

SOLUTION OF LINEAR MATRIX EQUATIONS IN A *CONGRUENCE CLASS[§]

ROGER A. HORN*, VLADIMIR V. SERGEICHUK[†], AND NAOMI SHAKED-MONDERER[‡]

Abstract. The possible *congruence classes of a square solution to the real or complex linear matrix equation AX = B are determined. The solution is elementary and self contained, and includes several known results as special cases, e.g., X is Hermitian or positive semidefinite, and X is real with positive definite symmetric part.

Key words. Linear matrix equations, *Congruence, Positive definite matrix, Positive semidefinite matrix, Hermitian part, Symmetric part.

AMS subject classifications. 15A04, 15A06, 15A21, 15A57, 15A63.

1. Introduction. Let \mathbb{F} be either \mathbb{R} or \mathbb{C} , let $\mathbb{F}^{p \times q}$ denote the vector space (over \mathbb{F}) of *p*-by-*q* matrices with entries in \mathbb{F} , and let $A, B \in \mathbb{F}^{k \times n}$ be given. We are interested in the linear matrix equation AX = B, which we assume to be *consistent*: rank $A = \operatorname{rank} [A B]$.

For a given $S \in \mathbb{F}^{n \times n}$ let $S^* \equiv \overline{S}^T$ denote the conjugate transpose, so $S^* = S^T$ if $\mathbb{F} = \mathbb{R}$. Matrices $X, Y \in \mathbb{F}^{n \times n}$ are in the same *congruence class if there is a nonsingular $S \in \mathbb{F}^{n \times n}$ such that $X = S^*YS$. The Hermitian part of $X \in \mathbb{F}^{n \times n}$ is $H(X) \equiv (X + X^*)/2$; when $\mathbb{F} = \mathbb{R}$, H(X) is also called the symmetric part of X. Let I_p (respectively, 0_p) denote the p-by-p identity (respectively, zero) matrix.

When does AX = B have a solution X in a given *congruence class? Special cases of this question involving positive semidefinite or Hermitian solutions were investigated in [1]; [2] asked an equivalent question: If $\{\xi_1, \ldots, \xi_k\}$ and $\{\eta_1, \ldots, \eta_k\}$ are given sets of real or complex vectors of the same size, when is there a Hermitian or positive definite matrix K such that $K\xi_i = \eta_i$ for $i = 1, \ldots, k$?

2. Solution of AX = B in a given *congruence class. Our main result is the following theorem.

THEOREM 1. Let $A, B \in \mathbb{F}^{k \times n}$ be given, and suppose the linear matrix equation AX = B is consistent. Let $r = \operatorname{rank} A$, and let $M = BA^*$. Then there are matrices $N \in \mathbb{F}^{r \times r}$ and $E \in \mathbb{F}^{r \times (n-r)}$ such that:

(a) M is *congruent to $N \oplus 0_{k-r}$.

(b) For each given $F \in \mathbb{F}^{(n-r) \times r}$ and $G \in \mathbb{F}^{(n-r) \times (n-r)}$ there is an $X \in \mathbb{F}^{n \times n}$ such that AX = B and X is *congruent to

$$\left[\begin{array}{cc} N & E \\ F & G \end{array}\right].$$

 $[\]S$ Received by the editors 11 March 2005. Accepted for publication 31 May 2005. Handling Editor Ravindra B. Bapat.

^{*}Department of Mathematics, University of Utah, Salt Lake City, Utah 84103, USA (rhorn@math.utah.edu).

[†]Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine (sergeich@imath.kiev.ua).

 $^{^{\}ddagger} \mathrm{Emek}$ Yezreel College, Emek Yezreel 19300, Israel (nomi@tx.technion.ac.il).

154

R. A. Horn, V. V. Sergeichuk, and N. Shaked-Monderer

(c) If rank $M = \operatorname{rank} B$, then for each given $C \in \mathbb{F}^{(n-r) \times (n-r)}$ there is an $X \in \mathbb{F}^{n \times n}$ such that AX = B and X is *congruent to $N \oplus C$ over \mathbb{F} .

