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Abstract. The question of when the subdirect sum of two nonsingular M -matrices is a non-
singular M -matrix is studied. Su�cient conditions are given. The case of inverses of M -matrices is
also studied. In particular, it is shown that the subdirect sum of overlapping principal submatrices
of a nonsingular M -matrix is a nonsingular M -matrix. Some examples illustrating the conditions
presented are also given.
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1. Introduction. Subdirect sum of matrices are generalizations of the usual sum
of matrices (a k-subdirect sum is formally de�ned below in Section 2). They were
introduced by Fallat and Johnson in [3], where many of their properties were analyzed.
For example, they showed that the subdirect sum of positive de�nite matrices, or of
symmetric M -matrices, are positive de�nite or symmetric M -matrices, respectively.
They also showed that this is not the case for M -matrices: the sum of two M -matrices
may not be an M -matrix. One goal of the present paper is to give su�cient conditions
so that the subdirect sum of nonsingular M -matrices is a nonsingular M -matrix. We
also treat the case of the subdirect sum of inverses of M -matrices.

Subdirect sums of two overlapping principal submatrices of a nonsingular M -
matrix appear naturally when analyzing additive Schwarz methods for Markov chains
or other matrices [2], [4]. In this paper we show that the subdirect sum of two
overlapping principal submatrices of a nonsingular M -matrix is a nonsingular M -
matrix.

The paper is structured as follows. In Section 2 we focus on the nonsingularity of
the subdirect sum of any pair of nonsingular matrices, giving an explicit expression
for the inverse. In Section 2.1 we study the k-subdirect sum of two nonsingular
M -matrices and in particular, the case of subdirect sums of overlapping blocks of
nonsingular M -matrices. In Section 2.3 we extend some results to the subdirect sum
of more than two nonsingular M -matrices. In Section 3 we analyze the subdirect sum
of two inverses. Finally, in Section 4 we mention some open questions on subdirect
sums of P -matrices. Throughout the paper we give examples which help illustrate
the theoretical results.
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2. Subdirect sums of nonsingular matrices. Let A and B be two square
matrices of order n1 and n2, respectively, and let k be an integer such that 1 ≤ k ≤
min(n1, n2). Let A and B be partitioned into 2 × 2 blocks as follows:

A =
[

A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, (2.1)

where A22 and B11 are square matrices of order k. Following [3], we call the following
square matrix of order n = n1 + n2 − k,

C =


 A11 A12 0

A21 A22 + B11 B12

0 B21 B22


 (2.2)

the k-subdirect sum of A and B and denote it by C = A ⊕k B.
We are interested in the case when A and B are nonsingular matrices. We parti-

tion the inverses of A and B conformably to (2.1) and denote its blocks as follows:

A−1 =
[

Â11 Â12

Â21 Â22

]
, B−1 =

[
B̂11 B̂12

B̂21 B̂22

]
, (2.3)

where, as before, Â22 and B̂11 are square of order k.
In the following result we show that nonsingularity of matrix Â22 + B̂11 is a

necessary and su�cient condition for the k-subdirect sum C to be nonsingular. The
proof is based on the use of the relation n = n1 + n2 − k to properly partition the
indicated matrices.

Theorem 2.1. Let A and B be nonsingular matrices of order n1 and n2, re-

spectively, and let k be an integer such that 1 ≤ k ≤ min(n1, n2). Let A and B be

partitioned as in (2.1) and their inverses be partitioned as in (2.3). Let C = A ⊕k B.

Then C is nonsingular if and only if Ĥ = Â22 + B̂11 is nonsingular.

