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SPECTRAL PROPERTIES OF SIGN SYMMETRIC MATRICES∗

DANIEL HERSHKOWITZ† AND NATHAN KELLER‡

Abstract. Spectral properties of sign symmetric matrices are studied. A criterion for sign
symmetry of shifted basic circulant permutation matrices is proven, and is then used to answer the
question which complex numbers can serve as eigenvalues of sign symmetric 3 × 3 matrices. The
results are applied in the discussion of the eigenvalues of QM -matrices. In particular, it is shown that
for every positive integer n there exists a QM -matrix A such that Ak is a sign symmetric P -matrix
for all k ≤ n, but not all the eigenvalues of A are positive real numbers.
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1. Introduction. A square complex matrix A is called a Q-matrix [Q0-matrix]
if the sums of principal minors of A of the same order are positive [nonnegative].
Equivalently, Q-matrices can be defined as matrices whose characteristic polynomials
have coefficients with alternating signs. A square complex matrix is called a P -matrix
[P0-matrix] if all its principal minors are positive [nonnegative]. A square complex
matrix is said to be stable if its spectrum lies in the open right half plane.

Let A be an n×nmatrix. For subsets α and β of {1, ..., n} we denote by A(α|β) the
submatrix of A with rows indexed by α and columns indexed by β. If |α| = |β| then
we denote by A[α|β] the corresponding minor. The matrix A is called sign symmetric
if A[α|β]A[β|α] ≥ 0 for all α, β ⊂ {1, ..., n} such that |α| = |β|. The matrix A is called
anti sign symmetric if A[α|β]A[β|α] ≤ 0 for all α, β ⊂ {1, ..., n}, α �= β. A matrix
A is called weakly sign symmetric if A[α|β]A[β|α] ≥ 0 for all α, β ⊂ {1, ..., n} such
that |α| = |β| = |α ∩ β| + 1, that is, if the products of symmetrically located (with
respect to the main diagonal) almost principal minors are nonnegative. Note that in
some recent papers, the term ”sign symmetry” is used for matrices which fulfill the
above condition only for minors of size 1, that is, matrices in which aijaji ≥ 0 for all
1 ≤ i, j ≤ n, e.g. [2].

The research of the relationship between stability, positivity of principal minors
and sign symmetry was motivated by a research problem by Taussky [12] calling for
investigation of the common properties of totally positive matrices, nonsingular M -
matrices and positive definite matrices. Stability, positivity of principal minors and
weak sign symmetry are amongst those common properties. This paper deals with
spectral properties of general sign symmetric matrices and of sign symmetric matrices
having some additional properties.
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A square complex matrix is called a QM -matrix if all its powers areQ-matrices. A
matrix all of whose powers are P -matrices is called a PM -matrix. A major motivation
for our research is a known question of Friedland (see [6]) whether the spectra of PM -
matrices consist of positive numbers only. This question was answered affirmatively
in [6] for matrices of order less than 5, while other cases still remain open. The answer
to a similar question, where PM -matrices are replaced by QM -matrices, is negative,
as is demonstrated by the matrix

(1.1) A =




1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


 .

In fact, note that while all powers of A are even sign symmetric Q-matrices, A is
not even stable. In view of this example, it is reasonable to ask which additional
assumptions can be added for QM -matrices such that their eigenvalues are still not
necessarily positive numbers. We approach this question using results on 3× 3 circu-
lant matrices, obtained in Sections 2 and 3.

The study of sign symmetric matrices is made quite difficult by the fact that there
is no efficient criterion to determine whether a given matrix is sign symmetric or not.
Therefore, discussion of certain classes of sign symmetric matrices may be important
to the research of spectral properties of sign symmetric matrices in general. In Section
2 we deal with a very special class of shifted basic circulant permutation matrices.
We formulate and prove a simple criterion for [anti] sign symmetry of matrices of this
class. The 3×3 sign symmetric matrices of this type serve in the next sections for the
characterization of the spectra of sign symmetric 3× 3 matrices and for more general
results.

In Section 3 we focus on 3 × 3 matrices. First, we use the results of Section 2
in order to give an explicit answer to the question which complex numbers can be
eigenvalues of a general sign symmetric 3×3 matrix. Then we again focus on circulant
matrices and analyze the arguments of the complex eigenvalues as a function of the
sign of the real eigenvalue. This analysis is used later in Section 4.

In Section 4 we discuss spectra of PM -matrices and of QM -matrices. We start
by examining 3 × 3 sign symmetric Q-matrices. We use the results of Section 3 in
order to determine possible spectra of such matrices, in terms of the arguments of the
eigenvalues. Then we use completion results developed in [6] in order to generalize
our results to matrices of higher order. Afterwards, we prove that for every positive
integer n there exists a QM -matrix A such that Ak is a sign symmetric P -matrix for
all k ≤ n but not all the eigenvalues of A are positive real numbers.

The paper is concluded in Section 5 with several open problems.
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2. Sign symmetry of shifted basic circulant permutation matrices. The
research of sign symmetric matrices is made quite difficult by the fact that there is
no efficient criterion to determine whether a given matrix is sign symmetric or not.
In this section we deal with a very special class of shifted basic circulant permutation
matrices. We formulate and prove a simple criterion for [anti] sign symmetry of
matrices of this class. The 3 × 3 sign symmetric matrices of this type serve in the
next sections for the characterization of the spectra of sign symmetric 3× 3 matrices
and for more general results.

We start with two definitions and notation.

Definition 2.1. (see [9, p. 26]). Let n be a positive integer. An n × n matrix
of the form

Cn =




a1 a2 a3 · · · · · · an

an a1 a2 · · · · · · an−1

an−1 an a1 · · · · · · an−2

...
. . . . . .

...
...

