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A VARIANT ON THE GRAPH PARAMETERS OF COLIN DE
VERDIÈRE: IMPLICATIONS TO THE MINIMUM RANK OF

GRAPHS∗
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Abstract. For a given undirected graph G, the minimum rank of G is defined to be the smallest
possible rank over all real symmetric matrices A whose (i, j)th entry is nonzero whenever i �= j and
{i, j} is an edge in G. Building upon recent work involving maximal coranks (or nullities) of certain
symmetric matrices associated with a graph, a new parameter ξ is introduced that is based on the
corank of a different but related class of symmetric matrices. For this new parameter some properties
analogous to the ones possessed by the existing parameters are verified. In addition, an attempt is
made to apply these properties associated with ξ to learn more about the minimum rank of graphs
– the original motivation.

Key words. Graphs, Minimum rank, Graph minor, Corank, Strong Arnold property, Symmetric
matrices.

AMS subject classifications. 15A18, 05C50.

1. Introduction. Recent work and subsequent results have fueled interest in
important areas such as spectral graph theory and certain types of inverse eigenvalue
problems. Of particular interest here is to bring together some of the pioneering work
of Y. Colin de Verdière (specifically his parameter related to planarity of graphs) and
the minimum rank of graphs.

All matrices discussed in this paper are real and symmetric. If A ∈Mn is a fixed
symmetric matrix, the graph of A denoted by G(A), has {1, ..., n} as vertices, and as
edges the unordered pairs {i, j} such that aij �= 0 with i �= j. Graphs G of the form
G = G(A) do not have loops or multiple edges, and the diagonal of A is ignored in
the determination of G(A). Similarly, for a given graph G, we let

S(G) = {A ∈Mn | A = AT, G(A) = G}.

Finally, for any symmetric matrix A ∈Mn, we let SA = S(G(A)).
Suppose that G is a graph on n vertices. Then the minimum rank of G is given

by

mr(G) = min
A∈S(G)

rankA.
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It is not difficult to verify that mr(G) = n −M(G), where M(G) is the maximum
multiplicity of G, and is defined to be

M(G) = max
A∈S(G)

{multA(λ) : λ ∈ σ(A)}.

Furthermore it is easy to see that for any graph, max{corankA | A ∈ S(G)} =M(G),
where corankA is defined to be the nullity of A. Here σ(A) denotes the spectrum
of A and multA(λ) is the multiplicity of λ ∈ σ(A). Also, if W ⊂ {1, 2, . . . , n} and
A ∈Mn, then A[W ] means the principal submatrix of A whose rows and columns are
indexed byW , and A(W ) is the complementary principal submatrix obtained from A
by deleting the rows and columns indexed by W . In the special case when W = {v}
a singleton, we let A(v) = A(W ). For a fixed m × n matrix A, R(A) and Null(A)
denote the range and the null space of A, respectively.

An interesting and still rather unresolved problem is to characterize mr(G) for
a given graph G. Naturally, there have been a myriad of preliminary results, which
take on many different forms. For example, if Pn, Cn, Kn, En, denote the path on
n vertices, the cycle on n vertices, the complete graph on n vertices, and the empty
(edgeless) graph on n vertices, respectively, then

mr(Pn) = n− 1, mr(Cn) = n− 2, mr(Kn) = 1, mr(En) = 0.

Further it is well known that for any connected graph G on n vertices that mr(G) = 1
if and only if G is Kn. Fiedler [8] established that mr(G) = n− 1 if and only if G is
Pn. Barrett, van der Holst, and Loewy [4] have characterized all of the graphs on n
vertices that satisfy mr(G) = 2.

Other important work pertaining to the class of trees [11], states that mr(T ) =
n − P (T ), where P (T ) is the path cover number, namely, the minimum number of
vertex disjoint paths occurring as induced subgraphs of T , that cover all the vertices
of T . More recently, some modest extensions along these lines have been produced for
graphs beyond the class of trees. Namely, for vertex sums and edge sums of so-called
non-deficient graphs (which include trees), and for the case of unicyclic graphs, i.e.,
graphs that contain a unique cycle [2, 3].

On a related topic there has been some extremely interesting and exciting work
on spectral graph theory that is connected to certain aspects of planarity. For a
given graph, a matrix L = [lij ] ∈ S(G) is called a generalized Laplacian matrix of
G if for i �= j, lij < 0 whenever i, j are adjacent in G and lij = 0 otherwise. Colin
de Verdière introduced the parameter µ(G) associated with the nullity of certain
generalized Laplacian matrices in S(G) (see [5, 9, 10] for more specific details). The
paper [10] provides a clear exposition and survey of these results, and we will follow
much of the notation and treatment given in that paper. The actual definition of
µ(G) will be presented below.

We now turn our attention to the so-called Strong Arnold Property, which will be
shortened to SAP throughout. We will see that it plays a crucial role in monotonicity,
such as the subgraph monotonicity of µ.

We say two matrices are orthogonal if, when viewed as n2-tuples in R
n2
, they

are orthogonal under the ordinary dot product. Equivalently, B is orthogonal to A
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if and only if trace(ATB) = 0. The matrix B is orthogonal to the family of matrices
F if B is orthogonal to every matrix C ∈ F . A family we will consider frequently is
F = S(G) where G is a graph; X orthogonal to S(G) requires that every diagonal
entry of X is 0 and for every edge of G, the corresponding off-diagonal entry of X is
0. Recall that, if A = [aij ] and B = [bij ] are matrices inMn, the matrix A◦B defined
by [A ◦B]ij = aijbij is called the Hadamard product of A and B.