Proof. Let Im be the identity matrix of order m. The theorem follows from the
following relation:

[
A−1 O
O In−n1

]
C

[
In−n2 O

O B−1

]
=


 In−n2 Â12 O

O Ĥ B̂12

O O In−n1


 . (2.4)

2.1. Nonsingular M-matrices. Given A = {aij} ∈ R
m×n, we write A > O

(A ≥ O), to indicate aij > 0 (aij ≥ 0), for i = 1, . . . , m, j = 1, . . . , n, and such
matrices are called positive (nonnegative). Similarly, A ≥ B when A−B ≥ O. Square
matrices which have nonpositive o�-diagonal entries are called Z-matrices. We call a
Z-matrix M a nonsingular M -matrix if M−1 ≥ O. We recall some properties of these
matrices; see [1], [8]:
(i) The diagonal of a nonsingular M -matrix is positive.
(ii) If B is a Z-matrix and M is a nonsingular M -matrix, and M ≤ B, then B is also
a nonsingular M -matrix. In particular, any matrix obtained from a nonsingular M -
matrix by setting certain o�-diagonal entries to zero is also a nonsingular M -matrix.
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(iii) A matrix M is a nonsingular M -matrix if and only if each principal submatrix
of M is a nonsingular M -matrix.
(iv) A Z-matrix M is a nonsingular M -matrix if and only if there exists a positive
vector x > 0 such that Mx > 0.

We �rst consider the k-subdirect sum of nonsingular Z-matrices. >From (2.4) we
can explicitly write

C−1 =
[

In−n2 O
O B−1

] 
 In−n2 −Â12Ĥ

−1 Â12Ĥ
−1B̂12

O Ĥ−1 −Ĥ−1B̂12

O O In−n1




[
A−1 O
O In−n1

]

from which we obtain

C−1 =


 Â11 − Â12Ĥ

−1Â21 Â12 − Â12Ĥ
−1Â22 Â12Ĥ

−1B̂12

B̂11Ĥ
−1Â21 B̂11Ĥ

−1Â22 −B̂11Ĥ
−1B̂12 + B̂12

B̂21Ĥ
−1Â21 B̂21Ĥ

−1Â22 −B̂21Ĥ
−1B̂12 + B̂22


 (2.5)

and therefore we can state the following immediate result.
Theorem 2.2. Let A and B be nonsingular Z-matrices of order n1 and n2,

respectively, and let k be an integer such that 1 ≤ k ≤ min(n1, n2). Let A and B be

partitioned as in (2.1) and their inverses be partitioned as in (2.3). Let C = A ⊕k B.

Let Ĥ = Â22 + B̂11 be nonsingular. Then C is a nonsingular M -matrix if and only if

each of the nine blocks of C−1 in (2.5) is nonnegative.

We consider now the case where A and B are nonsingular M -matrices. It was
shown in [3] that even if H = A22 + B11 is a nonsingular M -matrix, this does not
guarantee that C = A⊕k B is a nonsingular M -matrix. We point out that this matrix
H is not the matrix Ĥ obtained from A−1 and B−1 and used in Theorem 2.1. The
fact that H is a nonsingular M -matrix is a necessary but not a su�cient condition for
C to be a nonsingular M -matrix. Su�cient conditions are presented in the following
result.

Theorem 2.3. Let A and B be nonsingular M -matrices partitioned as in (2.1).
Let x1 > 0 ∈ R

(n1−k)×1, y1 > 0 ∈ R
k×1, x2 > 0 ∈ R

k×1 and y2 > 0 ∈ R
(n2−k)×1 be

such that

A

[
x1

y1

]
> 0, B

[
x2

y2

]
> 0. (2.6)

Let H = A22 + B11 be a nonsingular M -matrix and let

y = H−1 (A22y1 + B11x2) . (2.7)

Then if y ≤ y1 and y ≤ x2 the k-subdirect sum C = A ⊕k B is a nonsingular M -

matrix.

