ON A CONJECTURE REGARDING CHARACTERISTIC POLYNOMIAL OF A MATRIX PAIR*

C. M. DA FONSECA ${ }^{\dagger}$

Abstract

For n-by- n Hermitian matrices $A(>0)$ and B, define $$
\eta(A, B)=\sum_{S} \operatorname{det} A(S) \operatorname{det} B\left(S^{\prime}\right)
$$ where the summation is over all subsets of $\{1, \ldots, n\}, S^{\prime}$ is the complement of S, and by convention $\operatorname{det} A(\emptyset)=1$. Bapat proved for $n=3$ that the zeros of $\eta(\lambda A,-B)$ and the zeros of $\eta(\lambda A(23),-B(23))$

 interlace. This result is generalized to a broader class of matrices.Key words. Symmetric matrices, Cycles, Characteristic polynomial, Interlacing.
AMS subject classifications. 15A15, 15A42.

1. Introduction. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be matrices of order n. For index sets $S \subset\{1, \ldots, n\}$, we denote by $A(S)$ the $|S| \times|S|$ principal submatrix lying in the rows and columns indexed by S. We may also denote $A\left(S^{\prime}\right)$ by A_{S}, with S^{\prime} indexed the complement of S.

Define

$$
\begin{equation*}
\eta(A, B):=\sum_{S} \operatorname{det} A(S) \operatorname{det} B\left(S^{\prime}\right) \tag{1.1}
\end{equation*}
$$

where the summation is over all subsets of $\{1, \ldots, n\}$ and, by convention, $\operatorname{det} A(\emptyset)=$ $\operatorname{det} B(\emptyset)=1$. Notice that

$$
\begin{equation*}
\eta\left(\lambda I_{n},-B\right)=\operatorname{det}\left(\lambda I_{n}-B\right) \tag{1.2}
\end{equation*}
$$

i.e., $\eta\left(\lambda I_{n},-B\right)$ is the characteristic polynomial of B. It is well-known that, if B is Hermitian, then the roots of (1.2), the eigenvalues of B, are all real. Motivated by this result, Johnson [3] considered the polynomial (of degree n)

$$
\begin{equation*}
\eta(\lambda A,-B)=\sum_{k=0}^{n} \sum_{|S|=k}(-1)^{n-k} \operatorname{det} A(S) \operatorname{det} B\left(S^{\prime}\right) \lambda^{k}, \tag{1.3}
\end{equation*}
$$

and stated the conjecture:
Conjecture 1.1 (Johnson [3]). If A and B are Hermitian and A is positive semidefinite, then the polynomial $\eta(\lambda A,-B)$ has only real roots.

For a square matrix A, we write $A>0$ to denote that A is positive definite. If all roots of the polynomial (1.3), say $\lambda_{\ell}^{A}(B)$, for $\ell=1, \ldots, n$, are real, we assume that

[^0]they have been arranged in increasing order $\lambda_{1}^{A}(B) \leq \cdots \leq \lambda_{n}^{A}(B)$. Bapat in [1] and Johnson in [4] conjectured:

Conjecture 1.2. If $A>0$ and B are Hermitian, then $\lambda_{\ell}^{A_{1}}\left(B_{1}\right)$, for $\ell=$ $1, \ldots, n-1$, interlace $\lambda_{\ell}^{A}(B)$, for $\ell=1, \ldots, n$, i.e.,

$$
\lambda_{\ell}^{A}(B) \leq \lambda_{\ell}^{A_{1}}\left(B_{1}\right) \leq \lambda_{\ell+1}^{A}(B), \quad \ell=1, \ldots, n-1
$$

Conjecture 1.1 has been verified for the case $n=3$ by Rublein in [5] in a very complicated way. On the other hand, Bapat in [1] gave concise solutions for the cases $n \leq 3$. Bapat also verified that Conjectures 1.1 and 1.2 are true when both A and B are tridiagonal. Recently, the author generalized these results for matrices whose graph is a tree [2].