Proof. Using the singular value decomposition, one can construct a unitary $U \in \mathbb{F}^{n \times n}$ and a nonsingular $R \in \mathbb{F}^{k \times k}$ such that

$$RAU = \left[\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array} \right].$$

Consistency ensures that B = AC for some $C \in \mathbb{F}^{n \times n}$, so

$$RBU = (RAU)(U^*CU) = \begin{bmatrix} N & E \\ 0 & 0 \end{bmatrix},$$

in which $N \in \mathbb{F}^{r \times r}$. A matrix $X = U\mathcal{X}U^*$ satisfies AX = B if and only if $\mathcal{X} \in \mathbb{F}^{n \times n}$ has the property that $(RAU)\mathcal{X} = RBU$ if and only if it has the form

(1)
$$\mathcal{X} = \begin{bmatrix} N & E \\ F & G \end{bmatrix}, \qquad G \in \mathbb{F}^{(n-r) \times (n-r)};$$

the entries of F and G may be any elements of \mathbb{F} . Since $RMR^* = RBU(RAU)^* = N \oplus 0_{k-r}$, M is *congruent to $N \oplus 0_{k-r}$.

We have

$$\operatorname{rank} M = \operatorname{rank} N \le \operatorname{rank} [N \ E] = \operatorname{rank} B,$$

so rank $M = \operatorname{rank} B$ if and only if rank $B = \operatorname{rank} N$ if and only if every column of E is in the range of N, that is, if and only if there is a matrix Z over \mathbb{F} such that E = NZ. If rank $M = \operatorname{rank} B$, we may take $X = U\mathcal{X}U^*$, in which

$$\begin{aligned} \mathcal{X} &= \left[\begin{array}{cc} N & NZ \\ Z^*N & Z^*NZ + C \end{array} \right] \\ &= \left[\begin{array}{cc} I_r & Z \\ 0 & I_{n-r} \end{array} \right]^* \left[\begin{array}{cc} N & 0 \\ 0 & C \end{array} \right] \left[\begin{array}{cc} I_r & Z \\ 0 & I_{n-r} \end{array} \right]. \end{aligned}$$

Then AX = B and X is *congruent to $N \oplus C$ over \mathbb{F} .

Several known results follow easily from our theorem. In each of the following corollaries, we use the notation of the theorem and assume that AX = B is consistent.

COROLLARY 2 ([2, Theorem 2.1]). Suppose rank A = k. There is a Hermitian positive definite matrix X over \mathbb{F} such that AX = B if and only if M is Hermitian positive definite.

Proof. The rank condition implies that M is *congruent to N, so N is Hermitian positive definite if M is. The theorem ensures that there is a matrix X over \mathbb{F} such that AX = B and X is *congruent to $N \oplus I_{n-k}$ over \mathbb{F} , so this X is Hermitian positive definite. Conversely, if X is Hermitian positive definite and AX = B, then B and $AX^{1/2}$ have full row rank, so $M = BA^* = AXA^* = (AX^{1/2})(AX^{1/2})^*$ is Hermitian positive definite. \Box

COROLLARY 3 ([1, Theorem 2.2]). There is a Hermitian positive semidefinite matrix X over \mathbb{F} such that AX = B if and only if rank $M = \operatorname{rank} B$ and M is Hermitian positive semidefinite.

Proof. If M is Hermitian positive semidefinite, then so is N. For any Hermitian positive semidefinite $C \in \mathbb{F}^{(n-r)\times(n-r)}$, the theorem ensures that there is a matrix X over \mathbb{F} such that AX = B and X is *congruent to $N \oplus C$ over \mathbb{F} ; such an X is Hermitian positive semidefinite. Conversely, if X is Hermitian positive semidefinite and AX = B, then $M = BA^* = AXA^*$ is Hermitian positive semidefinite, and rank $M = \operatorname{rank} (AX^{1/2})(AX^{1/2})^* = \operatorname{rank} (AX^{1/2}) = \operatorname{rank} AX = \operatorname{rank} B$.