Proof. We will show that there exists u > 0 such that Cu > 0. We �rst note that
from (2.6) we get

A11x1 + A12y1 > 0
A21x1 + A22y1 > 0

}
,

B11x2 + B12y2 > 0
B21x2 + B22y2 > 0

}
. (2.8)
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Taking u =


 x1

y
y2


 and partitioning C as in (2.2) we obtain

Cu =


 A11x1 + A12y

A21x1 + (A22 + B11)y + B12y2

B21y + B22y2


 . (2.9)

Since A21 ≤ O and B12 ≤ O, from (2.8) it follows that A22y1 > 0 and B11x2 > 0.
Since H−1 ≥ O, from (2.7) we have that y is positive, and consequently, so is u, i.e.,
u > 0. We will show that Cu > 0 one block of rows in (2.9) at a time. If y ≤ y1,
as A12 ≤ 0, we have that A12y ≥ A12y1 and again using (2.8) we obtain that the
�rst block of rows of Cu is positive. In a similar way, the condition y ≤ x2 together
with the last equation of (2.8) allows to conclude that the third block of rows of
Cu is positive. Finally, substituting y given by (2.7) in the second row of Cu and
considering (2.8) we conclude that the second block of rows of Cu is also positive.

Note that A and B are nonsingular M -matrices and therefore the positive vec-
tors (x1, y1) and (x2, y2) of (2.6) always exist. This theorem gives su�cient but not
necessary conditions for C = A ⊕k B to be a nonsingular M -matrix, as illustrated in
Example 2.5 further below.

Example 2.4. The matrices

A =


 3 −2 −1

−1/2 2 −3
−1 −1 4


 and B =


 1 −2 −1/3

−3 9 0
−2 −1/2 6


 ,

and the vectors

[
x1

y1

]
=


 1.8

2
1


 and

[
x2

y2

]
=


 2.5

1
1




satisfy the inequalities (2.6), and computing the vector y from (2.7) we get y ≈
(1.95, 0.87)T , which satisfy y ≤ y1 and y ≤ x2. Therefore the 2-subdirect sum

C =




3 −2 −1 0
−1/2 3 −5 −1/3
−1 −4 13 0
0 −2 −1/2 6




is a nonsingular M -matrix in accordance with Theorem 2.3.
Example 2.5. The matrices

A =


 5 −1/2 −1/3

−1 4 −2
−1 −6 10


 and B =


 1 −2 −1/3

−3 9 0
−2 −1/2 6




and the vectors

[
x1

y1

]
=


 1

1
1


 and

[
x2

y2

]
=


 2.5

1
1



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satisfy the inequalities (2.6), but computing vector y from (2.7) we obtain
y ≈ (1.18, 0.85)T , which does not satisfy the conditions of Theorem 2.3. Never-

theless the 2-subdirect sum

C = A ⊕2 B =




5 −1/2 −1/3 0
−1 5 −4 −1/3
−1 −9 19 0
0 −2 −1/2 6




is a nonsingular M -matrix.
In the special case of A and B block lower and upper triangular nonsingular

M -matrices, respectively, the results of Theorems 2.2 and 2.3 are easy to establish.
Let

A =
[

A11 0
A21 A22

]
, B =

[
B11 B12

0 B22

]
, (2.10)

with A22 and B11 square matrices of order k.
Theorem 2.6. Let A and B be nonsingular lower and upper block triangular

nonsingular M -matrices, respectively, partitioned as in (2.10). Then C = A ⊕k B is

a nonsingular M -matrix.

Proof. We can repeat the same argument as in the proof of Theorem 2.3 with
the advantage of having A12 = O and B21 = O. Note that conditions y ≤ y1 and
y ≤ x2 are not necessary here because the �rst and last block of rows of Cu in (2.9)
are automatically positive in this case.

Remark 2.7. The expression of C−1 is given by (2.5). In this particular case of
block triangular matrices we have Â12 = O, B̂21 = O, Â22 = A−1

22 , B̂11 = B−1
11 , from

which Ĥ = A−1
22 + B−1

11 . If, in addition, A22 = B11, then we obtain

C−1 =


 A−1

11 O O
− 1

2A−1
22 A21A

−1
11

1
2A−1

22 − 1
2A−1

22 B12B
−1
22

O O B−1
22


 ≥ O.