In this note we generalize the result of Bapat when $n=3$ to matrices whose graph is a cycle.

For sake of simplicity we consider only symmetric matrices throughout. All the results can be easily generalized to Hermitian matrices.
2. Results on tridiagonal matrices. We define the weights of a symmetric $\operatorname{matrix} A$ as $w_{i j}(A)=-a_{i j}^{2}$ if $i \neq j$, and $w_{i i}(A)=a_{i i}$. Sometimes we abbreviate to $w_{i j}$, with no mention of A.

Lemma 2.1 (Bapat [1]). Let A and B be symmetric tridiagonal matrices and let $S=\{1,2\}$. Then

$$
\begin{equation*}
\eta(A, B)=\sum_{\ell \in S}\left(w_{1 \ell}(A)+w_{1 \ell}(B)\right) \eta\left(A_{1 \ell}, B_{1 \ell}\right) \tag{2.1}
\end{equation*}
$$

For tridiagonal matrices we also state the following result, which can be proved by induction.

Lemma 2.2. Let A and B be symmetric tridiagonal matrices of order n. Then

$$
\begin{equation*}
\eta(A, B) \eta\left(A_{1 n}, B_{1 n}\right)=\eta\left(A_{1}, B_{1}\right) \eta\left(A_{n}, B_{n}\right)-\left(a_{12}^{2}+b_{12}^{2}\right) \cdots\left(a_{n-1, n}^{2}+b_{n-1, n}^{2}\right) \tag{2.2}
\end{equation*}
$$

Notice that (2.2) holds up to permutation similarity.
3. An interlacing theorem. Bapat proved the veracity of Conjectures 1.1 and 1.2 in the case $n \leq 3$.

Theorem 3.1 (Bapat [1]). Let A and B be Hermitian matrices of order 3 with $A>0$ and B has all nonzero subdiagonal entries. Then $\eta(\lambda A,-B)$ has three real roots, say $\lambda_{1}<\lambda_{2}<\lambda_{3}$. Furthermore, if $\mu_{1}<\mu_{2}$ are the roots of $\eta\left(\lambda A_{1},-B_{1}\right)$, then $\lambda_{1}<\mu_{1}<\lambda_{2}<\mu_{2}<\lambda_{3}$.

Consider symmetric matrices A and B such that $a_{i j}=b_{i j}=0$ for $|i-j|>1$ and $(i, j) \neq(1, n)$. We say, for obvious reasons, that A and B are matrices whose graph is a cycle. The next result generalizes Lemma 2.1, since if $w_{1, n}=0$, we get (2.1) with $i=1$.

Lemma 3.2. Let A and B be symmetric matrices whose graph is a cycle and set $S=\{i-1, i, i+1\}$. Then

$$
\begin{equation*}
\eta(A, B)=\sum_{\ell \in S}\left(w_{i \ell}(A)+w_{i \ell}(B)\right) \eta\left(A_{i \ell}, B_{i \ell}\right)+2(-1)^{n-1}\left(\prod_{\ell=1}^{n} a_{\ell, \ell+1}+\prod_{\ell=1}^{n} b_{\ell, \ell+1}\right) \tag{3.1}
\end{equation*}
$$ with the convention $(n, n+1)=(1, n)$.

Proof. Let $C=\{i-1, i+1\}$. Considering the partition of all subsets of $\{1, \ldots, n\}$, define

$$
\mathcal{A}_{P}=\left\{S \mid i \in S, P \subset S, P^{\prime} \cap S=\emptyset\right\}
$$

and

$$
\mathcal{C}_{P}=\left\{S \mid i \notin S, P \subset S, P^{\prime} \cap S=\emptyset\right\},
$$

for each subset P of C, where P^{\prime} is the complement of P with respect to C. Evaluating $\operatorname{det} A(S)$ for each $S \in \mathcal{A}_{P}$, and $\operatorname{det} B\left(S^{\prime}\right)$ for each $S \in \mathcal{C}_{P}$, substituting in (1.3) the expressions obtained and finally rearranging the terms we get (3.1).