. . . . . . a2

a2 a3 a4 · · · an a1




is called a circulant matrix.

Definition 2.2. (see [9, p. 26]). Let n be a positive integer. The basic circulant
permutation n× n matrix Cn is defined by

(Cn)ij =



1 , j = i+ 1
1 , i = n, j = 1
0 , otherwise,

that is,

Cn =




0 1 0 · · · 0
...
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · 0 1
1 0 · · · · · · 0



.

Note that the spectrum of Cn consists of the nth roots of unity.

Notation 2.3. For a positive integer n we denote by In the identity matrix of
order n.

In order to characterize sign symmetry of basic circulant permutation matrices,
we prove
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Proposition 2.4. Let n be a positive integer, and let α and β be different
nonempty subsets of {1, . . . , n} of the same cardinality. The product Cn[α|β]Cn[β|α]
is nonzero if and only if n is even and

(2.5) {α, β} = {{2, 4, . . . , n} , {1, 3, . . . , n− 1}} .

Furthermore, in this case we have Cn[α|β]Cn[β|α] = (−1)n
2 −1.

Proof. The product Cn[α|β]Cn[β|α] is nonzero if and only if
(2.6) Cn[α|β] �= 0
and

(2.7) Cn[β|α] �= 0.
Note that if i /∈ α and i+ 1 ∈ β (where n+ 1 is identified with 1), then Cn[α|β] = 0.
Thus, (2.6) implies that if i /∈ α, then i+1 /∈ β, which, by (2.7), implies that i+2 /∈ α.
Using repeated argument we obtain

(2.8)




i /∈ α =⇒ i+ 2k (mod n) /∈ α

i /∈ β =⇒ i+ 2k (mod n) /∈ β
k = 1, 2, . . . ,

where 0 (mod n) is taken as n. Since α and β are different subsets of {1, . . . , n} of
the same cardinality, their cardinality is less than n. Also, they are nonempty. It thus
follows from (2.8) that n is even and (2.5) holds. Furthermore, notice that in this case
we have Cn(1, 3, . . . , n− 1|2, 4, . . . , n) = In

2
and Cn(2, 4, . . . , n|1, 3, . . . , n− 1) = Cn

2
,

whose determinant is equal to (−1)n
2 −1. Therefore, the product of the corresponding

minors is equal to (−1)n
2 −1.

Corollary 2.9. The basic circulant permutation matrix Cn is sign symmetric
unless n = 2k+2 for some odd positive integer k, in which case the matrix Cn is anti
sign symmetric.

Remark 2.10. Note that by Proposition 2.4, for odd n the matrix Cn is both
sign symmetric and anti sign symmetric.

The picture changes if we allow nonzero elements on the main diagonal. In
Proposition 2.19 we shall show that for n > 3, nonzero scalar shifts of scalar products
of basic circulant permutation matrices are all neither sign symmetric nor anti sign
symmetric. For 3× 3 matrices we, however, still have

Theorem 2.11. Let xi, yi, i = 1, 2, 3, be real numbers. Then the matrix

A =


 x1 y1 0
0 x2 y2

y3 0 x3




is sign symmetric if and only if xjy1y2y3 ≤ 0, j = 1, 2, 3, and is anti sign symmetric
if and only if xjy1y2y3 ≥ 0, j = 1, 2, 3.
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Proof. Since aijaji = 0 whenever i �= j, all we have to consider are products
A[α|β]A[β|α] when α and β are different subsets of {1, 2, 3} of cardinality 2. Note that
α∩β = {k} for some k ∈ {1, 2, 3}. It is easy to verify that A[α|β]A[β|α] = −xky1y2y3

and so our assertion follows.

As a corollary to Theorem 2.11 we obtain the following characterization of shifted
basic circulant permutation 3× 3 matrices.

Corollary 2.12. Let x and y be real numbers. Then the matrix

A =


 x y 0
0 x y
y 0 x




is sign symmetric if and only if xy ≤ 0 and is anti sign symmetric if and only if
xy ≥ 0.

Theorem 2.11 and Corollary 2.12 cannot be generalized to matrices of order
greater than 3. In order to see it we first prove the following lemma.

Lemma 2.13. Let m and n be positive integers and let A be the m × n matrix
defined by

(2.14) aij =




x , j = i
y , j = i+ 1
0 , otherwise

i = 1, . . . ,m. j = 1, . . . , n,

where x, y �= 0. Let α = {α1, . . . , αk} ⊂ {1, . . . ,m} where α1 < . . . < αk and let
β = {β1, . . . , βk} ⊂ {1, . . . , n} where β1 < . . . < βk. The following are equivalent:
(i) We have A[α|β] �= 0.
(ii) We have

(2.15) αi ≤ βi ≤ αi + 1, i = 1, . . . , k.

(iii) We have A[α|β] = xpyk−p, where p is the number of indices i such that αi = βi.

Proof. (i)=⇒(ii). Let A[α|β] �= 0. In order to prove (2.15) we first show that
(2.16) αi ≤ βi. i = 1, . . . , k.

Assume to the contrary that (2.16) does not hold, and so let l be such that βl < αl.
Note that we have βi < αj whenever 1 ≤ i ≤ l and l ≤ j ≤ k, which, by (2.14),
implies that the first l columns of A(α|β) may contain nonzero elements only in the
first l− 1 rows. It thus follows that A[α|β] = 0. Therefore, A[α|β] �= 0 implies (2.16).
We now show that

(2.17) βi ≤ αi + 1, i = 1, . . . , k.