Example 2.8. The matrices

A =


 3 0 0

−1 5 −1
−1 −9 5


 and B =


 6 −2 −1

−4 3 −3
0 0 2




satisfy the hypotheses of Theorem 2.6. The matrices C = A ⊕2 B and C−1 are

C =




3 0 0 0
−1 11 −3 −1
−1 −13 8 −3
0 0 0 2


 , C−1 =




1/3 0 0 0
11/147 8/49 3/49 17/98
8/49 13/49 11/49 23/49

0 0 0 1/2




and therefore C is a nonsingular M -matrix as expected.
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In some applications, such as in domain decomposition [6], [7], matrices A and
B partitioned as in (2.1) arise with a common block, i.e., A22 = B11. In the next
example we show that even if A and B are nonsingular M -matrices, and so is the
common block, we can not ensure that C = A ⊕k B is a nonsingular M -matrix.

Example 2.9. The matrices

A =


 370 −342 −318

−448 737 −107
−46 −190 444


 , B =


 737 −107 −134

−190 444 −440
−885 −182 603




are nonsingular M -matrices with A22 = B11 an M -matrix, but C = A⊕2 B is not an
M -matrix, since we have

C =




370 −342 −318 0
−448 1474 −214 −134
−46 −380 888 −440
0 −885 −182 603




and C−1 ≈




−0.0291 −0.0242 −0.0204 −0.0203
−0.0145 −0.0109 −0.0098 −0.0096
−0.0214 −0.0163 −0.0132 −0.0133
−0.0277 −0.0210 −0.0183 −0.0164


 .

In the next section we shall see that when A and B share a block and they are
submatrices of a given nonsingular M -matrix, the resulting k-subdirect sum is in fact
a nonsingular M -matrix.

2.2. Overlapping M-matrices. In this section we restrict A and B to be prin-
cipal submatrices of a given nonsingular M -matrix and such that they have a common
block. Let

M =


 M11 M12 M13

M21 M22 M23

M31 M32 M33


 (2.11)

be a nonsingular M -matrix with M22 square matrix of order k ≥ 1 and let

A =
[

M11 M12

M21 M22

]
and B =

[
M22 M23

M32 M33

]
(2.12)

be of order n1 and n2, respectively. The k-subdirect sum of A and B is thus given by

C = A ⊕k B =


 M11 M12 O

M21 2M22 M23

O M32 M33


 . (2.13)

In the following theorem we show that C is a nonsingular M -matrix.
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Theorem 2.10. Let M be a nonsingular M -matrix partitioned as in (2.11),
and let A and B be two overlapping principal submatrices given by (2.12). Then the

k-subdirect sum C = A ⊕k B is a nonsingular M -matrix.

Proof. Let us construct an n × n Z-matrix T as follows:

T =


 M11 2M12 M13

M21 2M22 M23

M31 2M32 M33


 . (2.14)

Then T = M diag(I, 2I, I) and we get T−1 = diag(I, (1/2)I, I)M−1 ≥ O. Then T is
a nonsingular M -matrix. Finally since C is a Z-matrix and C ≥ T we conclude that
C is a nonsingular M -matrix.

Example 2.11. The following nonsingular M -matrix is partitioned as in (2.11):

M =




13/14 −4/23 −3/20 −1/42 −19/186 −3/46
−3/7 21/23 −1/5 −1/21 −1/93 −6/23
−1/7 −7/46 17/20 −1/14 −1/186 −2/23
−4/21 −27/92 −1/15 4/7 −58/93 −27/92
−1/14 −9/46 −3/10 −1/7 53/62 −9/46
−2/21 −9/92 −2/15 −2/7 −7/62 83/92




. (2.15)

Taking overlapping submatrices A and B as in (2.12) the 3-subdirect sum C = A⊕3B
is given by

C =




13/14 −4/23 −3/20 −1/42 −19/186 0
−3/7 21/23 −1/5 −1/21 −1/93 0
−1/7 −7/46 17/10 −1/7 −1/93 −2/23
−4/21 −27/92 −2/15 8/7 −116/93 −27/92
−1/14 −9/46 −3/5 −2/7 53/31 −9/46

