SOLUTION OF LINEAR MATRIX EQUATIONS IN A *CONGRUENCE CLASS ${ }^{\text {§ }}$

ROGER A. HORN*, VLADIMIR V. SERGEICHUK ${ }^{\dagger}$, AND NAOMI SHAKED-MONDERER ${ }^{\ddagger}$

Abstract

The possible *congruence classes of a square solution to the real or complex linear matrix equation $A X=B$ are determined. The solution is elementary and self contained, and includes several known results as special cases, e.g., X is Hermitian or positive semidefinite, and X is real with positive definite symmetric part.

Key words. Linear matrix equations, *Congruence, Positive definite matrix, Positive semidefinite matrix, Hermitian part, Symmetric part.

AMS subject classifications. 15A04, 15A06, 15A21, 15A57, 15A63.

1. Introduction. Let \mathbb{F} be either \mathbb{R} or \mathbb{C}, let $\mathbb{F}^{p \times q}$ denote the vector space (over \mathbb{F}) of p-by- q matrices with entries in \mathbb{F}, and let $A, B \in \mathbb{F}^{k \times n}$ be given. We are interested in the linear matrix equation $A X=B$, which we assume to be consistent: $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]$.

For a given $S \in \mathbb{F}^{n \times n}$ let $S^{*} \equiv \bar{S}^{T}$ denote the conjugate transpose, so $S^{*}=S^{T}$ if $\mathbb{F}=\mathbb{R}$. Matrices $X, Y \in \mathbb{F}^{n \times n}$ are in the same ${ }^{*}$ congruence class if there is a nonsingular $S \in \mathbb{F}^{n \times n}$ such that $X=S^{*} Y S$. The Hermitian part of $X \in \mathbb{F}^{n \times n}$ is $H(X) \equiv\left(X+X^{*}\right) / 2$; when $\mathbb{F}=\mathbb{R}, H(X)$ is also called the symmetric part of X. Let I_{p} (respectively, 0_{p}) denote the p-by- p identity (respectively, zero) matrix.

When does $A X=B$ have a solution X in a given *congruence class? Special cases of this question involving positive semidefinite or Hermitian solutions were investigated in [1]; [2] asked an equivalent question: If $\left\{\xi_{1}, \ldots, \xi_{k}\right\}$ and $\left\{\eta_{1}, \ldots, \eta_{k}\right\}$ are given sets of real or complex vectors of the same size, when is there a Hermitian or positive definite matrix K such that $K \xi_{i}=\eta_{i}$ for $i=1, \ldots, k$?
2. Solution of $A X=B$ in a given *congruence class. Our main result is the following theorem.

Theorem 1. Let $A, B \in \mathbb{F}^{k \times n}$ be given, and suppose the linear matrix equation $A X=B$ is consistent. Let $r=\operatorname{rank} A$, and let $M=B A^{*}$. Then there are matrices $N \in \mathbb{F}^{r \times r}$ and $E \in \mathbb{F}^{r \times(n-r)}$ such that:
(a) M is ${ }^{*}$ congruent to $N \oplus 0_{k-r}$.
(b) For each given $F \in \mathbb{F}^{(n-r) \times r}$ and $G \in \mathbb{F}^{(n-r) \times(n-r)}$ there is an $X \in \mathbb{F}^{n \times n}$ such that $A X=B$ and X is *congruent to

$$
\left[\begin{array}{ll}
N & E \\
F & G
\end{array}\right] .
$$

[^0](c) If $\operatorname{rank} M=\operatorname{rank} B$, then for each given $C \in \mathbb{F}^{(n-r) \times(n-r)}$ there is an $X \in \mathbb{F}^{n \times n}$ such that $A X=B$ and X is *congruent to $N \oplus C$ over \mathbb{F}.