Definition 1.1. Let A, X be symmetric n × n matrices. We say that X fully
annihilates A if

1. AX = 0;
2. A ◦X = 0;
3. In ◦X = 0.
In other words, X fully annihilates A if X is orthogonal to SA and AX = 0.
Definition 1.2. The matrix A has the Strong Arnold Property (SAP) if the

zero matrix is the only symmetric matrix that fully annihilates A.
We begin with a basic, yet useful, observation concerning low corank.
Lemma 1.3. If corankA � 1, then A has SAP.
Proof. If corankA = 0, then A is nonsingular, and the only matrix X that

fully annihilates A is the zero matrix. Suppose now corankA = 1, and let X fully
annihilate A. Therefore, the diagonal of X is 0. Since X is symmetric, this implies
X is not a rank 1 matrix. Thus if X �= 0, then rankX � 2, and AX = 0 would imply
corankA � 2. Thus X = 0 and A has SAP.

We are now in a position to formally define the Colin de Verdière parameter,
µ(G). For a given graph G, µ(G) is defined to be the maximum multiplicity of 0 as
an eigenvalue of L, where L satisfies:

1. L ∈ S(G), and is a generalized Laplacian matrix;
2. L has exactly one negative eigenvalue (with multiplicity one);
3. L has SAP.

In other words µ(G) is the maximum corank among the matrices satisfying (1)-(3)
above. Further observe that µ(G) � M(G) = n−mr(G). Hence there is an obvious
relationship between µ(G) and mr(G).

Colin de Verdière and others ([5, 9, 10]) have shown that
• µ(G) � 1 if and only if G is a disjoint union of paths,
• µ(G) � 2 if and only if G is outerplanar,
• µ(G) � 3 if and only if G is planar,
• µ(G) � 4 if and only if G is linklessly embeddable.

A related parameter, also introduced by Colin de Verdière [6] is denoted by ν(G),
and is defined to be the maximum corank among matrices A that satisfy:

1. A ∈ S(G);
2. A is positive semidefinite;
3. A has SAP.
Properties analogous to µ(G) have been established for ν(G). For example,

ν(G) � 2 if the dual of G is outerplanar, see [6]. Furthermore, ν(G), like µ(G) is
graph minor monotone – we will come back to this issue later.

One of the motivating issues for this work is an attempt to learn more about the
minimum rank of graphs by studying a variant of µ(G) and ν(G). Consequently, we
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introduce the following new parameter, which we denote by ξ(G).

Definition 1.4. For a graph G, ξ(G) is the maximum corank among matrices
A ∈ S(G) having SAP.

For a graph parameter ζ defined to be the maximum corank over a family of
matrices associated with graph G, we say A is ζ-optimal for G if A is in the family
and corankA = ζ(G).

Remark 1.5. Since for any graph G, any µ-optimal or ν-optimal matrix for G
is in S(G) and has SAP, µ(G) � ξ(G) and ν(G) � ξ(G).

In Example 3.11 we determine a graph G such that µ(G) < ξ(G) and ν(G) <
ξ(G). For motivational purposes and completeness, we give several examples and
observations on the evaluation of ξ.

Observation 1.6. ξ(G) = 1 exactly when G is a disjoint union of paths. Indeed,
if ξ(G) = 1, we have µ(G) � 1, so that G is a disjoint union of paths. On the other
hand, since M(Pn) = 1, and any corank 1 matrix has SAP, ξ(Pn) = 1. Then, the
converse will follow easily from Theorem 3.2, in which we show that ξ of a disjoint
union is the maximum value of ξ on the components.

Observation 1.7. If n > 1, ξ(Kn) = n − 1, because J , the all 1’s matrix,
is in S(Kn), has corank n − 1, and has SAP (any matrix in S(Kn) has SAP since
a matrix orthogonal to S(Kn) is necessarily 0). ξ(K1) = 1 because any corank1
matrix has SAP. Conversely, it is well known that the only connected graph having
M(G) = |G| − 1 is Kn, so (again using Theorem 3.2) ξ(G) = |G| − 1 implies G = Kn

or G = K2, the complement of K2, also denoted by E2.

Example 1.8. ξ(Cn) = 2, because M(Cn) = 2 (see for example [2, 3]) so
ξ(Cn) � 2, but Cn is not a disjoint union of paths so ξ(Cn) � 2.

The next example shows that it is possible to have a matrix A that is ξ-optimal
for graph G, and another matrix B ∈ S(G) with corankA = corankB but B does not
have SAP. It also illustrates how computations to establish SAP (or find a matrix X
showing failure to have SAP) can be performed.

�

3
�

1
�

4

�
5

�
2

�
6

Fig. 1.1. A graph with B ∈ S(G), corankB = ξ(G), but B does not have SAP

Example 1.9. Let G be the graph in Figure 1.1. Since G is a tree, we can easily
compute the maximum corank possible for a matrix in S(G): M(G) = P (G) = 2.
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Let

A =




1 2 1 1 0 0
2 8 0 0 −3 1
1 0 0 0 0 0
1 0 0 0 0 0
0 −3 0 0 1 0
0 1 0 0 0 −1



; B =




1 2 1 1 0 0
2 8 0 0 −3 1
1 0 0 0 0 0
1 0 0 0 0 0
0 −3 0 0 0 0
0 1 0 0 0 0



.

Clearly A,B ∈ S(G), and direct computation shows corankA = corankB = 2. The
matrix

X =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 − 1

3 −1
0 0 0 0 1

3 1
0 0 − 1

3
1
3 0 0

0 0 −1 1 0 0




fully annihilates B, so that B does not have SAP. To show A does have SAP (and thus
is ξ-optimal for G), compute AX for an arbitrary symmetric matrix X orthogonal to
S(G). An examination of the last two columns of AX shows x15 = x16 = x56 = 0.
The second, third and fourth entries of the first row are x23+x24, 2x23+x34, 2x24+x34,
forcing x23 = x24 = x34 = 0. After substituting these values, we see from the third
and fourth columns that x35 = x36 = x45 = x46 = 0. In other words, X = 0.