0 0 −2/15 −2/7 −7/62 83/92




and it is a nonsingular M -matrix according to Theorem 2.10. In fact, we have that

C−1 ≈




1.3500 0.3977 0.2624 0.1609 0.2103 0.1232
0.7628 1.4108 0.3383 0.2085 0.2185 0.1478
0.3007 0.2845 0.7422 0.2006 0.1824 0.1763
1.1024 1.1571 0.8927 1.6092 1.3118 0.8940
0.4854 0.5256 0.5116 0.4379 0.9664 0.4013
0.4543 0.4743 0.4564 0.5941 0.5634 1.4679




.

2.3. k-subdirect sum of p M-matrices. In this section we extend Theo-
rems 2.3 and 2.10 to the subdirect sum of several nonsingular M -matrices. Exam-
ple 2.14 later in the section illustrates the notation used in the proofs.

Theorem 2.12. Let Ai ∈ R
ni×ni , i = 1, . . . p, be nonsingular M -matrices parti-

tioned as

Ai =
[

Ai,11 Ai,12

Ai,21 Ai,22

]
(2.16)
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with Ai,11 a square matrix of order ki−1 ≥ 1 and Ai,22 a square matrix of order ki ≥ 1,
i.e., ni = ki−1 + ki. Since Ai are nonsingular M -matrices we have that there exist

xi > 0 ∈ R
(ni−ki)×1 and yi > 0 ∈ R

ki×1 such that

Ai

[
xi

yi

]
> 0, i = 1, . . . , p. (2.17)

Let C0 = A1 and de�ne the following p − 1 ki-subdirect sums:

Ci = Ci−1 ⊕ki Ai+1, i = 1, . . . , p − 1, (2.18)

i.e.,

C1 = A1 ⊕k1 A2,
C2 = (A1 ⊕k1 A2) ⊕k2 A3 = C1 ⊕k2 A3,

...

Cp−1 =
(
A1 ⊕k1 A2 ⊕k2 · · · ⊕kp−2 Ap−1

) ⊕kp−1 Ap = Cp−2 ⊕kp−1 Ap.

Each subdirect sum Ci is of order mi, such that m0 = n1 and

mi = mi−1 + ni+1 − ki = mi−1 + ki+1, i = 1, . . . , p − 1.

Let us partition Ci in the form

Ci =
[

Ci,11 Ci,12

Ci,21 Ci,22

]
, i = 1, . . . , p − 1, (2.19)

with Ci,22 a square matrix of order ki+1. Let

Hi = Ci−1,22 + Ai+1,11, i = 1, . . . p − 1,

be nonsingular M -matrices and let

zi = H−1
i (Ci−1,22yi + Ai+1,11xi+1), i = 1, . . . p − 1.

Then, if zi ≤ yi and zi ≤ xi+1, the subdirect sums Ci given by (2.18) are nonsingular

M -matrices for i = 1, . . . , p − 1.
Proof. It is easy to see that applying Theorem 2.3 to each consecutive pair of

matrices Ci we have that C1, C2, . . . , Cp−1 are nonsingular M -matrices. This can be
shown by induction.

We now extend Theorem 2.10 to the sub-direct sum of p submatrices of a given
nonsingular M -matrix M . To that end, we �rst de�ne M(S) a principal submatrix of
M with rows and columns with indices in the set of indices S = {i, i+1, i+2, . . . , j}.
In [2] we call these consecutive principal submatrices. For example, matrices A and B
given by (2.12) can be expressed as a submatrices of M given by (2.11) as A = M(S1),
B = M(S2) with S1 = {1, 2} and S2 = {2, 3}.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 162-174, July 2005

www.math.technion.ac.il/iic/ela



ELA

170 R. Bru, F. Pedroche, and D.B. Szyld

Theorem 2.13. Let M be a nonsingular M -matrix. Let Ai = M(Si), i =
1, . . . , p, be principal consecutive submatrices of M and consider the p−1 ki-subdirect

sums given by

Ci = Ci−1 ⊕ki Ai+1, i = 1, . . . , p − 1, (2.20)

in which C0 = A1. Then each of the ki-subdirect sums Ci is a nonsingular M -matrix.