Proof. Using the singular value decomposition, one can construct a unitary $U \in$ $\mathbb{F}^{n \times n}$ and a nonsingular $R \in \mathbb{F}^{k \times k}$ such that

$$
R A U=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] .
$$

Consistency ensures that $B=A C$ for some $C \in \mathbb{F}^{n \times n}$, so

$$
R B U=(R A U)\left(U^{*} C U\right)=\left[\begin{array}{cc}
N & E \\
0 & 0
\end{array}\right]
$$

in which $N \in \mathbb{F}^{r \times r}$. A matrix $X=U \mathcal{X} U^{*}$ satisfies $A X=B$ if and only if $\mathcal{X} \in \mathbb{F}^{n \times n}$ has the property that $(R A U) \mathcal{X}=R B U$ if and only if it has the form

$$
\mathcal{X}=\left[\begin{array}{ll}
N & E \tag{1}\\
F & G
\end{array}\right], \quad G \in \mathbb{F}^{(n-r) \times(n-r)} ;
$$

the entries of F and G may be any elements of \mathbb{F}. Since $R M R^{*}=R B U(R A U)^{*}=$ $N \oplus 0_{k-r}, M$ is *congruent to $N \oplus 0_{k-r}$.

We have

$$
\operatorname{rank} M=\operatorname{rank} N \leq \operatorname{rank}[N E]=\operatorname{rank} B
$$

so $\operatorname{rank} M=\operatorname{rank} B$ if and only if $\operatorname{rank} B=\operatorname{rank} N$ if and only if every column of E is in the range of N, that is, if and only if there is a matrix Z over \mathbb{F} such that $E=N Z$. If $\operatorname{rank} M=\operatorname{rank} B$, we may take $X=U \mathcal{X} U^{*}$, in which

$$
\begin{aligned}
\mathcal{X} & =\left[\begin{array}{cc}
N & N Z \\
Z^{*} N & Z^{*} N Z+C
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{r} & Z \\
0 & I_{n-r}
\end{array}\right]^{*}\left[\begin{array}{cc}
N & 0 \\
0 & C
\end{array}\right]\left[\begin{array}{cc}
I_{r} & Z \\
0 & I_{n-r}
\end{array}\right] .
\end{aligned}
$$

Then $A X=B$ and X is *congruent to $N \oplus C$ over \mathbb{F}. \square
Several known results follow easily from our theorem. In each of the following corollaries, we use the notation of the theorem and assume that $A X=B$ is consistent.

Corollary 2 ([2, Theorem 2.1]). Suppose $\operatorname{rank} A=k$. There is a Hermitian positive definite matrix X over \mathbb{F} such that $A X=B$ if and only if M is Hermitian positive definite.

Proof. The rank condition implies that M is *congruent to N, so N is Hermitian positive definite if M is. The theorem ensures that there is a matrix X over \mathbb{F} such that $A X=B$ and X is *congruent to $N \oplus I_{n-k}$ over \mathbb{F}, so this X is Hermitian positive definite. Conversely, if X is Hermitian positive definite and $A X=B$, then B and $A X^{1 / 2}$ have full row rank, so $M=B A^{*}=A X A^{*}=\left(A X^{1 / 2}\right)\left(A X^{1 / 2}\right)^{*}$ is Hermitian positive definite.

Corollary 3 ([1, Theorem 2.2]). There is a Hermitian positive semidefinite matrix X over \mathbb{F} such that $A X=B$ if and only if $\operatorname{rank} M=\operatorname{rank} B$ and M is Hermitian positive semidefinite.

Proof. If M is Hermitian positive semidefinite, then so is N. For any Hermitian positive semidefinite $C \in \mathbb{F}^{(n-r) \times(n-r)}$, the theorem ensures that there is a matrix X over \mathbb{F} such that $A X=B$ and X is *congruent to $N \oplus C$ over \mathbb{F}; such an X is Hermitian positive semidefinite. Conversely, if X is Hermitian positive semidefinite and $A X=B$, then $M=B A^{*}=A X A^{*}$ is Hermitian positive semidefinite, and $\operatorname{rank} M=\operatorname{rank}\left(A X^{1 / 2}\right)\left(A X^{1 / 2}\right)^{*}=\operatorname{rank}\left(A X^{1 / 2}\right)=\operatorname{rank} A X=\operatorname{rank} B$.

The real case of part (b) in the following corollary was proved in [2, Theorem 2.1] with the restriction that A has full row rank.

Corollary 4. (a) There is a square matrix X over \mathbb{F} such that $A X=B$ and $H(X)$ is positive semidefinite if and only if $H(M)$ is positive semidefinite.
(b) There is a square matrix X over \mathbb{F} such that $A X=B$ and $H(X)$ is positive definite if and only if $H(M)$ is positive semidefinite and $\operatorname{rank} H(M)=\operatorname{rank} A$.