Without loss of generality, set $i=1$. Notice that A_{i} and B_{i} are permutation similar to tridiagonal matrices. Suppose that B_{1} is nonsingular and the subdiagonal entries of B are nonzero. From (3.1) we have

$$
\begin{align*}
& \eta(\lambda A,-B)=\left(\lambda a_{11}-b_{11}\right) \eta\left(\lambda A_{1},-B_{1}\right) \\
& \quad+\left(a_{12}, a_{1 n}\right) P(\lambda)\left(a_{12}, a_{1 n}\right)^{t}+\left(b_{12}, b_{1 n}\right) Q(\lambda)\left(b_{12}, b_{1 n}\right)^{t} \tag{3.2}
\end{align*}
$$

where

$$
P(\lambda)=\left(\begin{array}{cc}
-\eta\left(\lambda A_{12},-B_{12}\right) & (-)^{n-1} \lambda^{n-2} a_{23} \cdots a_{n-1, n} \tag{3.3}\\
(-)^{n-1} \lambda^{n-2} a_{23} \cdots a_{n-1, n} & -\eta\left(\lambda A_{1 n},-B_{1 n}\right)
\end{array}\right)
$$

and

$$
Q(\lambda)=\left(\begin{array}{cc}
-\eta\left(\lambda A_{12},-B_{12}\right) & -b_{23} \cdots b_{n-1, n} \tag{3.4}\\
-b_{23} \cdots b_{n-1, n} & -\eta\left(\lambda A_{1 n},-B_{1 n}\right)
\end{array}\right) .
$$

Suppose that the conjectures are true for such matrices of order less than $n-1$ in the conditions above, and proceed by induction on n. By hypothesis, $\eta\left(\lambda A_{1},-B_{1}\right)$ has $n-1$ real roots, say $\mu_{1}<\mu_{2}<\cdots<\mu_{n-1}$, which strictly interlace the $n-$ 2 real roots of $\eta\left(\lambda A_{12},-B_{12}\right)$ and the $n-2$ real roots of $\eta\left(\lambda A_{1 n},-B_{1 n}\right)$. Since $\eta\left(\lambda A_{12},-B_{12}\right), \eta\left(\lambda A_{1 n},-B_{1 n}\right) \rightarrow \infty$ as $\lambda \rightarrow \infty$, the sign of $\eta\left(\mu_{k} A_{12},-B_{12}\right)$ and of $\eta\left(\mu_{k} A_{1 n},-B_{1 n}\right)$ must be $(-)^{n-k-1}$, for $k=1, \ldots, n-1$. Setting $\lambda=\mu_{k}$ in (3.3), we have

$$
\operatorname{det} P\left(\mu_{k}\right)=\eta\left(\mu_{k} A_{12}-B_{12}\right) \eta\left(\mu_{k} A_{1 n}-B_{1 n}\right)-\mu_{k}^{2 n-4} a_{23}^{2} \cdots a_{n-1, n}^{2} .
$$

According to (2.2), since $\eta\left(\mu_{k} A_{1},-B_{1}\right)=0$, we have

$$
\operatorname{sign} \operatorname{det} P\left(\mu_{k}\right)=+
$$

Analogously we can prove that sign $\operatorname{det} Q\left(\mu_{k}\right)=+$. Therefore, $P\left(\mu_{k}\right)$ and $Q\left(\mu_{k}\right)$ are positive definite if $n-k-1$ is odd, and negative definite if $n-k-1$ is even. Hence

$$
\begin{aligned}
\operatorname{sign} \eta\left(\mu_{k} A,-B\right) & =(-)^{n-k}+(-)^{n-k} \\
& =(-)^{n-k}, \quad k=1, \ldots, n-1 .
\end{aligned}
$$