Proof. It is easy to relate the structure of each Ci to that of the submatrices
Ai involved. We consider that Ai are overlapping principal submatrices of the form
(2.12) but allowing that each Ai has di�erent number of blocks. Let M be partitioned
as

M =




M11 M12 M13 · · · M1n

M21 M22 M23 · · · M2n

M31 M32 M33 · · · M3n

...
...

...
. . .

...
Mn1 Mn2 Mn3 · · · Mnn




(2.21)

according with the size of the principal submatrices Ai. Each block Mij may be a

submatrix of more than one Am, m = 1, . . . , p. Let b
(l)
ij ≥ 0 be the number of matrices

Am such that Mij is a submatrix of Am, for m = 1, . . . , l + 1. Of course we can have

b
(l)
ij = 0. Let us consider the lth subdirect sum Cl, 1 ≤ l ≤ p− 1, which is of the form

Cl =




b
(l)
11M11 b

(l)
12M12 b

(l)
13M13 · · · b

(l)
1l M1l

b
(l)
21M21 b

(l)
22M22 b

(l)
23M23 · · · b

(l)
2l M2l

b
(l)
31M31 b

(l)
32M32 b

(l)
33M33 · · · b

(l)
3l M3l

...
...

...
. . .

...

b
(l)
l1 Ml1 b

(l)
l2 Ml2 b

(l)
l3 Ml3 · · · b

(l)
ll Mll




. (2.22)

Observe that Cl is a Z-matrix and that b
(l)
ii > 0. Furthermore, for each column it

holds that b
(l)
ii ≥ b

(l)
ji , j = 1, . . . , l.

The proof proceeds in a manner similar to that of Theorem 2.10. Consider the
Z-matrix (partitioned in the same manner as M)

Tl = Ml diag(b(l)
11 I, b

(l)
22I, b

(l)
33I, . . . , b

(l)
ll I),

where Ml is the principal submatrix of (2.21) with row and column blocks from 1 to l.
It follows that T−1

l ≥ O and therefore Tl is a nonsingular M -matrix. Finally, since
Cl ≥ Tl, we conclude that Cl is a nonsingular M -matrix, l = 1, . . . , p.

Example 2.14. Given the nonsingular M -matrix M of Example 2.11, let us
consider the following overlapping blocks

A1 = M({1, 2, 3}) =


 13/14 −4/23 −3/20

−3/7 21/23 −1/5
−1/7 −7/46 17/20


 ,
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A2 = M({2, 3, 4, 5}) =




21/23 −1/5 −1/21 −1/93
−7/46 17/20 −1/14 −1/186
−27/92 −1/15 4/7 −58/93
−9/46 −3/10 −1/7 53/62


 ,

A3 = M({3, 4, 5, 6}) =




17/20 −1/14 −1/186 −2/23
−1/15 4/7 −58/93 −27/92
−3/10 −1/7 53/62 −9/46
−2/15 −2/7 −7/62 83/92


 .

Then we have the 2-subdirect sum

C1 = A1 ⊕2 A2 =




13/14 −4/23 −3/20 0 0
−3/7 42/23 −2/5 −1/21 −1/93
−1/7 −7/23 17/10 −1/14 −1/186

0 −27/92 −1/15 4/7 −58/93
0 −9/46 −3/10 −1/7 53/62


 ,

which is a nonsingular M -matrix, and the 3-subdirect sum

C2 = C1 ⊕3 A3 =




13/14 −4/23 −3/20 0 0 0
−3/7 42/23 −2/5 −1/21 −1/93 0
−1/7 −7/23 51/20 −1/7 −1/93 −2/23

0 −27/92 −2/15 8/7 −116/93 −27/92
0 −9/46 −3/5 −2/7 53/31 −9/46
0 0 −2/15 −2/7 −7/62 83/92




,

which is also a nonsingular M -matrix in accordance with Theorem 2.13. Observe that
in this example we have k1 = 2 and k2 = 3. Note also that, for example, we have

b
(1)
22 = 2, b

(1)
33 = 2, b

(1)
14 = 0, b

(2)
22 = 2, b

(3)
22 = 2, b

(2)
33 = 3, b

(2)
14 = 0.

