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Abstract.

Given a row block matrix [A, B ], this paper investigates the relations between the generalized

inverse [A, B ]− and the column block matrix

[
A−
B−

]
consisting of two generalized inverses A−

and B−. The first step of the investigation is to establish a formula for the minimal rank of the

difference [A, B ]− −
[

A−
B−

]
, the second step is to find a necessary and sufficient condition for

[A, B ]− =

[
A−
B−

]
to hold by letting the minimal rank be zero. Seven types of generalized inverses

of matrices are taken into account.
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1. Introduction. Let Cm×n denote the set of all m×n matrices over the field of
complex numbers. The symbols A∗, r(A) and R(A) stand for the conjugate transpose,
the rank, the range (column space) and the kernel of a matrix A ∈ Cm×n, respectively;
[ A, B ] denotes a row block matrix consisting of A and B.

For a matrix A ∈ Cm×n, the Moore-Penrose inverse of A, denoted by A†, is the
unique matrix X ∈ Cn×m satisfying the four Penrose equations

(i) AXA = A,
(ii) XAX = X ,
(iii) (AX)∗ = AX ,
(iv) (XA)∗ = XA.

For simplicity, let EA = Im−AA† and FA = In−A†A. Moreover, a matrix X is called
an {i, . . . , j}-inverse of A, denoted by A(i,...,j), if it satisfies the i, . . . , jth equations.
The collection of all {i, . . . , j}-inverses of A is denoted by {A(i,...,j)}. In particular,
{1}-inverse of A is often denoted by A−. The seven frequently used generalized
inverses of A are A(1), A(1,2), A(1,3), A(1,4), A(1,2,3), A(1,2,4) and A(1,3,4), which have
been studied by many authors; see, e.g., [1, 2, 5, 11]. The general expressions of the
seven generalized inverses of A can be written as

A− = A† + FAV + WEA,(1.1)
A(1,2) = ( A† + FAV )A( A† + WEA ),(1.2)
A(1,3) = A† + FAV,(1.3)
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A(1,4) = A† + WEA,(1.4)
A(1,2,3) = A† + FAV AA†,(1.5)
A(1,2,4) = A† + A†AWEA,(1.6)
A(1,3,4) = A† + FAV EA,(1.7)

where the two matrices V and W are arbitrary; see [1]. Obviously,

{A(1,3,4)} ⊆ {A(1,3)} ⊆ {A−}, {A(1,3,4)} ⊆ {A(1,4)} ⊆ {A−},

{A(1,2,3)} ⊆ {A(1,2)} ⊆ {A−}, {A(1,2,4)} ⊆ {A(1,2)} ⊆ {A−},

{A(1,2,3)} ⊆ {A(1,3)} ⊆ {A−}, {A(1,2,4)} ⊆ {A(1,4)} ⊆ {A−}.

One of the main studies in the theory of generalized inverses is to find general-
ized inverses of block matrices and their properties. For the simplest block matrix
M = [ A, B ], where A ∈ C

m×n and B ∈ C
m×k, there have been many results on

its generalized inverses. For example, the Moore-Penrose inverse of [ A, B ]† can be
represented as

[ A, B ]† =
[

A∗( AA∗ + BB∗ )†

B∗( AA∗ + BB∗ )†

]
,(1.8)

which is derived from the equality M † = M∗(MM∗)†. Another representation of
[ A, B ]† in Mihályffy [4] is

[ A, B ]† =
[

(In + TT ∗)−1( A† − A†BS† )
T ∗(In + TT ∗)−1( A† − A†BS† ) + S†

]
,

where S = EAB and T = A†BFS . Moreover, it can easily be verified by definition
that

{[
(A − BB−A)−(Im − BB−)

B− − B−A(A − BB−A)−(Im − BB−)

]}
⊆ {[ A, B ]−},

{[
A− − A−B(B − AA−B)−(Im − AA−)

(B − AA−B)−(Im − AA−)