Assume to the contrary that (2.17) does not hold, and so let l be a positive integer,
l ≤ k, such that βl > αl + 1. Note that we have βi > αj + 1 whenever l ≤ i ≤ k
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and 1 ≤ j ≤ l, which, by (2.14), implies that the first l rows of A(α|β) may contain
nonzero elements only in the first l − 1 columns. It thus follows that A[α|β] = 0.
Therefore, A[α|β] �= 0 implies (2.17).
(ii)=⇒(iii). Assume that (2.15) holds and let p be the number of indices i such
that αi = βi. We prove that A[α|β] = xpyk−p by induction on k. If k = 1 then
the claim is easy. Assume the claim holds for k < r where r is a positive integer,
r > 1, and let k = r. If p = 0 then we have βi = αi + 1, i = 1, . . . , k. It follows
that A(α|β) is a triangular matrix with y’s along the main diagonal, and so indeed
A[α|β] = yk = xpyk−p. If p > 0 then let l be such that αl = βl. Note that we have
βi < αj whenever 1 ≤ i ≤ l and l < j ≤ k. Also, βi < αl whenever 1 ≤ i < l. By
(2.14), it follows that

A[α|β] = A[α1, . . . , αl−1|β1, . . . , βl−1] aαl,αl
A[αl+1, . . . , αk|βl+1, . . . , βk].

We have aαl,αl
= x, and so our assertion follows by applying the inductive assumption

to
A[α1, . . . , αl−1|β1, . . . , βl−1] and to A[αl+1, . . . , αk|βl+1, . . . , βk].

(iii)=⇒(i) is trivial since x, y �= 0.
Remark 2.18. Note that it follows from (2.15) that

α1 ≤ β1 ≤ α2 ≤ β2 ≤ . . . ≤ αk ≤ βk.

It now follows that Corollary 2.12 cannot be generalized to matrices of order
greater than 3.

Proposition 2.19. Let n be a positive integer greater than 3 and let A be the
n× n matrix

(2.20)




x y 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0
. . . . . . y

y 0 · · · 0 x



, x, y ∈ R, x, y �= 0.

Then A is neither sign symmetric nor anti sign symmetric.

Proof. We have

A[2, . . . , n|1, . . . , n− 1] = (−1)n−2 y A[2, . . . , n− 1] = (−1)n−2 y xn−2

and

A[1, . . . , n− 1|2, . . . , n] = yn−1,
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and so

(2.21) A[2, . . . , n|1, . . . , n− 1]A[1, . . . , n− 1|2, . . . , n] = (−xy)n−2 y2.

We also have

(2.22) A[2, . . . , n− 2, n|1, 3, . . . , n− 1] = (−1)n−3 y A[2, . . . , n− 2|3, . . . , n− 1],
and
(2.23)

A[1, 3, 4, . . . , n− 1|2, . . . , n− 2, n] =
{

y2 , n = 4
y A[3, . . . , n− 1|3, . . . , n− 2, n] , n > 4.

Note that A[2, . . . , n − 2|3, . . . , n − 1] is a triangular matrix with diagonal elements
all equal to y. Therefore, we have

(2.24) A[2, . . . , n− 2|3, . . . , n− 1] = yn−3.

Also, A[3, . . . , n− 1|3, . . . , n− 2, n] is the minor B[1, . . . , n− 3|1, . . . , n− 4, n− 2] of
the matrix B = A(3, . . . , n), which is of the form (2.14). Therefore, by Lemma 2.13
we have

(2.25) A[3, . . . , n− 1|3, . . . , n− 2, n] = xn−4y.

It now follows from (2.22), (2.23), (2.24) and (2.25) that

(2.26) A[2, . . . , n− 2, n|1, 3, 4, . . . , n− 1]A[1, 3, 4, . . . , n− 1|2, . . . , n− 2, n] =

= −(−xy)n−4 y4.

Note that if xy > 0, then for an even number n the product of minors (2.21) is positive
and the product of minors (2.26) is negative, while for an odd n the product of minors
(2.21) is negative and the product of minors (2.26) is positive. If xy < 0, then for
every n the product of minors (2.21) is positive and the product of minors (2.26) is
negative. Our assertion follows.

We are now able to prove that Theorem 2.11 cannot be generalized to matrices
of order greater than 3.

Theorem 2.27. Let n be a positive integer greater than 3 and let xi, yi, i =
1, . . . , n, be nonzero real numbers such that all the x’s share the same sign and and
such that

∏n
1 yi is positive in case n is even. Then the n× n matrix

A =




x1 y1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0
. . . . . . yn−1

yn 0 · · · 0 xn
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is neither sign symmetric nor anti sign symmetric.

Proof. Since sign symmetry and anti sign symmetry of a matrix are invariant un-
der multiplication of the matrix by a positive diagonal matrix, it follows that without
loss of generality we may assume that x1 = . . . = xn. Since

∏n
1 yi is positive in case

n is even, we can define r = n
√∏n

1 yi. Let D be the diagonal matrix diag(d1, ..., dn)
defined by

d1 =
r

yn
and dk =

rk

yny1 · . . . · yk−1
, k = 2, . . . , n.

It is easy to check that the matrix D−1AD is of the form (2.20). Since sign symmetry
and anti sign symmetry of a matrix are invariant under diagonal similarity, our claim
follows from Proposition 2.19.

3. Spectra of sign symmetric 3 × 3 matrices. In the previous section we
studied sign symmetry of shifted basic circulant permutation matrices. In particular,
in Corollary 2.12 we characterized sign symmetry for all shifted basic circulant per-
mutation 3×3 matrices. In this section we use results of the previous section in order
to study the spectra of general sign symmetric matrices, focusing on 3 × 3 matrices.
This section continues to lay the basis for the results of the next section on PM - and
QM -matrices.

For a nonzero complex number λ we shall assume that −π < arg(λ) ≤ π. We
often use the following result due to Kellogg [10].