Example 1.10. If G is regular of degree |G| − 2, then ξ(G) = M(G), since any
matrix A ∈ S(G) has SAP (if X is orthogonal to S(G), at most one entry in any row
is nonzero, which implies easily X = 0).

Example 1.11. If T is a tree that is not a path, then ξ(T ) = 2. This will be
proved in Theorem 3.7.

Example 1.12. Let Kp,q denote the complete bipartite graph on sets of p and q
vertices, 1 � p � q. Observe that ξ(K1,1) = ξ(P2) = 1, and that ξ(K1,2) = ξ(P3) = 1.
If q � 3, then ξ(Kp,q) = p + 1, as will be proved in Corollary 2.8, while ξ(K2,2) =
ξ(C4) = 2.

The tools we use to exploit SAP come from manifold theory. As in [10], let
M1, . . . ,Mk be open manifolds embedded in R

d, and let x be a point in their intersec-
tion. We say M1, . . . ,Mk intersect transversally at x if their normal spaces at x are
independent. That is, if ni is orthogonal to Mi for i = 1, . . . , k and n1 + · · ·+nk = 0,
then ni = 0 for all i = 1, . . . , k. A smooth family of manifolds M(t) in R

d is defined
by a smooth function f :U × (−1, 1)→ R

d, where U is an open set in R
s(s � d− 1),

and for each −1 < t < 1, the function f(·, t) is a diffeomorphism between U and the
manifold M(t).

For a given n× n matrix A, let RA be the set of all n× n matrices B such that
rankB = rankA. The next lemma is from [10].

Lemma 1.13. The matrix A has SAP if and only if the manifolds RA and SA

intersect transversally at A.
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The next lemma is a slightly simplified version Lemma 2.1 of [10].
Lemma 1.14. Let M1(t), . . . ,Mk(t) be smooth families of manifolds in R

d and
assume that M1(0), . . . ,Mk(0) intersect transversally at x. Then there exists ε >
0 such that for any t such that |t| < ε, the manifolds M1(t), . . . ,Mk(t) intersect
transversally at a point x(t) so that x(0) = x and x(t) depends continuously on t.

Lemma 1.15. [10, Cor. 2.2] Assume that M1, . . . ,Mk are manifolds in R
d that

intersect transversally at x, and assume that they have a common tangent vector v at
x with ‖v‖ = 1. Then for every ε > 0 there exists a point x′ �= x such that M1, . . . ,Mk

intersect transversally at x′, and∥∥∥∥ (x− x′)
‖x− x′‖ − v

∥∥∥∥ < ε.
In Section 2 we establish a graph monotonicity property for ξ, which is also

possessed by both µ and ν. In Section 3, from the results in Section 2, we build up
many useful tools and facts about ξ and use them to learn more about ξ, and apply
these results to mr(G).

2. Minor Monotonicity and Consequences. Following the previous works
of Colin de Verdière as described in [10], we prove that the parameter introduced
here, ξ, is also graph minor monotone. We begin with a preliminary result, which
also follows from the results in Section 3.

Observation 2.1. ξ is monotone for deletion of an isolated vertex, i.e., if G′ is
obtained from G by deleting an isolated vertex of G, then ξ(G′) � ξ(G).

Proof. Let G′ be obtained from G by deleting an isolated vertex v of G. Choose a
ξ-optimal matrix A′ for G′. It is sufficient to construct a matrix A ∈ S(G) such that
corankA = corankA′ and A has SAP, for then ξ(G) � corankA = corankA′ = ξ(G′).
Let A be the matrix obtained from A′ by adding (in position v) a row and column
consisting of 0s except Av,v = 1. Then clearly A ∈ S(G), corankA = corankA′, and
a simple computation shows A has SAP.

Theorem 2.2. ξ is edge deletion monotone, i.e., if G′ is obtained from G by
deleting an edge of G, then ξ(G′) � ξ(G).

Proof. Let G′ be obtained from G by deleting edge {u,w}. Proceeding as in
Observation 2.1, we choose a ξ-optimal matrix A′ for G′ and construct the required
matrix A ∈ S(G). Since A′ has SAP, the two manifolds RA′ and SA′ intersect
transversally at A′. Let S(t) be the manifold obtained from SA′ by replacing (in each
matrix in SA′) the 0s in positions (u,w) and (w, u) by t. Let R(t) = RA′ . Then by
Lemma 1.14, for a sufficiently small positive t, R(t) and S(t) intersect transversally
at A = A(t). Thus A has SAP. Since A ∈ R(t) = RA′ , we have corankA = corankA′,
and since A ∈ S(t), A ∈ S(G).

Corollary 2.3. ξ is subgraph monotone, i.e., if G′ is a subgraph of G, then
ξ(G′) � ξ(G).

Recall that for a given edge e = {u, v} of G we say contract e in G to mean delete
e from G, identify its ends u, v in such a way that the resulting vertex is adjacent
to exactly the vertices that were originally adjacent to u or v. A contraction of G is
then defined as any graph obtained from G by contracting an edge.
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Theorem 2.4. ξ is contraction monotone, i.e., if G′ is obtained from G by
contracting an edge, then ξ(G′) � ξ(G).