]}
⊆ {[ A, B ]−},

[
(EBA)†

B† − B†A(EBA)†

]
∈ {[ A, B ](1,2,4)},

[
A† − A†B(EAB)†

(EAB)†

]
∈ {[ A, B ](1,2,4)}

hold true.
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It has been shown that the rank of matrix provides a powerful tool for charac-
terizing various equalities for generalized inverses of matrices. For example, Tian [9]
established the following three equalities:

r

(
[ A, B ] − [ A, B ]

[
A†

B†

]
[ A, B ]

)
= r[ A, B ] + 2r(A∗B) − r(A) − r(B),(1.9)

r

(
[ A, B ]† −

[
A†

B†

])
= r[ AA∗B, BB∗A ],(1.10)

r

(
[ A, B ]† −

[
(EBA)†

(EAB)†

])
= r(A) + r(B) − r[ A, B ].(1.11)

Let the right-hand side of (1.9) be zero, we see that
[

A†

B†

]
∈ {[ A, B ]−} if and only

if r[ A, B ] = r(A) + r(B) − 2r(A∗B). However, the inequality r[ A, B ] ≥ r(A) +
r(B) − r(A∗B) always holds. Hence r[ A, B ] = r(A) + r(B) − 2r(A∗B) is equivalent

to A∗B = 0. Let the right-hand side of (1.10) be zero, we see that [ A, B ]† =
[

A†

B†

]

if and only if A∗B = 0. Let the right-hand side of (1.11) be zero, we see that

[ A, B ]† =
[

(EBA)†

(EAB)†

]
if and only if r[ A, B ] = r(A) + r(B). Motivated by these

results, we shall establish a variety of new rank formulas for the difference

[ A, B ](i,...,j) −
[

A(i,...,j)

B(i,...,j)

]
,

and then use the formulas to characterize the corresponding matrix equalities for
generalized inverses.

Some useful rank formulas for partitioned matrices due to Marsaglia and Styan
[3] are given in the following lemma.

Lemma 1.1. Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then

r[ A, B ] = r(A) + r[ ( Im − AA− )B ] = r(B) + r[ ( Im − BB− )A ],(1.12)

r

[
A
C

]
= r(A) + r[ C( In − A−A ) ] = r(C) + r[ A( In − C−C ) ],(1.13)

r

[
A B
C 0

]
= r(B) + r(C) + r[ ( Im − BB− )A( In − C−C ) ].(1.14)

If R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗), then

r

[
A B
C D

]
= r(A) + r( D − CA†B ).(1.15)

Applying (1.15) and A∗(A∗AA∗)†A∗ = A† (see Zlobec [12]) to a general Schur
complement D − CA†B gives the following rank formula:

r( D − CA†B ) = r

[
A∗AA∗ A∗B
CA∗ D

]
− r(A).(1.16)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 249-261, November 2005

www.math.technion.ac.il/iic/ela



ELA

252 Y. Tian

This formula can be used to find the rank of any matrix expression involving the
Moore-Penrose inverse. In fact, the equalities in (1.9), (1.10) and (1.11) are derived
from (1.16).

Because generalized inverse of a matrix is not necessarily unique, the rank of a
matrix expression involving generalized inverses of matrices may vary with respect
to the choice of the generalized inverses. Suppose f(A−

1 , . . . , A−
p ) and g(B−

1 , . . . , B−
q )

are two expressions consisting of generalized inverses of matrices. Then there are
A−

1 , . . . , A−
p , B−

1 , . . . , B−
q such that f(A−

1 , . . . , A−
p ) = g(B−

1 , . . . , B−
q ) if and only if

min
A−

1 ,..., A−
p ,B−

1 ,...,B−
q

r[ f(A−
1 , . . . , A−

p ) − g(B−
1 , . . . , B−

q ) ] = 0.

One of the simplest matrix expressions involving a generalized inverse is the Schur
complement D − CA−B. In Tian [10], a group of formulas for the extremal ranks
of the Schur complement D − CA(i,...,j)B with respect to A(i,...,j) are derived. The
following lemma presents some special cases of these formulas.