Since $\eta(\lambda A,-B) \rightarrow(\pm)^{n} \infty$ as $\lambda \rightarrow \pm \infty$, it follows that $\eta(\lambda A,-B)$ has a root in each of the intervals

$$
\left(-\infty, \mu_{1}\right),\left(\mu_{2}, \mu_{3}\right), \ldots,\left(\mu_{n-2}, \mu_{n-1}\right),\left(\mu_{n-1}, \infty\right),
$$

and therefore $\eta(\lambda A,-B)$ has n distinct real roots, which strictly interlace μ_{1}, μ_{2}, \ldots, μ_{n-1}. Relaxing now by a continuity argument the nondegeneracy of the nonsingularity B_{1}, we have:

Theorem 3.3. Let A and B be Hermitian matrices whose graph is a given cycle, with $A>0$ and $b_{i j} \neq 0$ for $|i-j|=1$. Then $\eta(\lambda A,-B)$ has n distinct real roots, say

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}
$$

Furthermore, if

$$
\mu_{1}<\mu_{2}<\cdots<\mu_{n-1}
$$

are the roots of $\eta\left(\lambda A_{i},-B_{i}\right), i=1, \ldots, n$, then

$$
\lambda_{1}<\mu_{1}<\lambda_{2}<\mu_{2}<\cdots<\mu_{n-1}<\lambda_{n}
$$

4. Example. Let us consider the Hermitian matrices

$$
A=\left(\begin{array}{cccc}
3 & i & 0 & 1-i \\
-i & 2 & 1 & 0 \\
0 & 1 & 4 & -2 \\
1+i & 0 & -2 & 5
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
-1 & 2 & 0 & 1 \\
2 & 0 & i & 0 \\
0 & -i & 0 & -2 \\
1 & 0 & -2 & -1
\end{array}\right)
$$

The matrix A is positive definite and

$$
\eta(\lambda A,-B)=16-32 \lambda-97 \lambda^{2}+44 \lambda^{3}+47 \lambda^{4},
$$

with roots

$$
\begin{array}{r}
\lambda_{1}=-1.8109 \\
\lambda_{2}=-0.5646 \\
\lambda_{3}=0.2895 \\
\lambda_{4}=1.1498
\end{array}
$$

On the other hand

$$
\eta\left(\lambda A_{2},-B_{2}\right)=-4-12 \lambda+28 \lambda^{2}+40 \lambda^{3},
$$

with roots

$$
\begin{array}{r}
\mu_{1}=-0.9090 \\
\mu_{2}=-0.2432 \\
\mu_{3}=0.4522
\end{array}
$$

Hence

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \mu_{2} \leq \mu_{3} \leq \lambda_{4}
$$

Finally, note that $\eta(\lambda A,-B)$ has as many positive and negative roots as the inertia of $B(2,2,0)$; see [4, (2)].

REFERENCES

[1] R.B. Bapat. An interlacing theorem for tridiagonal matrices. Linear Algebra Appl., 150:331-340, 1991.
[2] C.M. da Fonseca. An interlacing theorem for matrices whose graph is a given tree. J. Math. Sci. (N.Y.), to appear.
[3] C.R. Johnson. The permanent-on-top conjecture: A status report. Current Trends in Matrix Theory, pp. 167-174, 1987.
[4] C.R. Johnson. A characteristic polynomial for matrix pairs. Linear and Multilinear Algebra, 25:289-290, 1989.
[5] G. Rublein. On a conjecture of C. Johnson. Linear and Multilinear Algebra, 25:257-267, 1989.

[^0]: *Received by the editors 27 April 2005. Accepted for publication 25 May 2005. Handling Editor: Ravindra B. Bapat.
 ${ }^{\dagger}$ Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, PORTUGAL (cmf@mat.uc.pt). This work was supported by CMUC - Centro de Matemática da Universidade Coimbra.