Theorem 3.1. ([10, Corollary 1] Every eigenvalue λ of an n×n Q-matrix satisfies
|arg(λ)| < π− π

n . Every eigenvalue λ of an n×n Q0-matrix satisfies |arg(λ)| ≤ π− π
n .

For general sign symmetric matrices we have

Theorem 3.2. Let n be a positive integer and let λ be a nonzero complex eigen-
value of a sign symmetric n× n matrix. Then

(3.3) |arg(λ)| ≤ (n− 1)π
2n

or |arg(λ)| ≥ (n+ 1)π
2n

.

Proof. Let λ be a nonzero complex eigenvalue of a sign symmetric n× n matrix
A. Since A is sign symmetric, it follows by the Cauchy-Binet formula, see, e.g., [4,
p. 9], that for every subset α of {1, ..., n} we have

A2[α] =
∑

β⊂{1,...,n}, |β|=|α|
A[α|β]A[β|α] ≥ 0,

and so it follows that A2 is a P0-matrix. By Theorem 3.1, the eigenvalue λ2 of A2

satisfies |arg(λ2)| ≤ (n−1)π
n , which implies (3.3).

We do not know whether the converse of Theorem 3.2 holds, that is, whether
for every λ satisfying (3.3) there exists a sign symmetric n × n matrix with λ as an
eigenvalue. We can, however, prove such a statement for 3× 3 matrices.
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Theorem 3.4. Let λ be a nonzero complex number. The following are equivalent:
(i) λ is an eigenvalue of a sign symmetric shifted basic circulant permutation 3 × 3
matrix.
(ii) λ is an eigenvalue of a sign symmetric 3× 3 matrix.
(iii) We have

(3.5) |arg(λ)| ≤ π

3
or |arg(λ)| ≥ 2π

3
.

Proof. (i)=⇒(ii) is trivial.
(ii)=⇒(iii) is proven in Theorem 3.2.
(iii)=⇒(i). Let λ be a nonzero complex number satisfying (3.5). If λ is real then
we can take a real diagonal matrix with λ as a diagonal element. Hence, we have to
consider only the case that λ is non-real. Since a matrix is sign symmetric if and only
if so is its negative, without loss of generality we may assume that |arg(λ)| ≥ 2π

3 .
Since λ is non-real, it follows that for some b ≥ 0 the complex number µ = λ + b
satisfies |arg(µ)| = 2π

3 . Note that µ is an eigenvalue of the matrix |µ|C3, and so
λ is an eigenvalue of the matrix A = |µ|C3 − bI3, which, by Theorem 2.11, is sign
symmetric.

Remark 3.6. One can show, using Corollary 2.12, that for a non-real complex
number λ satisfying |arg(λ)| ≥ 2π

3 , the matrix |λ + b|C3 − bI3, where b is the non-
negative number such that |arg(λ+ b)| = 2π

3 , is the only sign symmetric shifted basic
circulant permutation 3× 3 matrix with λ as an eigenvalue.

A real 3×3 matrix has at least one real eigenvalue. Furthermore, a real circulant
matrix

A =


 x y z

z x y
y z x




has just one real eigenvalue r whenever y �= z. We thus now analyze the argument of
the complex eigenvalues of a sign symmetric circulant 3 × 3 matrix as a function of
the sign of the real eigenvalue. In order to state our results we introduce the following
notation.

Notation 3.7. Let λ be a complex number and let r be a real number. It is
observed in [7, Lemma 5.11] that

{
λ, λ, r

}
is the spectrum of the circulant matrix

A =


 x y z

z x y
y z x


 , x, y, z ∈ R

if and only if

x =
r + 2Re(λ)

3
, y, z =

r −Re(λ)±√
3 Im(λ)

3
.
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Accordingly, we denote by C(λ, r) the circulant matrix


 c1 c2 c3

c3 c1 c2
c2 c3 c1


, where

c1 =
r + 2Re(λ)

3
, c2 =

r −Re(λ) +
√
3 Im(λ)

3
, c3 =

r −Re(λ)−√
3 Im(λ)

3
.

Remark 3.8. Note that C(λ, r) and C(λ, r) = C(λ, r)T are the only 3× 3 circu-
lant matrices with spectrum

{
λ, λ, r

}
. Also, since the product of circulant matrices

is also a circulant matrix, it follows from the above observed uniqueness that for a
positive integer k we have either C(λk, rk) = C(λ, r)k or C(λk, rk) =

(
C(λ, r)k

)T .

Theorem 3.9. Let λ be a non-real complex number. The following are equivalent:
(i) There exists a positive number r such that C(λ, r) is sign symmetric.
(ii) We have

(3.10) |arg(λ)| < π

6
or |arg(λ)| ≥ 2π

3
.

Proof. The matrix C(λ, r) is sign symmetric if and only if c2c3 ≥ 0 and (c22 −
c1c3)(c23 − c1c2) ≥ 0. Note that c2c3 is a quadratic polynomial p(r) in r with leading
coefficient 1 and with roots Re(λ) ± √

3 Im(λ). Without loss of generality we may
assume that Im(λ) > 0, and so it follows that

(3.11) p(r) ≥ 0 ⇐⇒ r ≥ Re(λ) +
√
3 Im(λ) or r ≤ Re(λ)−

√
3 Im(λ).

The expression (c22 − c1c3)(c23 − c1c2) is a polynomial q(r) in r. If Re(λ)2 = 3Im(λ)2,
then

q(r) = −24Re(λ)3

81
r +

16Re(λ)4

81
.

If Re(λ)2 �= 3Im(λ)2, then q(r) is a quadratic polynomial in r with leading coefficient
Re(λ)2−3Im(λ)2

9 and with roots

r̃1 =
Re(λ)2 + Im(λ)2√
3 Im(λ) +Re(λ)

, r̃2 = − Re(λ)2 + Im(λ)2√
3 Im(λ)−Re(λ)

.