Lemma 1.2. Let A ∈ Cm×n and G ∈ Cn×m. Then

min
A−

r( A− − G ) = r( A − AGA ),(1.17)

min
A(1,2)

r( A(1,2) − G ) = max{ r( A − AGA ), r(G) + r(A) − r(GA) − r(AG) },(1.18)

min
A(1,3)

r( A(1,3) − G ) = r( A∗AG − A∗ ),(1.19)

min
A(1,4)

r( A(1,4) − G ) = r( GAA∗ − A∗ ),(1.20)

min
A(1,2,3)

r( A(1,2,3) − G ) = r(A∗AG − A∗) + r

[
A∗

G

]
− r

[
A∗

AG

]
,(1.21)

min
A(1,2,4)

r( A(1,2,4) − G ) = r( GAA∗ − A∗ ) + r[ A∗, G ] − r[ A∗, GA ],(1.22)

min
A(1,3,4)

r(A(1,3,4) − G) = r(A∗AG − A∗) + r(GAA∗ − A∗) − r(A − AGA),(1.23)

r(A† − G ) = r

[
A∗AA∗ A∗

A∗ G

]
− r(A).(1.24)

Let the right-hand sides of (1.17)–(1.24) be zero, we can obtain necessary and
sufficient conditions for G ∈ {A−}, {A(1,2)}, {A(1,3)}, {A(1,4)}, {A(1,2,3)}, {A(1,2,4)},
{A(1,3,4)} and G = A† to hold. If A and G in (1.17)–(1.24) are taken as matrix
products, matrix sums and partitioned matrices, then many valuable results can be
derived from the corresponding rank formulas.

Some other rank formulas used in the context are given below:

min
X

r( A − BXC ) = r[ A, B ] + r

[
A
C

]
− r

[
A B
C 0

]
,(1.25)

where A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n; see Tian [8]. In particular,

min
X

r( A − BX ) = r[ A, B ] − r(A) = r( B − AA†B ).(1.26)
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The formula for minimal rank of A − B1X1C1 − B2X2C2 is

min
X1, X2

r( A − B1X1C1 − B2X2C2 ) = r


 A

C1

C2


 + r[ A, B1, B2 ] + max{ r1, r2 },(1.27)

where

r1 = r

[
A B1

C2 0

]
− r

[
A B1 B2

C2 0 0

]
− r


 A B1

C1 0
C2 0


,

r2 = r

[
A B2

C1 0

]
− r

[
A B1 B2

C1 0 0

]
− r


 A B2

C1 0
C2 0


;

see Tian [6]. The following is also given [6]:

min
A−

r( CA−B ) = r

[
A B
C 0

]
− r

[
A
C

]
− r[ A, B ] + r(A).(1.28)

2. Main results. We first establish a set of rank formulas for the difference

[ A, B ](i,...,j) −
[

A†

B†

]
.

Theorem 2.1. Let A ∈ Cm×n, B ∈ Cm×k and let M = [ A, B ], G =
[

A†

B†

]
.

Then

min
M−

r( M− − G ) = r(M) + 2r(A∗B) − r(A) − r(B),(2.1)

min
M(1,2)

r( M (1,2) − G ) = r(M) + 2r(A∗B) − r(A) − r(B),(2.2)

min
M(1,3)

r( M (1,3) − G ) = r(M) + 2r(A∗B) − r(A) − r(B),(2.3)

min
M(1,4)

r( M (1,4) − G ) = r[ AA∗B, BB∗A ],(2.4)

min
M(1,2,3)

r( M (1,2,3) − G ) = r(M) + 2r(A∗B) − r(A) − r(B),(2.5)

min
M(1,2,4)

r( M (1,2,4) − G ) = r[ AA∗B, BB∗A ],(2.6)

min
M(1,3,4)

r( M (1,3,4) − G ) = r[ AA∗B, BB∗A ],(2.7)

r( M † − G ) = r[ AA∗B, BB∗A ].(2.8)

Hence

G ∈ {M−} ⇔ M † = G ⇔ A∗B = 0.(2.9)
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Proof. Applying (1.17) to the difference M− − G gives

min
M−

r( M− − G ) = r( M − MGM ),(2.10)

where

M − MGM = M − ( AA† + BB† )M = −[ BB†A, AA†B ].

