A NOTE ON THE CP-RANK OF MATRICES GENERATED BY SOULES MATRICES*

NAOMI SHAKED-MONDERER ${ }^{\dagger}$

Abstract

It is proved that a nonnegative matrix generated by a Soules matrix is a completely positive matrix with cp-rank equal to the rank.

Key words. Completely positive matrices, cp-rank, Soules matrices.

AMS subject classifications. 15A23, 15F48.

1. Introduction. An $n \times n$ matrix A is completely positive if it can be represented as a product $A=B B^{T}$ where B is a nonnegative matrix. The cp-rank of a completely positive matrix A is the minimal k for which there exists a nonnegative $n \times k$ matrix B satisfying $A=B B^{T}$. A lot of work has been done on completely positive matrices [2], but the two basic problems are still unsolved: Determining which nonnegative positive semidefinite matrices are completely positive, and computing the cp-ranks of completely positive matrices. As for the second problem, some bounds are known: By the definition, for any completely positive matrix

$$
\operatorname{rank} A \leq \operatorname{cp}-\operatorname{rank} A
$$

However, the cp-rank may be much larger than the rank. It is known that the cprank of a rank r completely positive matrix may be as big as $r(r+1) / 2-1$ (but not bigger) $[1,4]$. The equality cp-rank $A=\operatorname{rank} A$ is known to hold for completely positive matrices of rank at most 2 , or of order at most 3×3, and for completely positive matrices with certain zero patterns $[2,5]$.

An $n \times n$ matrix R is a Soules matrix if it is an orthogonal matrix whose first column is positive, and for every nonnegative diagonal matrix D with nonincreasing diagonal elements the matrix $R D R^{T}$ is nonnegative. Such matrices were introduced in [6], where Soules constructed for any positive vector x an orthogonal matrix R with these properties and with x as its first column. In [3], Elsner, Nabben and Neumann described the structure of all such orthogonal matrices (and named them after Soules). A matrix of the form $R D R^{T}$, where R is a Soules matrix and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, $d_{1} \geq d_{2} \geq \ldots d_{n} \geq 0$, will be called here a nonnegative matrix generated by a Soules matrix.

Observation 1.1. Any $n \times n$ nonnegative matrix A generated by a Soules matrix is completely positive, and cp-rank $A \leq n$.

Proof. Let $A=R D R^{T}$, where R is a Soules matrix and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonnegative diagonal matrix with nonincreasing diagonal elements. Then the matrix $B=R \sqrt{D} R^{T}$, where $\sqrt{D}=\operatorname{diag}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \ldots, \sqrt{d_{n}}\right)$, is also an $n \times n$ nonnegative matrix generated by a Soules matrix, and $A=B B^{T}$.

[^0]In this note we show that the cp-rank of a nonnegative matrix generated by a Soules matrix is actually equal to the rank. The proof is based on the structure of Soules matrices described in [3]. For the description we need some notations (similar, but not identical, to those used in [3]). The set $\{1,2, \ldots, n\}$ will be denoted by $\langle n\rangle$. For any $x \in \mathbb{R}^{n}$ and a set of indices $K \subseteq\langle n\rangle$ let $x_{K}=\left[y_{i}\right]$ be the n-vector defined by

$$
y_{i}= \begin{cases}x_{i} & i \in K \\ 0 & i \notin K\end{cases}
$$

Now consider n partitions $\mathcal{N}_{1}, \mathcal{N}_{2}, \ldots, \mathcal{N}_{n}$ of $\langle n\rangle$, such that \mathcal{N}_{l} is a partition of $\langle n\rangle$ into l disjoint subsets, $N(l, 1), N(l, 2), \ldots, N(l, l)$ and \mathcal{N}_{l+1} is obtained from \mathcal{N}_{l} by choosing $1 \leq k(l) \leq l$ such that $|N(l, k(l))| \geq 2$, and then splitting $N(l, k(l))$ into two disjoint subsets, $N(l+1, k(l)), N(l+1, k(l)+1)$. The rest of the partition sets of \mathcal{N}_{l+1} are the same as those of \mathcal{N}_{l}. That is, for $1 \leq i<k(l), N(l+1, i)=N(l, i)$, and for $k(l)+1<i \leq l+1, N(l+1, i)=N(l, i-1)$. We refer to such a sequence of partitions a sequence of S-partitions of $\langle n\rangle$. Finally, $x_{N(l, j)}$ will be abbreviated as $x_{(l, j)}$, and the j-th column of the matrix A will be denoted by A_{j}.