Statement (i) of our theorem is equivalent to the solvability of the system

(3.12)




p(r) ≥ 0
q(r) ≥ 0
r > 0.

We distinguish between four cases:

1. Re(λ)2 > 3Im(λ)2. This is the case in which
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(3.13) |arg(λ)| < π

6
or |arg(λ)| > 5π

6
.

In this case the leading coefficients of both quadratic polynomials p(r) and q(r) are
positive, so clearly the system (3.12) is consistent for sufficiently large positive r.

2. Re(λ)2 = 3Im(λ)2, Re(λ) < 0. This is the case in which

(3.14) |arg(λ)| = 5π
6

.

In this case p(r) ≥ 0 and q(r) ≥ 0 whenever r ≥ 0, and so any r > 0 satisfies (3.12).

3. Re(λ)2 = 3Im(λ)2, Re(λ) > 0. This is the case in which

|arg(λ)| = π

6
.

In this case p(r) ≥ 0 whenever r ≥ 2Re(λ) or r ≤ 0, and q(r) ≥ 0 whenever r ≤ 2Re(λ)
3 .

Since r > 0, and since in this case we have Re(λ) > 0, we obtain the contradiction
2Re(λ) ≤ r ≤ 2Re(λ)

3 .

4. Re(λ)2 < 3Im(λ)2. This is the case in which

(3.15)
π

6
< |arg(λ)| < 5π

6
.

In this case the leading coefficient of q(r) is negative and its two roots satisfy r̃1 >
0 > r̃2. Therefore, we have

(3.16) q(r) ≥ 0 ⇐⇒ − Re(λ)2 + Im(λ)2√
3 Im(λ) −Re(λ)

≤ r ≤ Re(λ)2 + Im(λ)2√
3 Im(λ) +Re(λ)

.

Under the condition r > 0, both (3.11) and (3.16) hold if and only if

Re(λ) +
√
3 Im(λ) ≤ r ≤ Re(λ)2 + Im(λ)2√

3 Im(λ) +Re(λ)
,

which is solvable for r if and only if−Re(λ) ≥ Im(λ)√
3
, that is, |arg(λ)| ≥ 2π

3 . Therefore,
in view of (3.15), in this case the system (3.12) is solvable if and only if

(3.17)
2π
3

≤ |arg(λ)| < 5π
6

.

It follows that the system (3.12) is solvable if and only if we have (3.13), (3.14) or
(3.17), which together give (3.10).

Remark 3.18. In Theorem 3.4 we showed that eigenvalues of a general sign
symmetric 3 × 3 matrix satisfy (3.5). We then showed in Theorem 3.9 that the
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requirement that the real eigenvalue of the circulant matrix be positive yields the
reduction of the allowed domain for eigenvalues to (3.10). Another interesting case of
sign symmetric 3×3 matrices whose eigenvalues satisfy |arg(λ)| < π

6 is ofM -matrices,
that is, matrices of the form αI − B where B is an entrywise nonnegative matrix,
and where α is greater than or equal to the spectral radius of B. It was proven by
Ostrowski [11] that if A is an M -matrix then every principal submatrix of A is also
an M -matrix, and also each element of Adj(A) is nonnegative. This implies that all
M -matrices are weakly sign symmetric, a property that coincides with sign symmetry
for 3 × 3 matrices. Also, it is known that any eigenvalue λ of an n × n M -matrix
satisfies |arg(λ − l(A))| < π

2 − π
n , where l(A) is the minimal real eigenvalue of A,

e.g. [10, Theorem 1]. It thus follows that the eigenvalues of a 3× 3 M -matrix satisfy
|arg(λ)| < π

6 .

Remark 3.19. In view of Theorem 3.4, it is just natural to ask whether the
statements in Theorem 3.9 are also equivalent to statement: “There exists a sign
symmetric shifted basic circulant permutation 3 × 3 matrix with eigenvalue λ and a
positive eigenvalue”. The answer to this question is negative, as the latter statement
is equivalent to

|arg(λ)| < π

6
or

2π
3

≤ |arg(λ)| < 5π
6

.

To see it, note that in view of Corollary 2.12, the matrix xI3 + yC3, x, y ∈ R, is a
sign symmetric matrix with a positive eigenvalue if and only if x ≤ 0 and y > |x|, or
x > 0 and 0 ≥ y > −x.

Since C(λ, r) is sign symmetric if and only if −C(λ, r) = C(−λ,−r) is sign
symmetric, the following claim follows immediately from Theorem 3.9.

Corollary 3.20. Let λ be a non-real complex number. The following are equiv-
alent:
(i) There exists a negative number r such that C(λ, r) is sign symmetric.
(ii) We have

|arg(λ)| ≤ π

3
or |arg(λ)| > 5π

6
.

For the sake of completeness we add here

Theorem 3.21. Let λ be a non-real complex number. Then C(λ, 0) is sign
symmetric if and only if we have

|arg(λ)| ≤ π

6
or |arg(λ)| ≥ 5π

6
.

Proof. In this case we have c1 =
2Re(λ)

3 , c2 =
−Re(λ)+

√
3 Im(λ)

3 and c3 =
−Re(λ)−√

3 Im(λ)
3 . The matrix C(λ, 0) is sign symmetric if and only if c2c3 = Re(λ)2−
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3Im(λ)2 ≥ 0 and (c22 − c1c3)(c23 − c1c2) =
(
3Re(λ)2 + 3Im(λ)2

)2 ≥ 0. The assertion
follows.

Furthermore, by following the proof of Theorem 3.9 we can deduce the following
result, to be used in this paper at a later stage.