It is shown in [9] that

r[ BB†A, AA†B ] = r[ A, B ] + 2r(A∗B) − r(A) − r(B).(2.11)

Substituting (2.11) into (2.10) yields (2.1). Applying (1.18) to M (1,2) − G gives

min
M(1,2)

r( M (1,2) − G ) = max{ r( M − MGM ), r(G) + r(M) − r(GM) − r(MG) }.

It is easy to verify that

r(G) = r

[
A∗

B∗

]
= r(M), r(GM) = r

([
A∗

B∗

]
[ A, B ]

)
= r(M),

r(MG) = r( AA† + BB† ) = r[ AA†, BB† ] = r(M).

Hence,

min
M(1,2)

r( M (1,2) − G ) = r( M − MGM ) = min
M−

r( M− − G ).

Applying (1.19) to M (1,3) − G gives

min
M(1,3)

r( M (1,3) − G ) = r( M∗MG − M∗ ),

where

M∗MG − M∗ =
[

A∗ + A∗BB†

B∗ + B∗AA†

]
−

[
A∗

B∗

]
=

[
A∗BB†

B∗AA†

]
= [ BB†A, AA†B ]∗.

Hence, (2.3) follows from (2.11). From (1.20)

min
M(1,4)

r( M (1,4) − G ) = r( GMM∗ − M∗ ),

where GMM∗ − M∗ =
[

A†BB∗

B†AA∗

]
. Hence

r( GMM∗ − M∗ ) = r

[
A†BB∗

B†AA∗

]
= r

[
A∗BB∗

B∗AA∗

]
= r[ AA∗B, BB∗A ],

establishing (2.4). Equalities (2.5)–(2.7) can be shown by (1.21)–(1.23), and details
are omitted. Eq.(2.8) is (1.10).
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A set of rank formulas for the difference [ A, B ]† −
[

A(i,...,j)

B(i,...,j)

]
are given below.

Theorem 2.2. Let A ∈ Cm×n and B ∈ Cm×k, and let M = [ A, B ]. Then

min
A−, B−

r

(
M † −

[
A−

B−

])
= 2r(A) + 2r(B) − 2r(M),(2.12)

min
A(1,2), B(1,2)

r

(
M † −

[
A(1,2)

B(1,2)

])
= 2r(A) + 2r(B) − 2r(M),(2.13)

min
A(1,3), B(1,3)

r

(
M † −

[
A(1,3)

B(1,3)

])
= r[ BB∗A, AA∗B ],(2.14)

min
A(1,4), B(1,4)

r

(
M † −

[
A(1,4)

B(1,4)

])
= 2r(A) + 2r(B) − 2r(M),(2.15)

min
A(1,2,3), B(1,2,3)

r

(
M † −

[
A(1,2,3)

B(1,2,3)

])
= r[ BB∗A, AA∗B ],(2.16)

min
A(1,2,4), B(1,2,4)

r

(
M † −

[
A(1,2,4)

B(1,2,4)

])
= 2r(A) + 2r(B) − 2r(M),(2.17)

min
A(1,3,4), B(1,3,4)

r

(
M † −

[
A(1,3,4)

B(1,3,4)

])
= r[ BB∗A, AA∗B ].(2.18)

Hence,
(a) There are A− (A(1,2), A(1,2,4)) and B− (B(1,2), B(1,2,4)) such that

M † =
[

A−

B−

] (
M † =

[
A(1,2)

B(1,2)

]
, M † =

[
A(1,2,4)

B(1,2,4)

])

if and only if r(M) = r(A) + r(B), i.e., R(A) ∩ R(B) = {0}.
(b) There are A(1,3) (A(1,2,3), A(1,3,4)) and B(1,3) (B(1,2,3), B(1,3,4)) such that

M † =
[

A(1,3)

B(1,3)

](
M † =

[
A(1,2,3)

B(1,2,3)

]
, M † =

[
A(1,3,4)

B(1,3,4)

])

if and only if A∗B = 0.
Proof. From (1.1)

M † −
[

A−

B−

]
= M † −

[
A† + FAV1 + W1EA

B† + FBV2 + W2EB

]
(2.19)