Proof. Let |G| = n, suppose {1, 2} ∈ E(G), and let G′ be obtained from G by
contracting {1, 2} (call this new vertex v and place it first in order of the vertices
of G′). If vertex 1 is adjacent only to vertex 2, then the result follows by subgraph
monotonicity. So we may assume 1 is adjacent to at least one vertex in addition to 2.
Renumber if necessary so that vertex 1 is adjacent exactly to the vertices 2, 3, . . . , r
(r � 3). By the edge monotonicity of ξ, without loss of generality, we may assume
vertex 2 is not adjacent to any of the vertices 3, . . . , r. An n × n symmetric matrix
will be written in the following block form

B =



b11 b12 bT

1 b′T
1

b12 b22 bT
2 b′T

2

b1 b2

b′
1 b′

2

B0


 ,

where b1 ∈ R
r−2. In addition, let U be the 0-1 matrix with G(U) = G′ and Uii = 1

for each i. We then have

U =


 1 1T u′T

2

1
u′

2

U0


 ,

where 1 denotes the vector all of whose r − 2 entries are equal to 1, while u′
2 (U0) is

a suitable 0-1 vector (matrix).
We define three manifolds as follows.
• M1 is the set of n× n symmetric matrices B such that b12 = 0, b′

1 = 0 and
B(1) ◦ U = B(1), that is, G(B(1)) can be obtained from G′ by (possibly)
removing some edges.

• M2 is the set of n× n symmetric matrices B such that corankB = ξ(G′).
• M3 is the set of n× n symmetric matrices B such that rank[b1 b2] = 1.

As shown in [10],
• if B ∈ M1, the normal space of M1 at B is the set of symmetric matrices X
such that

X =




0 x12 0T x′T
1

x12 0 xT
2 x′T

2

0 x2

x′
1 x′

2

X0


 , X(1) ◦ U = 0;(2.1)

• if B ∈ M2, the normal space of M2 at B is the set of symmetric matrices Y
such that

BY = 0;(2.2)
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• if B ∈ M3, and b1 = γb2, the normal space of M3 at B is the set of
symmetric matrices Z such that

Z =




0 0 zT
1 0T

0 0 −γzT
1 0T

z1 −γz1

0 0
0


 , zT

1 b2 = 0.(2.3)

Define

P =



1 0 0T 0T

0 p22 pT
2 p′T

2

0 p2

0 p′
2

P0


 ,

where P (1) is a ξ-optimal matrix for G′. Note that rankP = 1 + rankP (1); so
corankP = ξ(G′). In addition, P is in each of the Mi’s (note that p2 �= 0, so that
P ∈ M3). As shown in [10], the three manifolds intersect transversally at P , and the
matrix

T =




0 0 pT
2 0T

0 0 0T 0T

p2 0
0 0

0




is a common tangent to all three manifolds at P . Thus, by Lemma 1.15 (or [10,
Cor. 2.2]), there is a matrix Q in the intersection of the Mi’s such that the Mi’s
intersect transversally at Q, and Q − P is “almost parallel” to T . By a judicious
choice of ε, we can ensure that Q has nonzero entries everywhere P or T has nonzero
entries. In other words we can write

Q =



q11 0 qT

1 0T

0 q22 qT
2 q′T

2

q1 q2

0 q′
2

Q0


 ,

where G(Q(1)) = G′. In particular, q2 has no zero components. Moreover, since
Q ∈ M3, there exists γ �= 0 such that q1 = γq2, so that q1 has no zero components
as well.

Let S = In − 1
γE21, and A = SQST . Easy computations show that G(A) = G,

and corankA = corankQ = ξ(G′). So it is enough to show that A has SAP. Suppose,
by way of contradiction, that there exists a nonzero matrix W that fully annihilates
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A. Then A ◦W = 0 and In ◦W = 0, so that

W =




0 0 0T w′T
1

0 0 wT
2 w′T

2

0 w2

w′
1 w′

2

W0


 .

In addition AW = 0, that is, SQSTW = 0, and since S is invertible, we can write
QSTWS = 0. Define

Y = STWS =




0 0 − 1
γw

T
2 w′T

1 − 1
γw

′T
2

0 0 wT
2 w′T

2

− 1
γw2 w2

w′
1− 1

γw
′
2 w′

2

W0


 .

If w2 �= 0, define further

Z =




0 0 − 1
γw

T
2 0T

0 0 wT
2 0T

− 1
γw2 w2

0 0
0


 ,

and X = Y − Z. By using (2.1), (2.2), and (2.3), we see that X , Y , and Z are
normal at Q to M1, M2, and M3, respectively, so that the Mi’s do not intersect
transversally at Q, which is a contradiction. On the other hand, if w2 = 0, Y would
be normal at Q to both M1 and M2, which is again a contradiction.

For a given graphG, we callH a minor of G ifH is obtained from G by a sequence
of deletions of edges, deletions of isolated vertices, and contractions of edges. We are
now in a position to state the minor monotonicity result of ξ which both µ and ν also
satisfy.

Corollary 2.5. ξ is minor monotone, i.e., if G′ is a minor of G, then ξ(G′) �
ξ(G).

As noted in [10], this implies that the Robertson-Seymour graph minor theory
applies to ξ, so that the graphsG that have the property ξ(G) � k can be characterized
by a finite set of forbidden minors. The Robertson-Seymour graph minor theorem is
an extremely powerful tool; consult the last chapter [7] for further discussion.

Using the results thus far, we continue to derive more properties of the parameter
ξ, while at the same time adding to the list of examples in which ξ can be calculated.
The first result below is a direct consequence of Corollary 2.3 and Observation 1.7.

Corollary 2.6. If Kp is a subgraph of G then ξ(G) � p− 1.
Corollary 2.7. Suppose V (G) has disjoint subsets Wi, i = 1, . . . , q such that

for all i = 1, . . . , q the subgraph of G induced by Wi is a path, and for all i �= j,
there is no edge in G between a vertex in Wi and a vertex in Wj. Then ξ(G) �
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|G| − (|W1|+ . . . + |Wq|) + 1. In particular, if G has a set of q independent vertices
(i.e., each Wi is a singleton), then ξ(G) � |G| − q + 1.