Theorem 3.22. Let λ be a non-real complex number. The following are equiva-
lent:
(i) There exists a nonnegative number R such that for every r > R the matrix C(λ, r)
is sign symmetric.
(ii) We have

|arg(λ)| < π

6
or |arg(λ)| ≥ 5π

6
.

(iii) We have

|arg(λ)| < π

6
or |arg(−λ)| ≤ π

6
.

Proof. (i)=⇒(ii). It is shown in the proof of Theorem 3.9 that if |arg(λ)| = π
6

then there exists no positive r such that C(λ, r) is sign symmetric (see Case 3 there),
and that if π

6 < |arg(λ)| < 5π
6 then there exists no r, r > Re(λ)2+Im(λ)2√

3 Im(λ)+Re(λ)
, such that

C(λ, r) is sign symmetric (see Case 4 there). The implication follows.

(ii)=⇒(i). It is shown in the proof of Theorem 3.9 that if |arg(λ)| < π
6 or |arg(λ)| > 5π

6
then for r sufficiently large the matrix C(λ, r) is sign symmetric (see Case 1 there),
and that if |arg(λ)| = 5π

6 then C(λ, r) is sign symmetric for every r, r > 0 (see Case
2 there). The implication follows.

(ii)⇐⇒(iii) is clear.
By applying Theorem 3.22 to the matrix −C(λ, r) we obtain

Theorem 3.23. Let λ be a non-real complex number. The following are equiva-
lent:
(i) There exists a nonpositive number R such that for every r < R the matrix C(λ, r)
is sign symmetric.
(ii) We have

|arg(λ)| ≤ π

6
or |arg(λ)| > 5π

6
.

(iii) We have

|arg(λ)| ≤ π

6
or |arg(−λ)| < π

6
.
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4. Spectra of sign symmetric Q-matrices. In [6] it is asked whether the
spectrum of any PM -matrix consists of positive numbers only. This question was
answered affirmatively in [6] for matrices of order less than 5, while other cases still
remain open. In the introduction we gave an example showing that the answer to a
similar question, where PM -matrices are replaced by QM -matrices, is negative. In
view of that example, it is reasonable to ask which additional assumptions can be
added for QM -matrices such that their eigenvalues are still not necessarily positive
numbers. The discussion of this question is the main aim of this section. We start by
examining 3×3 sign symmetric Q-matrices. We use the results of the previous section
in order to determine possible spectra of such matrices, in terms of the arguments of
the eigenvalues. Then we use completion results developed in [6] in order to generalize
our results to general order. Afterwards, we prove that for every positive integer n
there exists a QM -matrix A such that Ak is a sign symmetric P -matrix for all k ≤ n
but not all the eigenvalues of A are positive real numbers.

We start with a combination of Theorems 3.1 and 3.2.

Corollary 4.1. Let λ be a nonzero complex eigenvalue of a sign symmetric
n× n Q-matrix. Then

|arg(λ)| ≤ (n− 1)π
2n

or

(4.2)
(n+ 1)π
2n

≤ |arg(λ)| < (n− 1)π
n

.

Note that for n = 3 the inequality (4.2) is impossible. Therefore, we have

Corollary 4.3. Let λ be a nonzero complex eigenvalue of a sign symmetric
3× 3 Q-matrix. Then

|arg(λ)| ≤ π

3
.

The converse of Corollary 4.3 does not necessarily hold, that is, it is not clear
that for every choice of a nonzero complex number λ such that |arg(λ)| ≤ π

3 there
exists a sign symmetric 3× 3 Q-matrix with λ as an eigenvalue. In fact, if we restrict
ourselves to circulant matrices, then we have the following.

Theorem 4.4. Let λ be a nonzero complex number. The following are equivalent:
(i) λ is an eigenvalue of a sign symmetric 3× 3 Q-matrix of the form


 x y 0
0 x y
y 0 x


 , x, y ∈ R.
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(ii) λ is an eigenvalue of a sign symmetric 3× 3 circulant Q-matrix

(4.5)


 x y z

z x y
y z x


 , x, y, z ∈ R.

(iii) We have

(4.6) |arg(λ)| < π

6
.

Proof. (i)=⇒(ii) is trivial.
(ii)=⇒(iii). Let λ be an eigenvalue of a sign symmetric 3 × 3 matrix A of the form
(4.5). If λ is real then, since A is a Q-matrix, it follows by Theorem 3.1 that λ > 0
and (4.6) follows. If λ is non-real then A has another eigenvalue r which is real.
Furthermore, by Theorem 3.1 we have r > 0. Our claim now follows from Theorem
3.9 and Corollary 4.3.

(iii)=⇒(i). Assume that (4.6) holds. If λ is real, then the matrix λI3 satisfies our
requirements. If λ is non-real, then let b > 0 be such that |arg(λ− b)| = π

6 . Since the
spectrum of I3 − C3 is

{
0,
√
3 ei π

6 ,
√
3 e−i π

6
}
, it follows that λ is an eigenvalue of the

Q-matrix |λ−b|√
3
(I3 − C3) + bI3 =

(
|λ−b|√

3
+ b

)
I3 − |λ−b|√

3
C3, which, by Corollary 2.12,

is sign symmetric.

In the sequel we use the following completion result from [6].

Proposition 4.7. ([6, Proposition 1]) Let z be a non-real complex number with a

negative real part. Then the set


z, z, |z|, . . . , |z|︸ ︷︷ ︸

m

)


 is a spectrum of a Q-matrix (that

is, the set has positive elementary symmetric functions) whenever m > 2 |Re(z)|
|z|−|Re(z)| .

The following is an interesting application of Theorem 3.9 and Proposition 4.7.