= M † −
[

A†

B†

]
−

[
FA 0
0 FB

][
V1

V2

]
−

[
W1EA

W2EB

]
,

where V1, W1, V2 and W2 are arbitrary. From (1.26)

min
V1, V2

r

(
M † −

[
A†

B†

]
−

[
FA 0
0 FB

][
V1

V2

]
−

[
W1EA

W2EB

])
(2.20)

= r

{[
A†A 0

0 B†B

](
M † −

[
A†

B†

]
−

[
W1EA

W2EB

])}
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= r

(
M † −

[
A†

B†

]
−

[
A†AW1EA

B†BW2EB

])

= r

(
M † −

[
A†

B†

]
−

[
A†A

0

]
W1EA −

[
0

B†B

]
W2EB

)
.

Let N =
[

A†

B†

]
, P1 =

[
A†A

0

]
and P2 =

[
0

B†B

]
. Then applying (1.27) gives

min
W1, W2

r( M † − N − P1W1EA − P2W2EB )(2.21)

= r[ M † − N, P1, P2 ] + r


 M † − N

EA

EB


 + max{r1, r2},

where

r1 = r

[
M † − N P1

EB 0

]
− r

[
M † − N P1 P2

EB 0 0

]
− r


 M † − N P1

EA 0
EB 0


,

r2 = r

[
M † − N P2

EA 0

]
− r

[
M † − N P1 P2

EA 0 0

]
− r


 M † − N P2

EA 0
EB 0


.

Substituting (1.8) into the eight partitioned matrices in (2.21) and simplifying by
(1.12), (1.13) and (1.14) give us the following results:

r[ M † − N, P1, P2 ] = r(A) + r(B), r


 M † − N

EA

EB


 = m + r(A) + r(B) − r(M),

r

[
M † − N P1

EB 0

]
= m + 2r(A) − r(M), r

[
M † − N P1 P2

EB 0 0

]
= m + r(A),

r


 M † − N P1

EA 0
EB 0


 = m + r(A), r

[
M † − N P2

EA 0

]
= m + 2r(B) − r(M),

r

[
M † − N P1 P2

EA 0 0

]
= m + r(B), r


 M † − N P2

EA 0
EA 0


 = m + r(B).

The details are quite tedious, and therefore are omitted here. Substituting these eight
results into (2.21) and then (2.21) into (2.20) yields (2.12). From (1.3)

M † −
[

A(1,3)

B(1,3)

]
= M † −

[
A† + FAV1

B† + FBV2

]
= M † −

[
A†

B†

]
−

[
FA 0
0 FB

][
V1

V2

]
,(2.22)

where V1 and V2 are arbitrary. Applying (1.26) to this expression gives

min
V1, V2

r

(
M † − N −

[
FA 0
0 FB

][
V1

V2

])
= r

([
A†A 0

0 B†B

]
( M † − N)

)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 249-261, November 2005

www.math.technion.ac.il/iic/ela



ELA

Generalized Inverses of Block Matrices 257

= r( M † − N)
= r[ BB∗A, AA∗B ] (by (1.10)),

as required for (2.14). From (1.4)

M † −
[

A(1,4)

B(1,4)

]
= M † −

[
A† + W1EA

B† + W2EB

]
(2.23)

= M † − N −
[

In

0

]
W1EA −

[
0
Ik

]
W2EB ,

where W1 and W2 are arbitrary. Applying (1.26) to (2.23) and simplifying by (1.12),
(1.13) and (1.14) yield (2.15). The details are omitted here. Observe that

min
A(1,3)

B(1,3)

r

(
M † −

[
A(1,3)

B(1,3)

])
� min

A(1,2,3)

B(1,2,3)

r

(
M † −

[
A(1,2,3)

B(1,2,3)

])
� r( M † − N )

and

min
A(1,3)

B(1,3)

r

(
M † −

[
A(1,3)

B(1,3)

])
� min

A(1,3,4)

B(1,3,4)

r

(
M † −

[
A(1,3,4)

B(1,3,4)

])
� r( M † − N ).