The description in [3] of Soules matrices can be stated as follows: An $n \times n$ matrix R is a Soules matrix if and only if there exists a positive unit vector x and a sequence of S-partitions $\mathcal{N}_{1}, \mathcal{N}_{2}, \ldots, \mathcal{N}_{n}$ of $\langle n\rangle$ such that

$$
\begin{equation*}
R_{1}=x, \quad \text { and for } j=2, \ldots, n \quad R_{j}=\alpha_{j} x_{(j, k(j-1))}-\beta_{j} x_{(j, k(j-1)+1)}, \tag{1.1}
\end{equation*}
$$

where α_{j} and β_{j} are the unique nonnegative numbers satisfying

$$
\begin{equation*}
\alpha_{j}^{2}\left\|x_{(j, k(j-1))}\right\|^{2}+\beta_{j}^{2}\left\|x_{(j, k(j-1)+1)}\right\|^{2}=1 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{j}\left\|x_{(j, k(j-1))}\right\|^{2}-\beta_{j}\left\|x_{(j, k(j-1)+1)}\right\|^{2}=0 \tag{1.3}
\end{equation*}
$$

Observe that (1.2) guarantees that the norm of R_{j} is 1 , and (1.3) guarantees that the column R_{j} is orthogonal to all its predecessors, so α_{j} and β_{j} are the unique nonnegative numbers making the matrix R defined in (1.1) orthogonal.
2. The cp-rank of Completely Positive Matrices Generated by Soules Matrices. We prove the following theorem:

Theorem 2.1. Let A be an $n \times n$ nonnegative matrix generated by a Soules matrix, then cp-rank $A=\operatorname{rank} A$.

Proof. The matrix A is of the form $A=R D R^{T}$, where R is an $n \times n$ Soules matrix, and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{r}, 0, \ldots, 0\right), d_{1} \geq d_{2} \geq \ldots \geq d_{r}>0$. As mentioned in Observation 1.1, A is completely positive. We will show that $A=B B^{T}$ where B is an $n \times r$ nonnegative matrix. Let

$$
\tilde{R}=\left(R_{1} \ldots R_{r}\right), \quad \tilde{D}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{r}\right)
$$

Then $A=\tilde{R} \tilde{D} \tilde{R}^{T}$. Since complete positivity and cp-rank are not affected by simultaneous permutation of rows and columns, we may assume for convenience that each

ELA

N. Shaked-Monderer

of the partitions sets $N(r, i)$ consists of consecutive integers and $N(r, i+1)$ consists of subsequent consecutive integers, that is

$$
N(r, 1)=\left\{1, \ldots, l_{1}\right\}, N(r, 2)=\left\{l_{1}+1, \ldots, l_{2}\right\}, \ldots, N(r, r)=\left\{l_{r-1}+1, \ldots, n\right\}
$$

Thus for $j=1, \ldots, r, x_{(r, j)}$ is of the form

$$
x_{(r, j)}=\left[\begin{array}{c}
0 \\
\bar{x}_{(r, j)} \\
0
\end{array}\right],
$$

where $\bar{x}_{(r, j)}$ is the vector in $\mathbb{R}^{l_{j}-l_{j-1}}$ consisting of the nonzero entries in $x_{(r, j)}$. For simplicity we denote $v^{i}=\bar{x}_{(r, i)}, i=1, \ldots, r$. Then

$$
\tilde{R}=\left[\begin{array}{ccccc}
v^{1} & \gamma_{12} v^{1} & \gamma_{13} v^{1} & \ldots & \gamma_{1 r} v^{1} \\
v^{2} & \gamma_{22} v^{2} & \gamma_{23} v^{2} & \ldots & \gamma_{2 r} v^{2} \\
\vdots & \vdots & \vdots & & \vdots \\
v^{r} & \gamma_{r 2} v^{r} & \gamma_{r 3} v^{r} & \ldots & \gamma_{r r} v^{r}
\end{array}\right],
$$

where for $i=1, \ldots, r$ and $j=2, \ldots, r$

$$
\gamma_{i j}=\left\{\begin{aligned}
\alpha_{i} & \text { if } N(r, i) \subseteq N(j, k(j-1)) \\
-\beta_{i} & \text { if } N(r, i) \subseteq N(j, k(j-1)+1) \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Now let S be the $n \times r$ nonnegative matrix