Theorem 4.8. Let λ be a nonzero complex number. The following are equivalent:
(i) There exists a positive number r and a nonnegative number M such for every non-
negative integer m, m ≥ M , the matrix C(λ, r)⊕diag(|λ|, . . . , |λ|︸ ︷︷ ︸

m

) is a sign symmetric

Q-matrix.
(ii) We have

|arg(λ)| < π

6
or π > |arg(λ)| ≥ 2π

3
.

Proof. (i)=⇒(ii). The sign symmetry of C(λ, r)⊕diag(|λ|, . . . , |λ|︸ ︷︷ ︸
m

) yields the sign

symmetry of C(λ, r), and so by Theorem 3.9 we have |arg(λ)| < π
6 or |arg(λ)| ≥ 2π

3 .
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Since λ is a nonzero eigenvalue of a Q-matrix, it follows from Theorem 3.1 that we
also have π > |arg(λ)|.
(ii)=⇒(i). By Theorem 3.9 there exists a positive number r such that C(λ, r) is a
sign symmetric matrix. If |arg(λ)| < π

6 , then C(λ, r) is also a Q-matrix, and the
implication follows with M = 0. If π > |arg(λ)| ≥ 2π

3 then, by Proposition 4.7, the
set

{
λ, λ, r

}
can be completed to be a spectrum of a Q-matrix by adding to it m

copies of |λ|, where m > M = 2 |Re(λ)|
|λ|−|Re(λ)| . The implication follows.

Remark 4.9. It follows from Theorem 4.8 that a sign-symmetric Q-matrix is not
necessarily stable. This shows a difference between P -matrices and Q-matrices, since
sign symmetric P -matrices are proven by Carlson [1] to be stable. In fact, (1.1) is an
example of a matrix which is not stable although all of its powers are sign-symmetric
Q-matrices.

If in Theorem 4.8 we replace “Q-matrix” by “QM -matrix”, we obtain the follow-
ing.

Theorem 4.10. Let λ be a nonzero complex number. The following are equiva-
lent:
(i) There exists a positive number r and a nonnegative number M such for every non-
negative integer m, m ≥ M , the matrix C(λ, r)⊕diag(|λ|, . . . , |λ|︸ ︷︷ ︸

m

) is a sign symmetric

QM -matrix.
(ii) λ is an odd root of a positive number, satisfying

|arg(λ)| < π

6
or π > |arg(λ)| ≥ 2π

3
.

Proof. (i)=⇒(ii). In view of the corresponding implication in Theorem 4.8, all
we have to show is that λ is an odd root of a positive number. Since, by Theorem
3.1, every eigenvalue µ of an n× n Q-matrix A satisfies |arg(µ)| ≤ (n−1)π

n , and since
by Kronecker’s theorem, e.g. [5, Theorem 4.38, p. 375], every complex number whose
argument is an irrational multiple of π has some power with argument close to π as
much as we wish, it follows that every eigenvalue λ of a QM -matrix (of any order) has
an argument which is a rational multiple of π. Furthermore, λ cannot be an even root
of a positive number, since then it would have a power which is a negative number.
It thus follows that λ must be an odd root of a positive number.

(ii)=⇒(i). By Theorem 3.9 there exists a positive number r such that C(λ, r) is a
sign symmetric matrix. Since λ is an odd root of a positive number, it follows that all
powers of λ are either positive numbers or non-real complex numbers. By Proposition

4.7, the set


λ, λ, r, |λ|, . . . , |λ|︸ ︷︷ ︸

m

)


 is a spectrum of a QM -matrix whenever

m > M = max
k=1,...,s−1

2 |Re(λk)|
|λ|k − |Re(λk)| ,
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where s is the smallest positive integer such that λs is a positive number. The assertion
follows.

Our aim now is to show that for every positive integer n there exists a sign
symmetric QM -matrix A such that Ak is a sign symmetric P -matrix for all k ≤ n
but not all the eigenvalues of A are positive real numbers. We use the following
corollary to Theorem 3.22.

Theorem 4.11. Let λ be a non-real complex number, and let n be a positive
integer. The following are equivalent:
(i) There exists a nonnegative number R such that for every r > R the matrices
C(λ, r)k , k = 1, . . . , n, are all sign symmetric.
(ii) We have

(4.12) |arg(λ)| < π

6n
or |arg(−λ)| ≤ π

6n
.

Proof. (i)=⇒(ii). By Theorem 3.22 we have

|arg(λ)| < π

6
or |arg(−λ)| ≤ π

6
.

Assume first that

|arg(λ)| < π

6
.

Without loss of generality we may assume that arg(λ) ≥ 0, and so

(4.13) 0 ≤ arg(λ) <
π

6
.

If n = 1, then there is nothing to prove. So, we assume that n > 1 and we shall show
that

(4.14) arg(λ) <
π

6n
.

Assume to the contrary that

(4.15) arg(λ) ≥ π

6n
.

In view of (4.13) and (4.15), let k be the minimal positive integer, 1 ≤ k < n, such
that

(4.16)
π

6(k + 1)
≤ arg(λ) <

π

6k
.

The eigenvalue λk+1 of the matrix C(λ, r)k+1 thus satisfies

π

6
≤ (k + 1)arg(λ) = arg(λk+1).
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Since the matrix C(λ, r)k+1 is sign symmetric for every r > R, it follows from Theorem
3.22 that we necessarily have

(4.17) (k + 1)arg(λ) = arg(λk+1) ≥ 5π
6

.

Note that by (4.16) we have

(4.18) k arg(λ) <
π

6
.

It now follows from (4.17) and (4.18) that arg(λ) > 2π
3 , in contradiction to (4.13).

Our assumption that (4.15) holds is thus false, and so we have (4.14).

Assume now that

|arg(−λ)| ≤ π

6
.

Without loss of generality we may assume that arg(−λ) ≥ 0, and so

(4.19) 0 ≤ arg(−λ) ≤ π

6
.