Applying (1.10) and (2.14) to these two inequalities gives (2.16) and (2.18). From
(1.6)

M † −
[

A(1,2,4)

B(1,2,4)

]
= M † −

[
A† + A†AW1EA

B† + B†BW2EB

]
(2.24)

= M † − N −
[

A†A
0

]
W1EA −

[
0

B†B

]
W2EB ,

where W1 and W2 are arbitrary. Applying (1.27) to (2.24) and simplifying by (1.12),
(1.13) and (1.14) yield (2.17). Also note that

min
A−, B−

r

(
M † −

[
A−

B−

])
� min

A(1,2)

B(1,2)

r

(
M † −

[
A(1,2)

B(1,2)

])
� min

A(1,2,4)

B(1,2,4)

r

(
M † −

[
A(1,2,4)

B(1,2,4)

])
.

Applying (2.12) and (2.17) to this gives (2.13).

Some rank formulas for [ A, B ](i,...,j) −
[

A(i,...,j)

B(i,...,j)

]
are given below.

Theorem 2.3. Let A ∈ Cm×n and B ∈ Cm×k, and let M = [ A, B ]. Then

min
M−, A−, B−

r

(
M− −

[
A−

B−

])
= r(A) + r(B) − r(M),(2.25)
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min
M(1,3), A(1,3), B(1,3)

r

(
M (1,3) −

[
A(1,3)

B(1,3)

])
= r(M) + 2r(A∗B) − r(A) − r(B),(2.26)

min
M(1,4), A(1,4), B(1,4)

r

(
M (1,4) −

[
A(1,4)

B(1,4)

])
= r(A) + r(B) − r(M),(2.27)

min
M (1,2,3)

A(1,2,3), B(1,2,3)

r

(
M (1,2,3) −

[
A(1,2,3)

B(1,2,3)

])
= r(M) + 2r(A∗B) − r(A) − r(B).(2.28)

Hence,
(a) The following statements are equivalent:

(i) There are A− and B− such that
[

A−

B−

]
∈ {M−}.

(ii) There are A(1,4) and B(1,4) such that
[

A(1,4)

B(1,4)

]
∈ {M (1,4)}.

(iii) R(A) ∩ R(B) = {0}.
(b) The following statements are equivalent:

(i) There are A(1,3) and B(1,3) such that
[

A(1,3)

B(1,3)

]
∈ {M (1,3)}.

(ii) There are A(1,2,3) and B(1,2,3) such that
[

A(1,2,3)

B(1,2,3)

]
∈ {M (1,2,3)}.

(iii) M † =
[

A†

B†

]
.

(iv) A∗B = 0.
Proof. From (1.17)

min
M−

r

(
M− −

[
A−

B−

])
= r

(
M − M

[
A−

B−

]
M

)
.(2.29)

Expanding the difference on the right-hand side of (2.29) yields

M − M

[
A−

B−

]
M = [ BB−A, AA−B ] = [ BB†A, AA†B ] + [ BW1EBA, AW2EAB ],

where W1 and W2 are two arbitrary matrices. Applying (1.27) to the right-hand side
and simplifying by (1.12), (1.13) and (1.14) give us

min
A−, B−

r

(
M − M

[
A−

B−

]
M

)
(2.30)

= min
V1, V2

r( [ BB†A, AA†B ] + [ BV1EBA, AW2EAB ] )

= r(A) + r(B) − r(M).

Combining (2.29) and (2.30) results in (2.25). Eqs.(2.26), (2.27) and (2.28) can be
shown by (1.19), (1.20), (1.21) and (1.27). The details are omitted here.
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To find

min
M (1,2)

A(1,2), B(1,2)

r

(
M (1,2) −

[
A(1,2)

B(1,2)

])
, min

M (1,2,4)

A(1,2,4), B(1,2,4)

r

(
M (1,2,4) −

[
A(1,2,4)

B(1,2,4)

])
,

min
M (1,3,4)

A(1,3,4), B(1,3,4)

r

(
M (1,3,4) −

[
A(1,3,4)

B(1,3,4)

])
,

a formula for the minimal rank of A + B1X1C1 + B2X2C2 + B3X3C3 with respect
to X1, X2 and X3 is needed. However, such a formula has not been established at
present; see [7].