Proof. Label the vertices inWi that are the endpoints of the path induced byWi as
ui and vi (if |Wi| = 1 then ui = vi; otherwise they are distinct). Create a new graphG′

by adding the edges {vi, ui+1} for i = 1, . . . , q−1. Since there is no edge in G between
a vertex in Wi and a vertex in Wj , the subgraph H induced in G′ by

⋃q
i=1Wi is a

path on |W1|+ . . .+ |Wq| vertices, so mrH = |W1|+ . . .+ |Wq|−1. Since H is induced,
mr(H) � mr(G′), so M(G′) = |G′| −mr(G′) � |G| − (|W1|+ . . .+ |Wq|) + 1. By edge
monotonicity (Theorem 2.2), ξ(G) � ξ(G′) �M(G′) � |G|− (|W1|+ . . .+ |Wq|)+1.

Since µ(G), ν(G) � ξ(G), any graph G satisfying the hypotheses of Corollary 2.7
also has µ(G) � |G|− (|W1|+ . . .+ |Wq|)+1 and ν(G) � |G|− (|W1|+ . . .+ |Wq|)+1.

The next corollary follows from the previous one and the facts that µ(Kp,q) = p+1
for q � p � 1 and q � 3 [10], and µ(G) � ξ(G) for any graph G.

Corollary 2.8. If q � p � 1 and q � 3 then ξ(Kp,q) = p+ 1.
The next corollary is an immediate consequence of edge monotonicity. Note that

the only distinction between matrices considered when maximizing corank forM and
for ξ is SAP.

Corollary 2.9. If it is possible to add an edge to G, obtaining graph G′,
and have M(G′) < M(G) then ξ(G) < M(G), i.e., any matrix A in S(G) with
rankA = mr(G) does not have SAP.

We have seen that SAP is sufficient for edge monotonicity. In fact, SAP also
appears to be necessary for edge monotonicity; we have results for several families of
graphs G that when ξ(G) < M(G), it is possible to add an edge and reduce M . For
example, the proof of Corollary 2.7 shows how to add edges between the q independent
vertices of Kp,q to obtain a graph G with M(G) < M(Kp,q), provided q � 4. Note
that it follows from Corollary 2.8 that ξ(Kp,q) < M(Kp,q) is true exactly when q � 4.
We do not know of any examples with ξ(G) < M(G) where it is not possible to add
an edge and reduce M (see also Proposition 3.8).

3. Constructions. In this section we examine the behavior of ξ under various
constructions, such as disjoint union, vertex sum, joins, etc. In contrast to the previ-
ous section, where the results closely paralleled those for µ, and where the methods
of proof were often the same as those in [10], here the results for ξ sometimes differ
from those for µ, and in most cases even when the result is the same, the method of
proof is different. We will need numerous technical lemmas.

Lemma 3.1. Let B be the direct sum of matrices Bi, i = 1, . . . , k. Then B has
SAP if and only if at most one Bi is singular, and such Bi has SAP.

Proof. Let B have SAP, and suppose two of the Bi, say B1 and B2, are singular.
Then there exist nonzero vectors x1, x2 such that B1x1 = B2x2 = 0. Let x̂1 =
[xT

1 0 0]T and x̂2 = [0 xT
2 0]T . Then X = x̂1x̂T

2 + x̂2x̂T
1 fully annihilates B, so that

B does not have SAP. Therefore, at most one of the Bi, say B1, is singular. Suppose
now that B1 does not have SAP. Then, there exists a nonzero matrix X1 that fully

annihilates B1, so that the matrix X =
[
X1 0
0 0

]
fully annihilates B, that is, B

does not have SAP.
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Conversely, if all Bi are nonsingular, then B is nonsingular, and has SAP by
Lemma 1.3. If exactly one of the Bi, say B1, is singular and has SAP, then we

can write B =
[
B1 0
0 B′

]
, where B′ is nonsingular. Let X =

[
X11 XT

21

X21 X22

]
fully

annihilate B. Then BX = 0 implies B′X21 = B′X22 = 0, that is, X21 = X22 = 0.
Thus we have B1X11 = 0, and, finally, X11 = 0, since B1 has SAP. In other words,
X is necessarily the zero matrix, so that B has SAP.

The next theorem follows immediately from Lemma 3.1 and the monotonicity of
ξ on submatrices. The analogous result is true for µ.

Theorem 3.2. If G is not connected, and the components of G are the graphs
G1, . . . , Gk, then ξ(G) = maxk

i=1 ξ(Gi).
Lemma 3.3. Let

B =



β cT

1 cT
2 cT

3

c1 B1 0 0
c2 0 B2 0
c3 0 0 B3


 ,

and suppose Null
[
cT

i

Bi

]
�= 0 for i = 1, 2. Then B does not have SAP.

Proof. For i = 1, 2, select xi ∈ Null
[
cT

i

Bi

]
, xi �= 0. Then, the matrix

X =




0 0 0 0
0 0 x1xT

2 0
0 x2xT

1 0 0
0 0 0 0




fully annihilates B, so that B does not have SAP.

Observation 3.4. In particular, note that the condition Null
[
cT

i

Bi

]
�= 0 is

satisfied exactly when either corankBi � 2, or when corankBi = 1 and ci ∈ R(Bi).
Lemma 3.5. Let α, γ ∈ R, and consider the matrices

A =


 α bT

1 bT
2

b1 A1 0
b2 0 A2


 ; Ã1 =

[
γ bT

1

b1 A1

]
.

If A has SAP, then
i. A1 has SAP if b1 ∈ R(A1);
ii. Ã1 has SAP for each γ such that rank Ã1 > rankA1;
iii. If rankA = rankA1 + rankA2, then Ã1 has SAP for each γ.
Proof. Given X1 orthogonal to SA1 , define

X̂1 =


 0 0T 0T

0 X1 0
0 0 0
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If A1 does not have SAP, then there exists a nonzero X1 that fully annihilates
A1. If b1 ∈ R(A1), then bT

1X1 = 0, so that X̂1 fully annihilates A, that is, A does
not have SAP. This establishes (i).