$$
S=\left[\begin{array}{cccc}
\frac{v^{1}}{\left\|v^{1}\right\|} & 0 & 0 & 0 \\
0 & \frac{v^{2}}{\left\|v^{2}\right\|} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \frac{v^{r}}{\left\|v^{r}\right\|}
\end{array}\right]
$$

and let C be the $r \times r$ matrix

$$
C=\left[\begin{array}{ccccc}
\left\|v^{1}\right\| & \gamma_{12}\left\|v^{1}\right\| & \gamma_{13}\left\|v^{1}\right\| & \ldots & \gamma_{1 r}\left\|v^{1}\right\| \\
\left\|v^{2}\right\| & \gamma_{22}\left\|v^{2}\right\| & \gamma_{23}\left\|v^{2}\right\| & \ldots & \gamma_{2 r}\left\|v^{2}\right\| \\
\vdots & \vdots & \vdots & & \vdots \\
\left\|v^{r}\right\| & \gamma_{r 2}\left\|v^{r}\right\| & \gamma_{r 3}\left\|v^{r}\right\| & \ldots & \gamma_{r r}\left\|v^{r}\right\|
\end{array}\right] .
$$

Since the columns of \tilde{R} are orthonormal, so are the columns of C, so C is an orthogonal matrix. The first column of C is the positive vector

$$
v=\left[\begin{array}{c}
\left\|v^{1}\right\| \\
\left\|v^{2}\right\| \\
\vdots \\
\left\|v^{r}\right\|
\end{array}\right] .
$$

The r partitions $\mathcal{N}_{1}, \mathcal{N}_{2}, \ldots, \mathcal{N}_{r}$ of $\langle n\rangle$ induce a sequence $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{r}$ of Spartitions of $\langle r\rangle$ defined by:

$$
M(l, j)=\{i \in\langle r\rangle \mid N(r, i) \subseteq N(l, j)\}
$$

In particular, observe that

$$
N(l, k(l))=N(l+1, k(l)) \cup N(l+1, k(l)+1)
$$

implies that

$$
M(l, k(l))=M(l+1, k(l)) \cup M(l+1, k(l)+1),
$$

and that for $j=2, \ldots, r$

$$
C_{j}=\alpha_{j} v_{(j, k(j-1))}-\beta_{j} v_{(j, k(j-1)+1)},
$$

where

$$
v_{(l, i)}=v_{M(l, i)} .
$$

Hence C is an $r \times r$ Soules matrix. By Observation 1.1, $C \tilde{D} C^{T}$ is a completely positive matrix with cp-rank at most r. That is, $C \tilde{D} C^{T}=\tilde{B} \tilde{B}^{T}$ for some nonnegative $r \times r$ matrix \tilde{B}. But $\tilde{R}=S C$ and $A=\tilde{R} \tilde{D} \tilde{R}^{T}$, hence $A=B B^{T}$, where $B=S \tilde{B}$ is a nonnegative $n \times r$ matrix. (By the proof of Observation 1.1, we may take $B=$ $\left.S C \sqrt{\tilde{D}} C^{T}\right)$.

Acknowledgment Thanks are due to an anonymous referee for helpful comments.

REFERENCES

[1] F. Barioli and A. Berman. The maximal cp-rank of rank k completely positive matrices. Linear Algebra Appl., 363:17-33, 2003.
[2] A. Berman and N. Shaked-Monderer. Completely Positive Matrices. World Scientific, New Jersey, 2003.
[3] L. Elsner, R. Nabben, and M. Neumann. Orthogonal bases that lead to symmetric nonnegative matrices. Linear Algebra Appl., 271:323-343, 1998.
[4] J. Hannah and T. J. Laffey. Nonnegative factorization of completely positive matrices. Linear Algebra Appl., 55:1-9, 1983.
[5] N. Shaked-Monderer. Minimal cp rank, Electron. J. Linear Algebra, 8:140-157, 2001.
[6] G. W. Soules. Constructing symmetric nonnegative matrices. Linear and Multilinear Algebra, 13: 241-251, 1983.

[^0]: ${ }^{*}$ Received by the editors 16 July 2004. Accepted for publication 18 August 2004. Handling Editor: Abraham Berman.
 ${ }^{\dagger}$ Emek Yezreel College, Emek Yezreel 19300, Israel (nomi@tx.technion.ac.il).

