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SOLUTION OF LINEAR MATRIX EQUATIONS IN A
*CONGRUENCE CLASS §
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Abstract. The possible *congruence classes of a square solution to the real or complex linear
matrix equation AX = B are determined. The solution is elementary and self contained, and includes
several known results as special cases, e.g., X is Hermitian or positive semidefinite, and X is real
with positive definite symmetric part.
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1. Introduction. Let F be either R or C, let Fp×q denote the vector space
(over F) of p-by-q matrices with entries in F, and let A,B ∈ F

k×n be given. We are
interested in the linear matrix equation AX = B, which we assume to be consistent :
rankA = rank [A B].

For a given S ∈ Fn×n let S∗ ≡ S̄T denote the conjugate transpose, so S∗ = ST

if F = R. Matrices X,Y ∈ Fn×n are in the same *congruence class if there is a
nonsingular S ∈ Fn×n such that X = S∗Y S. The Hermitian part of X ∈ Fn×n is
H(X) ≡ (X + X∗) /2; when F = R, H(X) is also called the symmetric part of X .
Let Ip (respectively, 0p) denote the p-by-p identity (respectively, zero) matrix.

When does AX = B have a solution X in a given *congruence class? Special
cases of this question involving positive semidefinite or Hermitian solutions were in-
vestigated in [1]; [2] asked an equivalent question: If {ξ1, . . . , ξk} and {η1, . . . , ηk} are
given sets of real or complex vectors of the same size, when is there a Hermitian or
positive definite matrix K such that Kξi = ηi for i = 1, . . . , k?

2. Solution of AX = B in a given *congruence class. Our main result is
the following theorem.

Theorem 1. Let A,B ∈ Fk×n be given, and suppose the linear matrix equation
AX = B is consistent. Let r = rankA, and let M = BA∗. Then there are matrices
N ∈ Fr×r and E ∈ Fr×(n−r) such that:
(a) M is *congruent to N ⊕ 0k−r.
(b) For each given F ∈ F(n−r)×r and G ∈ F(n−r)×(n−r) there is an X ∈ Fn×n such
that AX = B and X is *congruent to

[
N E
F G

]
.
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(c) If rankM = rankB, then for each given C ∈ F(n−r)×(n−r) there is an X ∈ Fn×n

such that AX = B and X is *congruent to N ⊕ C over F.
Proof. Using the singular value decomposition, one can construct a unitary U ∈

F
n×n and a nonsingular R ∈ F

k×k such that

RAU =
[
Ir 0
0 0

]
.

Consistency ensures that B = AC for some C ∈ Fn×n, so

RBU = (RAU)(U∗CU) =
[
N E
0 0

]
,

in which N ∈ Fr×r. A matrix X = UXU∗ satisfies AX = B if and only if X ∈ Fn×n

has the property that (RAU)X = RBU if and only if it has the form

X =
[
N E
F G

]
, G ∈ F

(n−r)×(n−r);(1)

the entries of F and G may be any elements of F. Since RMR∗ = RBU(RAU)∗ =
N ⊕ 0k−r, M is *congruent to N ⊕ 0k−r.

We have

rankM = rankN ≤ rank [N E] = rankB,

so rankM = rankB if and only if rankB = rankN if and only if every column of
E is in the range of N , that is, if and only if there is a matrix Z over F such that
E = NZ. If rankM = rankB, we may take X = UXU∗, in which

X =
[

N NZ
Z∗N Z∗NZ + C

]

=
[
Ir Z
0 In−r

]∗ [
N 0
0 C

][
Ir Z
0 In−r

]
.

Then AX = B and X is *congruent to N ⊕ C over F.

Several known results follow easily from our theorem. In each of the following
corollaries, we use the notation of the theorem and assume that AX = B is consistent.

Corollary 2 ([2, Theorem 2.1]). Suppose rankA = k. There is a Hermitian
positive definite matrix X over F such that AX = B if and only if M is Hermitian
positive definite.