The real case of part (b) in the following corollary was proved in [2, Theorem 2.1] with the restriction that A has full row rank.

COROLLARY 4. (a) There is a square matrix X over \mathbb{F} such that AX = B and H(X) is positive semidefinite if and only if H(M) is positive semidefinite.

(b) There is a square matrix X over \mathbb{F} such that AX = B and H(X) is positive definite if and only if H(M) is positive semidefinite and rank $H(M) = \operatorname{rank} A$.

Proof. Necessity in both cases follows from observing that $H(M) = AH(X)A^* = (AH(X)^{1/2})(AH(X)^{1/2})^*$. Thus, rank $H(M) = \operatorname{rank}(AH(X)^{1/2}) = \operatorname{rank} A$ if H(X) is nonsingular.

Conversely, H(M) is *congruent to $H(N) \oplus 0_{k-r}$ so H(N) is positive semidefinite and rank $H(N) = \operatorname{rank} H(M)$. Take $F = -E^*$ and $G = I_{n-r}$ in (1), so that H(X)is *congruent to $H(\mathcal{X}) = H(N) \oplus I_{n-r}$. For this X, AX = B, H(X) is positive semidefinite, and H(X) is positive definite if rank H(M) = r. \square

Part (a) of the following corollary was proved in [1, Theorem 2.1].

COROLLARY 5. (a) There is a square matrix X over \mathbb{F} such that AX = B and X is Hermitian if and only if M is Hermitian.

(b) There is a square matrix X over \mathbb{F} such that AX = B and X is skew-Hermitian if and only if M is skew-Hermitian.

Proof. Necessity in both cases follows from observing that $M = AXA^*$. Conversely, choosing G = 0 and $F = \pm E^*$ in (1) proves sufficiency.

The inertia of a Hermitian matrix H is In $H = (\pi(H), \nu(H), \zeta(H))$, in which $\pi(H)$ is the number of positive eigenvalues of H, $\nu(H)$ is the number of negative eigenvalues, and $\zeta(H)$ is the nullity. Since we know the general parametric form (1), the preceding corollaries can be made more specific in the Hermitian cases by describing the inertias that are possible for X given the inertia of M. Our final corollary is an example of such a result.

COROLLARY 6. Suppose M is Hermitian and rank $M = \operatorname{rank} B$. Then X may be chosen to be Hermitian with inertia (α, β, γ) if and only if α , β , and γ are nonnegative integers such that $\alpha + \beta + \gamma = n$ and $(\alpha, \beta, \gamma) \ge \operatorname{In} M - (0, 0, k - r)$.

Proof. Since rank $M = \operatorname{rank} B$, the theorem ensures for any $C \in \mathbb{F}^{(n-r) \times (n-r)}$ the existence of an X that is *congruent over \mathbb{F} to $N \oplus C$. Take C to be Hermitian, in which case $\operatorname{In} X = \operatorname{In} N + \operatorname{In} C \geq \operatorname{In} M - (0, 0, k - r)$, and all permitted inertias can be achieved by a suitable choice of C. \Box

If the rank condition in the preceding corollary is not satisfied, there may be

155

Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 13, pp. 153-156, June 2005

156 R. A. Horn, V. V. Sergeichuk, and N. Shaked-Monderer

further restrictions on the possible set of inertias of A. Consider the example $A = [1 \ 0]$, $B = [0 \ 1]$, M = [0]. Any Hermitian solution to AX = B must have the form

$$X = \left[\begin{array}{cc} 0 & 1 \\ 1 & t \end{array} \right]$$

for some real $t \in \mathbb{F}$, and any such matrix has inertia $(1, 1, 0) \neq (0, 0, 1)$.

REFERENCES

- C.G. Khatri and S.K. Mitra. Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math., 31:579–585, 1976.
- [2] A. Pinkus. Interpolation by matrices. Electron. J. Linear Algebra, 11:281–291, 2004.