Proof. Necessity in both cases follows from observing that $H(M)=A H(X) A^{*}=$ $\left(A H(X)^{1 / 2}\right)\left(A H(X)^{1 / 2}\right)^{*}$. Thus, $\operatorname{rank} H(M)=\operatorname{rank}\left(A H(X)^{1 / 2}\right)=\operatorname{rank} A$ if $H(X)$ is nonsingular.

Conversely, $H(M)$ is * congruent to $H(N) \oplus 0_{k-r}$ so $H(N)$ is positive semidefinite and $\operatorname{rank} H(N)=\operatorname{rank} H(M)$. Take $F=-E^{*}$ and $G=I_{n-r}$ in (1), so that $H(X)$ is *congruent to $H(\mathcal{X})=H(N) \oplus I_{n-r}$. For this $X, A X=B, H(X)$ is positive semidefinite, and $H(X)$ is positive definite if $\operatorname{rank} H(M)=r$.

Part (a) of the following corollary was proved in [1, Theorem 2.1].
Corollary 5. (a) There is a square matrix X over \mathbb{F} such that $A X=B$ and X is Hermitian if and only if M is Hermitian.
(b) There is a square matrix X over \mathbb{F} such that $A X=B$ and X is skew-Hermitian if and only if M is skew-Hermitian.

Proof. Necessity in both cases follows from observing that $M=A X A^{*}$. Conversely, choosing $G=0$ and $F= \pm E^{*}$ in (1) proves sufficiency.

The inertia of a Hermitian matrix H is In $H=(\pi(H), \nu(H), \zeta(H))$, in which $\pi(H)$ is the number of positive eigenvalues of $H, \nu(H)$ is the number of negative eigenvalues, and $\zeta(H)$ is the nullity. Since we know the general parametric form (1), the preceding corollaries can be made more specific in the Hermitian cases by describing the inertias that are possible for X given the inertia of M. Our final corollary is an example of such a result.

Corollary 6. Suppose M is Hermitian and $\operatorname{rank} M=\operatorname{rank} B$. Then X may be chosen to be Hermitian with inertia (α, β, γ) if and only if α, β, and γ are nonnegative integers such that $\alpha+\beta+\gamma=n$ and $(\alpha, \beta, \gamma) \geq \operatorname{In} M-(0,0, k-r)$.

Proof. Since $\operatorname{rank} M=\operatorname{rank} B$, the theorem ensures for any $C \in \mathbb{F}^{(n-r) \times(n-r)}$ the existence of an X that is *congruent over \mathbb{F} to $N \oplus C$. Take C to be Hermitian, in which case $\operatorname{In} X=\operatorname{In} N+\operatorname{In} C \geq \operatorname{In} M-(0,0, k-r)$, and all permitted inertias can be achieved by a suitable choice of C. \square

If the rank condition in the preceding corollary is not satisfied, there may be

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 13, pp. 153-156, June 2005

ELA
 ELA

156
R. A. Horn, V. V. Sergeichuk, and N. Shaked-Monderer
further restrictions on the possible set of inertias of A. Consider the example $A=\left[\begin{array}{ll}10\end{array}\right]$, $B=[01], M=[0]$. Any Hermitian solution to $A X=B$ must have the form

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & t
\end{array}\right]
$$

for some real $t \in \mathbb{F}$, and any such matrix has inertia $(1,1,0) \ngtr(0,0,1)$.

REFERENCES

[1] C.G. Khatri and S.K. Mitra. Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math., 31:579-585, 1976.
[2] A. Pinkus. Interpolation by matrices. Electron. J. Linear Algebra, 11:281-291, 2004.

[^0]: ${ }^{\S}$ Received by the editors 11 March 2005. Accepted for publication 31 May 2005. Handling Editor Ravindra B. Bapat.
 *Department of Mathematics, University of Utah, Salt Lake City, Utah 84103, USA (rhorn@math.utah.edu).
 ${ }^{\dagger}$ Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine (sergeich@imath.kiev.ua).
 \ddagger Emek Yezreel College, Emek Yezreel 19300, Israel (nomi@tx.technion.ac.il).