3. Subdirect sums of inverses. Let A and B be nonsingular matrices parti-
tioned as in (2.1). In this section we consider the k-subdirect sum of their inverses.
We will establish counterparts to some of results in the previous sections. Let us
denote by G = A−1 ⊕k B−1, with A−1 and B−1 partitioned as in (2.3), i.e.,

G =


 Â11 Â12 0

Â21 Â22 + B̂11 B̂12

0 B̂21 B̂22


 . (3.1)

As a corollary to, and in analogy to Theorem 2.1, the next statement indicates
that the nonsingularity of A22 +B11 is a necessary condition to obtain G nonsingular.

Theorem 3.1. Let A and B be nonsingular matrices partitioned as in (2.1) and
let their inverses be partitioned as in (2.3). Let G = A−1 ⊕k B−1 partitioned as in

(3.1) with k ≥ 1. Then G is nonsingular if and only if H = A22+B11 is nonsingular.
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We remark that in analogy to the expression (2.5) of C−1, the explicit form of
G−1 is

G−1 =


 A11 − A12H

−1A21 A12 − A12H
−1A22 A12H

−1B12

B11H
−1A21 B11H

−1A22 −B11H
−1B12 + B12

B21H
−1A21 B21H

−1A22 −B21H
−1B12 + B22


 . (3.2)

Corollary 3.2. When A and B are nonsingular M -matrices with the common

block A22 = B11 a square matrix of order k, i.e., of the form

A =
[

A11 A12

A21 A22

]
, B =

[
A22 B12

B21 B22

]
, (3.3)

then H = 2A22 is nonsingular and therefore G = A−1 ⊕k B−1 is nonsingular.

We note that this is the case when A and B are overlapping submatrices of an
M -matrix, i.e., of the form (2.12) and (2.11) considered in Section 2.2, where we were
interested in the subdirect sum of A and B. Here we conclude that the subdirect sum
of their inverses is always nonsingular.

Example 3.3. Let A and B be the matrices of Example 2.11, then according to
Corollary 3.2, the 3-subdirect sum of the inverses

G = A−1 ⊕3 B−1 ≈




1.5033 0.5513 0.5547 0.2757 0.3912 0
0.9540 1.5996 0.7158 0.3635 0.4038 0
0.6004 0.5636 2.9750 0.8144 0.7407 0.3708
2.0383 2.1242 3.5729 6.5498 5.3372 2.0139
0.8953 0.9650 2.0470 1.8025 3.9062 0.9048

0 0 0.8551 1.3803 1.2652 1.9143




is a nonsingular matrix.
In the above example a direct computation shows that G−1 is not an M -matrix:

G−1 ≈




0.8900 −0.2337 −0.0750 −0.0119 −0.0511 0.0512
−0.4682 0.8566 −0.1000 −0.0238 −0.0054 0.0470
−0.0714 −0.0761 0.4250 −0.0357 −0.0027 −0.0435
−0.0952 −0.1467 −0.0333 0.2857 −0.3118 −0.1467
−0.0357 −0.0978 −0.1500 −0.0714 0.4274 −0.0978
0.1242 0.2045 −0.0667 −0.1429 −0.0565 0.7123




which is not a Z-matrix. Note that when A and B are M -matrices we have from
(3.1) that G = A−1 ⊕ B−1 is nonnegative. Therefore assuming that G−1 exists we
have (G−1)−1 ≥ O. Then it is a natural question to seek conditions so that G−1 is a
nonsingular M -matrix. We study this question next.

The expressions (3.1) of G and (3.2) of G−1, Theorem 3.1, and the observation
that for nonsingular M -matrices we have (G−1)−1 ≥ O, imply the following result.