If n = 1 then there is nothing to prove. So, we assume that n > 1 and we shall show
in a very similar manner to what we did above that

(4.20) arg(−λ) ≤ π

6n
.

Assume to the contrary that

(4.21) arg(−λ) >
π

6n
.

In view of (4.19) and (4.21), let k be the minimal positive integer, 1 ≤ k < n, such
that

(4.22)
π

6(k + 1)
< arg(−λ) ≤ π

6k
.

The eigenvalue (−λ)k+1 of the matrix (−C(λ, r))k+1 thus satisfies

π

6
< (k + 1)arg(−λ) = arg((−λ)k+1).

As is observed in Remark 3.8, the matrix (−C(λ, r))k+1 is either C((−λ)k+1, (−r)k+1)
or

(
C((−λ)k+1, (−r)k+1)

)T . Since it is sign symmetric for every r > R, it follows from
Theorem 3.23 that we necessarily have

(4.23) (k + 1)arg(−λ) = arg((−λ)k+1) >
5π
6

.
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Note that by (4.22) we have

(4.24) k arg(−λ) ≤ π

6
.

It now follows from (4.23) and (4.24) that arg(−λ) > 2π
3 , in contradiction to (4.19).

Our assumption that (4.21) holds is thus false, and so we have (4.20).

(ii)=⇒(i) follows immediately by Theorem 3.22.
Lemma 4.25. A 3 × 3 circulant matrix is a P -matrix if and only if it is a

Q-matrix.

Proof. The principal minors of a 3× 3 circulant matrix of the same order are all
equal. Therefore, their sum is positive if and only if each one is positive.

Theorem 4.26. Let λ be a nonzero complex number and let n be a positive
integer. The following are equivalent:
(i) There exist nonnegative numbers R and M such that for every r > R and for
every nonnegative integer m, m ≥ M , the matrix A = C(λ, r) ⊕ diag(|λ|, . . . , |λ|︸ ︷︷ ︸

m

)

is a QM -matrix. Furthermore, the matrices Ak are sign symmetric P -matrices for
k = 1, . . . , n.
(ii) λ is an odd root of a positive number, satisfying |arg(λ)| < π

6n .

Proof. (i)=⇒(ii). Note that if Ak is sign symmetric, then (C(λ, r))k is sign
symmetric. By Theorem 4.11 we have (4.12). Since λ is an eigenvalue of the P -
matrix A, it follows by Theorem 3.1 that |arg(−λ)| > π

n , and together with (4.12) we
have |arg(λ)| < π

6n . The fact that λ is an odd root of a positive number follows from
Theorem 4.10.

(ii)=⇒(i). By Theorem 4.11, there exists a nonnegative number R such that for every
r > R the matrices C(λ, r)k , k = 1, . . . , n, are all sign symmetric. Note that the
matrices C(λ, r)k, k = 1, . . . , n, are also Q-matrices, since their eigenvalues are the
positive number rk and the conjugate pair λk, λ k, where |arg(λk)| < kπ

6n ≤ π
6 . By

Lemma 4.25 it follows that these matrices are P -matrices as well. By Proposition 4.7,

the set


λ, λ, r, |λ|, . . . , |λ|︸ ︷︷ ︸

m

)


 is a spectrum of a QM -matrix whenever

m > M = max
k=1,...,s−1

2 |Re(λk)|
|λ|k − |Re(λk)| ,

where s is the smallest positive integer such that λs is a positive number. The proof
of the implication is thus complete.

5. Open problems. The class of sign symmetric matrices has not been studied
extensively. In this section we outline some fundamental questions regarding this class
to be investigated. We mainly focus on problems related to the results presented in
the previous sections.
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The first problem refers to efficient characterization of sign symmetric matrices.
A question that can be raised about sign symmetric matrices is to find some “nice”
criterion to determine whether a matrix belongs to this class. In [7] the following
theorem was proven: A matrix A is sign symmetric if and only if for every positive
diagonal matrix D, the matrix (DA)2 is a P0-matrix. This criterion is, however, very
hard to check, especially if the matrix is not sparse. Thus, we pose

Problem 5.1. Find a “nice” efficient criterion to determine whether a given
matrix is sign symmetric.

In view of the study in Section 2, in which we characterized those complex num-
bers that can serve as eigenvalues of sign symmetric 3× 3 matrices, we pose

Problem 5.2. For a general positive integer n, characterize those complex num-
bers that serve as eigenvalues of sign symmetric n× n matrices.

Similar questions can be asked regarding sign symmetric matrices having addi-
tional properties. For example, one may ask

Problem 5.3. Characterize those complex numbers that serve as eigenvalues of
sign symmetric P -matrices (or Q-matrices, or PM -matrices, or QM -matrices).

Note that in the case of P-matrices, Carlson [1] proved that an eigenvalue λ of
a sign symmetric P -matrix satisfies |arg(λ)| < π

2 . We even showed in Corollary 4.1
that

(5.4) |arg(λ)| ≤ (n− 1)π
2n

.

However, even in the case n = 3 we do not know whether every number λ satisfying
(5.4) belongs to the spectrum of some sign symmetric n× n P-matrix.

Another question related to our results is the following. In Section 2 we formulated
and proved a simple criterion for (anti-) sign symmetry of shifted basic circulant
permutation matrices, which form a subclass of the greater class of circulant matrices.
In Theorem 4.4 we showed that for matrices of order 3, belonging to the spectrum of
a circulant sign symmetric Q-matrix is equivalent to being in the spectrum of some
shifted basic circulant permutation sign symmetric Q-matrix. This leads us to ask
whether our results in Section 2 can be generalized to general circulant matrices. We
pose

Question 5.5. What is the relation, in general, between the spectra of circulant
matrices and the spectra of shifted basic circulant permutation matrices?
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