Suppose Ã1 does not have SAP. Then there exists nonzero X̃1 =
[
0 yT

y X1

]
that

fully annihilates Ã1. In particular, Ã1X̃1 = 0 yields
• γyT + bT

1X1 = 0 (from the (1,2)-block)
• b1yT +A1X1 = 0 (from the (2,2)-block)

We will show that y = 0, causing these two equations to reduce to bT
1X1 = 0 and

A1X1 = 0, so that X̂1 above contradicts the hypothesis that A has SAP. If y �= 0, then
from the (2,2)-block equation multiplied by y, b1 = − 1

yT yA1X1y ∈ R(A1). Thus if
b1 /∈ R(A1), then y = 0. So now assume b1 ∈ R(A1), that is, there exists a vector u
such that b1 = A1u. Thus, the (2,2)-block equation becomes A1uyT +A1X1 = 0 and
so (uTA1u)yT + uTA1X1 = 0. From the (1,2)-block equation, γyT + uTA1X1 = 0.
Therefore (uTA1u)yT = γyT . Since rank Ã1 > rankA1 yields γ �= uTA1u, we
conclude necessarily y = 0, and if Ã1 does not have SAP, neither does A. This
establishes (ii).

To prove (iii), we first note that rankA = rankA1 + rankA2 implies b1 = A1u1,
b2 = A2u2, and α = uT

1 A1u1 + uT
2 A2u2 for suitable vectors u1,u2. In addition, by

part (ii), we only need to prove that Ã1 has SAP whenever rank Ã1 = rankA1, that

is, when Ã1 =
[
uT

1 A1u1 uT
1 A1

A1u1 A1

]
. Suppose X̃1 =

[
0 yT

1

y1 X1

]
fully annihilates Ã1.

Let

X =


 0 yT

1 0
y1 X1 −y1uT

2

0 −u2yT
1 0


 .

Clearly X is orthogonal to SA. Since Ã1X̃1 = 0, A1y1 = 0 and A1u1yT
1 +A1X1 = 0,

and then a computation shows AX = 0. Since A has SAP, X = 0. Thus X̃1 = 0 and
so Ã1 has SAP.

Lemma 3.6. Let A be a matrix in the form

A =




α bT
1 bT

2 . . . bT
k

b1 A1 0 . . . 0
b2 0 A2 . . . 0
...

...
...

. . .
...

bT
k 0 0 . . . Ak


 ,

where, for i = 1, . . . , k − 1, corankAi � corankAi+1. If A has SAP, then
1. corankA2 � 1, and, if corankA2 = 1, then b1 /∈ R(A1) or b2 /∈ R(A2);
2. corankA3 � 1, and, if corankA3 = 1, then corankA1 = corankA2 = 1, and

bi /∈ R(Ai) for i = 1, 2, 3;
3. corankAi = 0 for i � 4.
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Proof. By Observation 3.4, if corankA2 � 2, as well if corankA2 = 1 and

b1 ∈ R(A1), b2 ∈ R(A2), we have Null
[
bT

i

Ai

]
�= 0, i = 1, 2. Lemma 3.3 implies that

A does not have SAP. This establishes (1).
Concerning (2), corankA3 � 1 follows by (1). If corankA3 = 1 and corankA1 > 1,

then Observation 3.4 and Lemma 3.3, using B1 = A1 and B2 = A2 ⊕ A3, shows
that A does not have SAP. Finally, if, for some i = 1, 2, 3, bi ∈ R(Ai), then again
Observation 3.4 and Lemma 3.3, using B1 = Ai, B2 =

⊕3
j=1,j �=i Aj , shows that A

does not have SAP.
Finally, if corankA4 � 1, it suffices to define B1 = A1 ⊕ A2, B2 = A3 ⊕ A4 and

proceed as in the previous cases, to conclude again that A does not have SAP.
Lemma 3.6 has immediate application to computing ξ for trees.
Theorem 3.7. If T is a tree that is not a path, then ξ(T ) = 2.
Proof. Let T be a tree that is not a path, so ξ(T ) � 2. Let A be a ξ-optimal

matrix for T . Since corankA � 2, by the Parter-Wiener Theorem [12], there is a
vertex v such that corankA(v) = corankA + 1, and 0 is an eigenvalue of at least 3
principal submatrices Ai corresponding to components of T − v. Then by Lemma 3.6
(renumbering the vertices if necessary so v = 1 and the coranks are ordered as in the
Lemma 3.6), the maximum possible number of singular Ai is 3, and the corank of each
of these principal submatrices is 1, i.e., corankA(v) = 3. Thus ξ(T ) = corankA = 2.

Picking up from the remarks following Corollary 2.9, we now establish for trees
that if there is a gap between ξ and M , then an edge can be added to the tree to
reduce M .

Proposition 3.8. If T is a tree and ξ(T ) < M(T ), then we can add an edge to
T to obtain graph G such that M(G) < M(T )

Proof. Let T be tree such that ξ(T ) < M(T ) = h. Then T is not a path,
so ξ(T ) = 2 < M(T ) = P (T ). Choose a minimal path cover P for T , and let
P1, P2, P3 ∈ P . We claim that we can choose i, j ∈ {1, 2, 3} such that no vertices of Pi

are adjacent to vertices of Pj . Suppose, by way of contradiction, that there exist (not
necessarily distinct) vertices ui, vi ∈ Pi, i = 1, 2, 3, such that v1u2, v2u3, and v3u1 are
edges in T . Then T would contain the cycle u1v1u2v2u3v3u1, that is, a contradiction.
Therefore we can assume that the vertices of P1 are not adjacent to the vertices of
P2. Join by an edge e an endpoint of P1 to an endpoint of P2 to obtain a new path
P . Thus, P, P3, . . . , Ph provide a path covering of G = T + e. Since G is unicyclic,
[3], M(G) � P (G) � h− 1 < P (T ) =M(T ).