Theorem 3.4. Let A and B be nonsingular M -matrices partitioned as in (2.1)
and their inverses partitioned as in (2.3). Let G = A−1 ⊕k B−1 with k ≥ 1, and let

H = A22 + B11 be nonsingular. Then G−1 is a nonsingular M -matrix if and only if

G−1 is a Z-matrix.
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Corollary 3.5. Let A and B be lower and upper block triangular nonsingular

M -matrices, respectively, partitioned as in (2.10) with A22 and B11 square matrices

of order k and H = A22 + B11 nonsingular. Then G−1 = (A−1 ⊕k B−1)−1 is a

nonsingular M -matrix if and only if the following conditions hold:

i) B11H
−1A21 ≤ O.

ii) B11H
−1A22 is a Z-matrix.

iii) −B11H
−1B12 + B12 ≤ O.

Proof. >From (3.2) and (2.10) we have that

G−1 =


 A11 0 0

B11H
−1A21 B11H

−1A22 −B11H
−1B12 + B12

0 0 B22


 (3.4)

and therefore G−1 is a Z-matrix if and only if the conditions i), ii) and iii) hold.
Conditions i), ii) and iii) in the corollary are not as stringent as they may appear.

For example, let A and B be block triangular nonsingular M -matrices partitioned as
in (2.10) with a common block A22 = B11, a square matrix of order k, i.e.,

A =
[

A11 0
A21 A22

]
and B =

[
A22 B12

0 B22

]
. (3.5)

Then G−1 = (A−1 ⊕k B−1)−1 is a nonsingular M -matrix, since we have from (3.4)
that

G−1 =


 A11 O O

1
2A21

1
2A22

1
2B12

O O B22


 ,

and therefore G−1 is a Z-matrix. In fact, in this case, we have

G =


 A−1

11 O O
−A−1

22 A21A
−1
11 2A−1

22 −A−1
22 B12B

−1
22

O O B−1
22


 ≥ O.

The next example illustrates this situation.
Example 3.6. Let A and B be the matrices of Example 2.8, then

G = A−1 ⊕2 B−1 =




1/3 0 0 0
1/8 49/80 21/80 9/20
7/24 77/80 73/80 11/10

0 0 0 1/2


 ,

and

G−1 =




3 0 0 0
−18/49 146/49 −6/7 −39/49
−4/7 −22/7 2 −11/7

0 0 0 2



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is a nonsingular M -matrix in accordance with Corollary 3.5.
Note that if the hypotheses of Corollary 3.5 are satis�ed, and recalling Theo-

rem 2.6, we have that each of the matrices C = A⊕k B and G−1 = (A−1 ⊕k B−1)−1

are both nonsingular M -matrices.

4. P -matrices. A square matrix is a P -matrix if all its principal minors are
positive. As a consequence we have that all the diagonal entries of a P -matrix are
positive. It is also follows that a nonsingular M -matrix is a P -matrix. It can also be
shown that if A is a nonsingular M -matrix, then A−1 is a P -matrix; see, e.g., [5].

In [3] it is shown that the k-subdirect sum (with k > 1) of two P -matrices is
not necessarily a P -matrix. Our results in Sections 2.1 and 3 hold for nonsingular
M -matrices and inverses of M -matrices, respectively. As these two classes of matrices
are subsets of P -matrices, it is natural to ask if similar su�cient conditions can be
found so that the k-subdirect sum of P -matrices is a P -matrix. The following example
indicates that the answer may not be easy to obtain, since even in the simplest case
of diagonal submatrices the k-subdirect sum may not be a P -matrix.

Example 4.1. Given the P -matrices

A =


 543 388 322

69 160 0
368 0 375


 , B =


 136 0 219

0 225 159
61 177 230




we have that the 2-subdirect sum

C = A ⊕2 B =




543 388 322 0
69 296 0 219
368 0 600 159
0 61 177 230




is not a P -matrix, since det(C) < 0.
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