,K3,3,3, ((m+2)K2∪K1)c, (K2∪2K1∪mP3)c,
(K1 ∪ (m+ 1)P3)c)-free, where m = (pt − 1)/2.

It is informative to compare Theorem 11 with the following result from [1].

Theorem 12 Let G be a graph and let F be an infinite field such that charF �= 2.
Then mr(F,G) ≤ 2 if and only if G is (P4,�, dart, P3 ∪K2, 3K2,K3,3,3)-free.

Let F be a finite field with pt elements, p prime and p �= 2, and letm = (pt−1)/2.
With Theorem 11 and Theorem 12, we see that, if mr(R, G) ≤ 2 and, additionally, G
is (((m+2)K2∪K1)c, (K2∪2K1∪mP3)c, (K1∪(m+1)P3)c)-free, then mr(F,G) ≤ 2.

Proposition 13 A graph G can be expressed as either the union of at most 2t + 1
complete graphs or as the union of at most one complete graph and of at most 2t−1

complete bipartite graphs if and only if G is (P3 ∪ 2K3, P4, paw, diamond,
(2t−1 + 1)K2 ∪ (2t−1 + 1)K1, P3 ∪ 2t−1K2 ∪K1, 2K3 ∪ 2tK1, 2t−1P3 ∪ 2K1)-free

Proof. (⇒). From Proposition 7 it follows that P4, paw, diamond are forbidden
subgraphs. If G contains P3 as an induced subgraph, it must be the union of at
most one nonempty complete graph and of at most 2t−1 nonempty complete bipartite
graphs. Hence G is P3 ∪ 2K3-free, P3 ∪ 2t−1K2∪K1-free, and 2t−1P3 ∪ 2K1-free. If G
contains (2t−1 + 1)K2 ∪K1 as an induced subgraph, then G must be the union of at
most 2t+1 nonempty complete graphs. Hence G is (2t−1+1)K2 ∪ (2t−1+1)K1-free.
If G contains 2K3 as an induced subgraph, G must also be the union of at most 2t+1
nonempty complete graphs, and so G must be (2K3 ∪ 2tK1)-free.

(⇐). If G is P3-free, then G is a union of complete graphs. We may express

G = E1 ∪ · · · ∪ Ej ∪W1 ∪ · · · ∪Wk ∪ {s1, . . . , sl},

where the Ei are the components containing a triangle, the Wi are the single edges,
and {s1, . . . , sl} is the collection of isolated vertices of G. If j + k ≥ 2t−1 +1, then G
has at most 2t + 1− j − k isolated vertices, as G is (2t−1 + 1)K2 ∪ (2t−1 + 1)K1-free.
Hence G can be expressed as the union of at most 2t+1 complete graphs in this case.
If j > 1, then k + l ≤ 2t + 1− j, as G is 2K3 ∪ 2tK1-free. Hence, also in this case G
can be expressed as the union of at most 2t + 1 complete graphs.

So we may assume j + k ≤ 2t−1 and j ≤ 1. If j = 0, then we add one single
edge to the collection of complete graphs, we add the remaining single edges to the
collection of complete bipartite graphs, and we add all the isolated vertices as one
complete bipartite graph to the collection of complete bipartite graphs. If j = 1,
then k ≤ 2t−1 − 1. In this case we add all single edges to the collection of complete
bipartite graphs, and we add all the isolated vertices as one complete bipartite graph
to the collection of complete bipartite graphs. Hence we can express G in each of
these cases as the union of a complete graph and of at most 2t−1 complete bipartite
graphs.
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So we may assume that G has P3 as an induced subgraph. By Proposition 7, we
may express

G = E1 ∪ · · · ∪ Ej ∪H1 ∪ · · · ∪Hk ∪W,
where the Ei for i = 1, 2, . . . , j are complete graphs containing a triangle, the Hi for
i = 1, 2, . . . , k are complete bipartite graphs containing a P3 as an induced subgraph,
and W is the collection of single edges and isolated vertices.

As G has P3 as an induced subgraph, k ≥ 1. Since G is (P3∪2K3)-free, 0 ≤ j ≤ 1.
Since G is 2t−1P3∪2K1-free, k ≤ 2t−1, and if k = 2t−1, then G has at most one other
component besides the Hi’s. So if k = 2t−1, we can express G as the union of at most
one complete graph and of 2t−1 complete bipartite graphs. We may therefore assume
that k < 2t−1. Then, as G is (P3 ∪ 2t−1K2 ∪K1)-free, the number of single edges in
W is at most 2t−1+1−k−j and if the number of single edges inW is 2t−1+1−k−j,
then W has no isolated vertices.