We are now in a position to state and prove an important result for calculating ξ
for vertex sums of graphs. Let G1, . . . , Gk be disjoint graphs. For each i, we select a
vertex vi ∈ V (Gi) and join all Gi’s by identifying all vi’s as a unique vertex v. The
resulting graph is called the vertex-sum at v of the graphs G1, . . . , Gk.

Theorem 3.9. Let G be vertex-sum at v of graphs G1, . . . , Gk. Then
k

max
i=1

ξ(Gi) � ξ(G) � k
max
i=1

ξ(Gi) + 1.

Proof. By subgraph monotonicity, ξ(G) � maxk
i=1 ξ(Gi). Again by subgraph

monotonicity we may assume each of the Gi − v is connected. Let A be ξ-optimal for
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G. Renumber the vertices of G and the order of the Gi so that v = 1 and A can be
written as

A =




α bT
1 bT

2 . . . bT
k

b1 A1 0 . . . 0
b2 0 A2 . . . 0
...

...
...

. . .
...

bT
k 0 0 . . . Ak


(3.1)

where, for each i, G(Ai) = Gi − v, and corankAi � corankAi+1. This renumbering
process does not affect SAP.

By [13], rankA =
∑k

i=1 rankAi + δ with δ ∈ {0, 1, 2}, and δ = 2 if and only if
there is an i such that bi /∈ R(Ai). Therefore, corankA =

∑k
i=1 corankAi + 1− δ.

Case 1: corankA3 = 1. By Lemma 3.6, corankA1 = corankA2 = 1, and bi /∈
R(Ai) for i = 1, 2, 3. So in this case δ = 2, and ξ(G) = corankA =

∑3
i=1 corankAi +

1− 2 = 2 � ξ(G1) + 1.
Case 2: corankA3 = 0, and b1 /∈ R(A1) or b2 /∈ R(A2). Again, δ = 2. By

Lemma 3.6, corankA2 � 1. Define Ã1 =
[
γ bT

1

b1 A1

]
, where γ is any real number

such that rank Ã1 > rankA1. By Lemma 3.5, Ã1 has SAP. So

ξ(G) = corankA(3.2)
= corankA1 + corankA2 − 1(3.3)
� corankA1(3.4)

� corank Ã1 + 1(3.5)
� ξ(G1) + 1.(3.6)

Case 3: corankA3 = 0, and b1 ∈ R(A1), b2 ∈ R(A2). From Lemma 3.6,
corankAi = 0 for i � 2, and so bi ∈ R(Ai) for all i. In particular, δ � 1, and

b1 = A1u1 for some vector u1. Let Ã1 =
[
γ bT

1

b1 A1

]
, γ ∈ R. If δ = 1, we choose

γ �= uT
1 A1u1, so that rank Ã1 = rankA1 + 1, and Ã1 has SAP by Lemma 3.5ii. On

the other hand, if δ = 0, we choose γ = uT
1 A1u1, so that rank Ã1 = rankA1, and Ã1

has SAP by Lemma 3.5iii. Note that, in any case, corank Ã1 = corankA1 + 1 − δ.
Therefore

ξ(G) = corankA
= corankA1 + 1− δ
= corank Ã1

� ξ(G1).

Observation 3.10. If ξ(G) = maxk
i=1 ξ(Gi) + 1 and A is ξ-optimal A, then,

with regard to (3.1), if we let bT = (bT
1 , . . . ,b

T
k ), A

′ =
⊕k

i=1 Ai, we have b /∈ R(A′).
Furthermore, either
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1. G is a generalized star, namely, all Gi are paths, or,
2.a. corankA1 > 2;

b. corankA2 = 1;
c. corankAi = 0 for i = 3, ..., k;
d. b1 /∈ R(A1);
e. ξ(G1 − v) < M(G1 − v).

Proof. From the proof of Theorem 3.9, ξ(G) = maxk
i=1 ξ(Gi) + 1 occurs only in

Case 1 and in Case 2, and in both cases δ = 2, that is, b /∈ R(A′). In addition, in
Case 1 we obtained ξ(G) = 2, so that ξ(Gi) = 1 for each i. Therefore all Gi are paths,
and G is a generalized star. In Case 2, we showed corankAi = 0 for i � 3. Moreover,
in (3.2-3.6) we have all equalities. In particular, equality in (3.4) yields corankA2 = 1,
while equality in (3.5) yields rank Ã1 = rankA1 + 2, so that b1 /∈ R(A1). Finally,
from (3.6), we get M(G1 − v) � corankA1 > corank Ã1 = ξ(G1) � ξ(G1 − v) .

Clearly a generalized star that is not a path realizes ξ(G) = maxk
i=1 ξ(Gi) + 1.