In addition to
[

A−

B−

]
, [ A, B ] may have generalized inverses like

[
A−

X

]
or

[
Y

B−

]

for some matrices X and Y .
Theorem 2.4. Let A ∈ Cm×n, B ∈ Cm×k, X ∈ Ck×m, Y ∈ Cn×m, and let

M = [ A, B ]. Then

min
X

r

(
M − M

[
A†

X

]
M

)
= min

Y
r

(
M − M

[
Y
B†

]
M

)
(2.31)

= r[ A, B ] + r(A∗B) − r(A) − r(B).

Hence the following statement are equivalent:

(a) There is X such that
[

A†

X

]
∈ {M−}.

(b) There is Y such that
[

Y
B†

]
∈ {M−}.

(c) r[ A, B ] = r(A) + r(B) − r(A∗B).
Proof. Applying (1.25) and simplifying by elementary block matrix operations

give us

min
X

r

(
M − M

[
A†

X

]
M

)

= min
X

r
(
[ 0, B − AA†B ] − BX [ A, B ]

)

= r[ B − AA†B, B ] + r

[
0 B − AA†B
A B

]
− r

[
0 B − AA†B B
A B 0

]

= r[ AA†B, B ] + r

[
0 0
A B

]
− r

[
0 0 B
A B 0

]

= r[ AA†B, B ] − r(B)
= r[ AA†B, ( Im − AA† )B ] − r(B)
= r(AA†B) + r[ ( Im − AA† )B ] − r(B)
= r[ A, B ] + r(A∗B) − r(A) − r(B).
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Equality

min
X

r

(
M − M

[
X
B†

]
M

)
= r[ A, B ] + r(A∗B) − r(A) − r(B)

can be shown similarly. The equivalence of (a), (b) and (c) follows from (2.31).
Theorem 2.5. Let A ∈ Cm×n, B ∈ Cm×k, X ∈ Ck×m, Y ∈ Cn×m, and let

M = [ A, B ]. Then

min
A−,X

r

(
M − M

[
A−

X

]
M

)
= min

Y, B−
r

(
M − M

[
Y

B−

]
M

)
= 0.(2.32)

Hence,

(a) There are A− and X such that
[

A−

X

]
∈ {M−}.

(b) There are Y and B− and such that
[

Y
B−

]
∈ {M−}.

Proof. Applying (1.25) and simplifying by elementary block matrix operations
give us

min
X

r

(
M − M

[
A−

X

]
M

)
(2.33)

= min
X

r
(
[ 0, B − AA−B ] − BX [ A, B ]

)

= r[ B − AA−B, B ] + r

[
0 B − AA−B
A B

]
− r

[
0 B − AA−B B
A B 0

]

= r[ AA−B, B ] − r(B)
= r[ AA−B, ( Im − AA− )B ] − r(B)
= r(AA−B) + r[ ( Im − AA− )B ] − r(B)
= r(AA−B) + r[ A, B ] − r(A) − r(B).

Also from (1.28)

min
A−

r(AA−B) = r(A) + r(B) − r[ A, B ].

Combining this with (2.33) leads to

min
A−,X

r

(
M − M

[
A−

X

]
M

)
= 0.

The second equality in (2.32) can be shown similarly.
Minimal rank formulas for column block matrices can be written out by symmetry.

They are left for the reader. Some other topics on minimal ranks of generalized
inverses of row block matrices can also be considered, for instance, to find the minimal
ranks of

[ A, B ](i,...,j) −
[

(EBA)(i,...,j)

(EAB)(i,...,j)

]
and [ A1, . . . , Ap ](i,...,j) −




A
(i,...,j)
1

...
A

(i,...,j)
p


,
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and then to use the minimal ranks to characterize the corresponding matrix equalities.
For 2×2 partitioned matrices, it is of interest to establish minimal rank formulas

for the differences
[

A B
C 0

](i,...,j)

−
[

A(i,...,j) C(i,...,j)

B(i,...,j) 0

]
,

[
A B
C D

](i,...,j)

−
[

A(i,...,j) C(i,...,j)

B(i,...,j) D(i,...,j)

]
.

It is expected that the rank formulas obtained can be used to characterize the corre-
sponding equalities for generalized inverses of 2 × 2 partitioned matrices.
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