Proof. The rank condition implies that M is *congruent to N , so N is Hermitian
positive definite if M is. The theorem ensures that there is a matrix X over F such
that AX = B and X is *congruent to N⊕In−k over F, so this X is Hermitian positive
definite. Conversely, if X is Hermitian positive definite and AX = B, then B and
AX1/2 have full row rank, so M = BA∗ = AXA∗ = (AX1/2)(AX1/2)∗ is Hermitian
positive definite.
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Corollary 3 ([1, Theorem 2.2]). There is a Hermitian positive semidefinite
matrix X over F such that AX = B if and only if rankM = rankB and M is
Hermitian positive semidefinite.

Proof. If M is Hermitian positive semidefinite, then so is N . For any Hermitian
positive semidefinite C ∈ F(n−r)×(n−r), the theorem ensures that there is a matrix
X over F such that AX = B and X is *congruent to N ⊕ C over F; such an X is
Hermitian positive semidefinite. Conversely, if X is Hermitian positive semidefinite
and AX = B, then M = BA∗ = AXA∗ is Hermitian positive semidefinite, and
rankM = rank (AX1/2)(AX1/2)∗ = rank (AX1/2) = rankAX = rankB.

The real case of part (b) in the following corollary was proved in [2, Theorem 2.1]
with the restriction that A has full row rank.

Corollary 4. (a) There is a square matrix X over F such that AX = B and
H(X) is positive semidefinite if and only if H(M) is positive semidefinite.
(b) There is a square matrix X over F such that AX = B and H(X) is positive
definite if and only if H(M) is positive semidefinite and rankH(M) = rankA.

Proof. Necessity in both cases follows from observing that H(M) = AH(X)A∗ =
(AH(X)1/2)(AH(X)1/2)∗. Thus, rankH(M) = rank (AH(X)1/2) = rankA if H(X)
is nonsingular.

Conversely, H(M) is *congruent to H(N)⊕0k−r so H(N) is positive semidefinite
and rankH(N) = rankH(M). Take F = −E∗ and G = In−r in (1), so that H(X)
is *congruent to H(X ) = H(N) ⊕ In−r . For this X , AX = B, H(X) is positive
semidefinite, and H(X) is positive definite if rankH(M) = r.

Part (a) of the following corollary was proved in [1, Theorem 2.1].
Corollary 5. (a) There is a square matrix X over F such that AX = B and

X is Hermitian if and only if M is Hermitian.
(b) There is a square matrix X over F such that AX = B and X is skew-Hermitian
if and only if M is skew-Hermitian.

Proof. Necessity in both cases follows from observing that M = AXA∗. Con-
versely, choosing G = 0 and F = ±E∗ in (1) proves sufficiency.

The inertia of a Hermitian matrix H is InH = (π(H), ν(H), ζ(H)), in which π(H)
is the number of positive eigenvalues of H , ν(H) is the number of negative eigenvalues,
and ζ(H) is the nullity. Since we know the general parametric form (1), the preceding
corollaries can be made more specific in the Hermitian cases by describing the inertias
that are possible for X given the inertia of M . Our final corollary is an example of
such a result.

Corollary 6. Suppose M is Hermitian and rankM = rankB. Then X may be
chosen to be Hermitian with inertia (α, β, γ) if and only if α, β, and γ are nonnegative
integers such that α + β + γ = n and (α, β, γ) ≥ InM − (0, 0, k − r).

Proof. Since rankM = rankB, the theorem ensures for any C ∈ F(n−r)×(n−r)

the existence of an X that is *congruent over F to N ⊕ C. Take C to be Hermitian,
in which case InX = InN + InC ≥ InM − (0, 0, k − r), and all permitted inertias
can be achieved by a suitable choice of C.

If the rank condition in the preceding corollary is not satisfied, there may be

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 153-156, June 2005

www.math.technion.ac.il/iic/ela



ELA

156 R. A. Horn, V. V. Sergeichuk, and N. Shaked-Monderer

further restrictions on the possible set of inertias ofA. Consider the example A = [1 0],
B = [0 1], M = [0]. Any Hermitian solution to AX = B must have the form

X =
[

0 1
1 t

]

for some real t ∈ F, and any such matrix has inertia (1, 1, 0) �> (0, 0, 1).
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