The next example also has ξ(G) = maxk
i=1 ξ(Gi) + 1, in addition to ξ(G) > µ(G) and

ξ(G) > ν(G).
Example 3.11. Let G be the graph shown in Figure 3.1. G is the vertex sum of

�3 �6

�

4

�2 �5

�

1

�7

✧
✧

✧
✧

✧
✧❜

❜
❜

❜
❜

❜

✧
✧

✧
❜

❜
❜

Fig. 3.1. A vertex sum G with ξ(G) greater than the maximum of ξ on vertex summands

G1 = 〈1, 2, 3, 4, 5, 6〉 and G2 = 〈1, 7〉. Here 〈W 〉 indicates the subgraph of G induced
by the vertices W ⊂ {1, 2, . . . , n}. Then ξ(G) = 3, because the matrix

A =




0 1 0 0 1 0 1
1 1 1 1 0 0 0
0 1 1 1 0 0 0
0 1 1 2 1 1 0
1 0 0 1 1 1 0
0 0 0 1 1 1 0
1 0 0 0 0 0 0




has corank 3 and SAP. Moreover, ξ(G1) = 2 because G1 has an induced path of
length 4, and ξ(G2) = 1. Thus ξ(G) = max ξ(Gi) + 1. Now µ(G) = 2 because G is
outerplanar. In addition we establish that ν(G) = 2. Suppose B ∈ S(G) has SAP
and corankB = 3. Let b = (b12, b13, . . . , b17)T . Since B is ξ-optimal and ξ(G) =
max ξ(Gi) + 1, b /∈ R(B[2, 3, 4, 5, 6, 7]), so rankB[2, 3, 4, 5, 6, 7] = rankB − 2 = 2.
Since mr(〈2, 3, 4, 5, 6〉) = 2, this forces b77 = 0. But then B[1, 7] is not positive
semi-definite, so neither is B.
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It is also interesting to contrast the behaviour of ξ and µ on clique sums. If G
is a clique sum on Ks of Gi, i = 1, . . . , k with s < maxk

i=1µ(Gi) (as is the case for a
vertex sum provided at least one Gi is not a path), then µ(G) = maxk

i=1µ(Gi) (see
[10]).

In [10, Theorem 2.7] it is shown that µ(G) � µ(G−v)+1, where v is an arbitrary
vertex in G, and if v is connected to every other vertex and G − v is connected of
order greater than 1, then equality holds. Do the same results hold for ξ? We have
some partial results.

Lemma 3.12. If G is connected, |G| > 1, and G′ is obtained by joining v to each
vertex of G, then ξ(G′) � ξ(G) + 1.

Proof. Let the new vertex be n. Choose a matrix A that is ξ-optimal for G,
so A ∈ S(G), corankA = ξ(G) and A has SAP. Since G is connected and |G| > 1,
there is no column of A consisting entirely of 0’s. So there is a b ∈ R(A) such that
every entry bi is nonzero. Since b ∈ R(A), there exists u ∈ R

n−1 such that b = Au.

Let A′ =
[

A Au
uTA uTAu

]
. Then rankA′ = rankA so corankA′ = corankA + 1.

Since bi �= 0 for all i, A′ ∈ S(G′). Let X ′ fully annihilate A′. Then X ′ =
[
X 0
0T 0

]
(since n is joined to every other vertex). In addition, A′X ′ = 0 implies AX = 0,
and since A has SAP, we conclude X = 0, that is, X ′ = 0. Thus A′ has SAP, so
ξ(G′) � corankA′ = corankA+ 1 = ξ(G) + 1.

Lemma 3.13. If there exists a ξ-optimal A for G with b ∈ R(A(v)), then ξ(G) �
ξ(G− v) + 1.

Proof. Without loss of generality, v = 1. Let A be ξ-optimal for G with b ∈ R(A0)

where A =
[
α bT

b A0

]
. Then by Lemma 3.5, A0 has SAP. rank A0 � rankA, so

corankA0 � corankA− 1 = ξ(G)− 1. Since A0 has SAP, ξ(G− v) � corankA0.
A graph G is called vertex transitive if, for any two distinct vertices u, v of G,

there is an automorphism (that is, a bijection from V to V that preserves adjacency)
of G mapping u to v.

Corollary 3.14. If G is vertex transitive, then ξ(G) ≤ ξ(G− v) + 1.
Proof. Without loss of generality, v = 1. Let G be vertex transitive and let A be

ξ-optimal for G. Since A is singular, there is a row, say k, that is a linear combination
of other rows of A. Since G is vertex transitive, there is a graph automorphism ψ
such that ψ(1) = k. Let Pψ be the permutation matrix for ψ, i.e., row i of Pψ is row
ψ(i) of the identity matrix. Then since ψ is an automorphism of G, PψAP

T
ψ ∈ S(G)

and row 1 of PψAP
T
ψ is a linear combination of the other rows. Thus by Lemma 3.13,

ξ(G) � ξ(G− v) + 1.
If G and H are two graphs, then the join of G and H , denoted by G ∨ H , is

the graph obtained from the disjoint union of G and H by adding an edge from each
vertex of G to each vertex of H .

Lemma 3.15. If G = G1 ∨ G2, A ∈ S(G) is partitioned as
[
A1 B
BT A2

]
with

Ai ∈ S(Gi), i = 1, 2, and Ai has SAP for i = 1, 2, then A has SAP.
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Proof. Suppose X fully annihilates A. Then X has the form X =
[
X1 0
0T X2

]
,

and AX =
[
A1X1 BX2

BTX1 A2X2

]
= 0, so that AiXi = 0 for i = 1, 2. Since Ai has SAP,

Xi = 0 and A has SAP.

Theorem 3.16. If G is connected, |G| > 1 and ξ(G) =M(G), then

ξ(G ∨Kr) = ξ(G) + r =M(G ∨Kr).

Proof. The graph G ∨Kr can be obtained from G by adjoining one vertex at a
time to all vertices of previous graph. By Lemma 3.12, ξ(G ∨Kr) � ξ(G) + r. Since
ξ(G) = M(G), ξ(G) = |G|−mr(G). Thus ξ(G) + r � ξ(G ∨ Kr) � M(G ∨ Kr) �
|G ∨Kr| −mr(G ∨Kr) � |G|+ r −mr(G) = ξ(G) + r.

Corollary 3.17. There is a graph on n vertices with minimum rank k having
n(n−1)

2 − k(k−1)
2 edges. This can be obtained as G = Pk+1 ∨Kn−k−1 or from Kn by

deleting k(k−1)
2 (specific) edges. This graph satisfies ξ(G) =M(G).
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