If W has 2t−1 + 1− k − j single edges, then 2t−1 + 1− k − j > 0, as we assumed
k < 2t−1. SoW has at least one single edge. Hence G can be expressed as the union of
one complete graph and of 2t−1 complete bipartite graphs, where the complete graph
is E1 if j = 1 and a single edge if j = 0. If W has 2t−1 − k− j single edges and j = 0,
thenW has at least one single edge, as 2t−1−k > 0. Hence G can be expressed as the
union of one complete graph and of at most 2t−1 complete bipartite graphs, where the
complete graph is one of the single edges and where all isolated vertices are put in one
complete bipartite graph. IfW has 2t−1−k−j single edges and j = 1, then G can be
expressed as the union of one complete graph and of at most 2t−1 complete bipartite
graphs, where the complete graph is E1 and where all isolated vertices are put in
one complete bipartite graph. If W has fewer than 2t−1 − k − j single edges, then
we add each single edge to the collection of complete bipartite graphs, and we add
all the isolated vertices as one complete bipartite graph to the collection of complete
bipartite graphs. Hence also in this case G can be expressed as the union of at most
one complete graph and of at most 2t−1 complete bipartite graphs.

Theorem 14 A graph G is either of the form (2.3) or the form (2.4) if and only if
G is (P4, paw∪K1, diamond∪K1, Ŵ4,K2,2,2, P3 ∪ 2K3, (2t−1 +1)K2 ∪ (2t−1 +1)K1,
P3 ∪ 2t−1K2 ∪K1, 2K3 ∪ 2tK1, 2t−1P3 ∪ 2K1)-free.

We omit the proof since it is similar to the proof of Theorem 10.

Theorem 15 Let G be a graph and let F be a finite field with 2t elements. Then the
following are equivalent:

1. mr(F,G) ≤ 2,
2. Gc is either of the form (2.3) or of the form (2.4), and
3. G is (P4, dart,�, P3 ∪K2, 3K2, (P3 ∪ 2K3)c, ((2t−1 + 1)K2 ∪ (2t−1 + 1)K1)c,
(P3 ∪ 2t−1K2 ∪K1)c, (2K3 ∪ 2tK1)c, (2t−1P3 ∪ 2K1)c)-free.

The corresponding result proved in [1] for an infinite field with characteristic 2 is
that mr(F,G) ≤ 2 if and only if the first 6 graphs in (3) are forbidden.

Specializing to the field F2 with only two elements, we obtain
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Theorem 16 Let G be a graph. Then mr(F2, G) ≤ 2 if and only if G is (P4, dart,�,
P3 ∪K2, 3K2, P3 ∨ P3, (P3 ∪ 2K1)c)-free.

If we know that the graph G is connected or, translated back to symmetric ma-
trices, we know that the symmetric matrix is irreducible, then even fewer forbidden
subgraphs characterize those graphs with minimum rank at most 2. For this we use
the following corollary and proposition from [1].

Corollary 17 Let G be connected. Then G is (P4, dart,�,K3,3,3)-free if and only if
G is (P4, P3 ∪K1,K2 ∪ 2K1,K3,3,3)-free.

Proposition 18 Let G be connected. Then G is (P4, dart,�, (P3∪2K3)c)-free if and
only if G is (P4, P3 ∪K1,K2 ∪ 2K1, (P3 ∪ 2K3)c)-free.

Theorem 19 Let G be a connected graph and let F be a finite field with pt elements,
p prime and p �= 2. Then, mr(F,G) ≤ 2 if and only if G is (P4, dart,�,K3,3,3,
((m+2)K2∪K1)c, (K2∪2K1∪mP3)c, (K1∪ (m+1)P3)c)-free, where m = (pt−1)/2.

Proof. This follows from Theorem 11 and Corollary 17.

Theorem 20 Let G be a connected graph and let F be a finite field with 2t elements.
Then, mr(F,G) ≤ 2 if and only if G is (P4, dart,�, (P3 ∪ 2K3)c, ((2t−1 + 1)K2 ∪
(2t−1 + 1)K1)c, (P3 ∪ 2t−1K2 ∪K1)c, (2K3 ∪ 2tK1)c, (2t−1P3 ∪ 2K1)c)-free.

Proof. In this case the theorem follows from Theorem 15 and Proposition 18.

Specializing to the field F2 with only two elements, we get

Theorem 21 Let G be a connected graph. Then mr(F2, G) ≤ 2 if and only G is
(P4, dart,�, P3 ∨ P3, (P3 ∪ 2K1)c)-free.
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