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REACHABILITY INDICES OF POSITIVE LINEAR SYSTEMS∗
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Abstract. It is well known that positive linear systems have differences in the concepts and
characterizations of the structural properties of reachability and controllability. In this paper, the
reachability indices of a positive system are defined and consequently they are studied. For that, a
canonical form of the reachability indices is given by positive similarity. From that canonical form, it
is established that the reachability indices are invariant by positive similarity. At the end, a complete
sequence of invariants of a canonical reachability system is given.
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1. Introduction. Consider a discrete–time linear system

x(k + 1) = Ax(k) +Bu(k),(1.1)

where A ∈ R
n×n, B ∈ R

n×m, k ∈ Z. This system is denoted by (A,B).
The system (A,B) is positive if for all nonnegative initial state x(0) ≥ 0 and for

all nonnegative control or input sequences {u(j)} ≥ 0, j ≥ 0, the trajectory of the
system is nonnegative, i.e. x(k) ≥ 0, for all k ≥ 0. As usual we denote the positive
system (1.1), by (A,B) ≥ 0. It is well–known that the system (A,B) is positive if
and only if A ∈ R

n×n
+ and B ∈ R

n×m
+ ; see for instance [6] and [10].

In the case of positive systems, positive reachability from zero property is charac-
terized when the reachability cone of the system at time n coincides with the positive
orthant cone. In addition, it is well known that the positive controllability prop-
erty of the system is equivalent to the positive reachability from zero joint with the
nilpotence of the state matrix A; see [3] and [5] and the references therein.

Canonical forms have been established for positively reachable discrete–time sys-
tems; see [1]. These canonical forms characterize a positive system when it is positively
reachable. The reachability indices have been studied by many authors for systems
without restrictions. A summary of this topic is given in [9] and [12]. The invariance
of the set of indices in a similarity class is studied in [16] and necessary and sufficient
conditions to assign invariant factors of the system under state feedback are given
[15]. In [4], the indices for descriptor systems are analyzed. In [11] monomial indices
are used for pole–assignment of positive linear systems and in [7] a complete set of
invariants for nonnegative unitary operators are introduced. It is worth noting that
the reachability and controllability properties of linear time–continuous positive sys-
tems are widely studied for different authors (see for instance [10]) so for this kind of
systems an extension of the results of this paper could be studied.
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†Institut de Matemàtica Multidisciplinar. Departament de Matemàtica Aplicada, Uni-
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In this paper, a set of indices related to the positive reachability property are
introduced for positive systems. It is known that the construction of the reachabil-
ity indices of a general system follows from Brunovsky indices but in the positive
case many difficulties appear because the characterization of the positive reachability
property is given in terms of cones as it is said before.

The characterization of positive similarity of two systems is given in section 2.
The positive reachability indices of positive systems are introduced in section 3. From
those indices a canonical form of reachability indices is constructed in section 4.
Finally, a sequence of invariants (and a complete sequence) of that canonical form is
given in section 5. Some examples illustrate the different concepts and results given
in this work.

In order to notice the difference among properties of the system (1.1) with and
without nonnegative restrictions we recall the reachability concepts in both cases.

Definition 1.1. Consider the system (1.1).
(a) (A,B) is reachable (from 0) if for every final state xf ∈ R

n there exists a
finite input sequence transferring the state of the system from the origin to
xf .

(b) (A,B) ≥ 0 is positively reachable (from 0) if for every final state xf ∈ R
n
+

there exists a finite nonnegative input sequence transferring the state of the
system from the origin to xf .

The reachability characterizations are given as follows:
(a) the general system (A,B) is reachable if and only if, the reachability matrix

Rn(A,B) =
[
B | AB | . . . | An−1B

]
has full rank,
(b) the positive system (A,B) ≥ 0 is positively reachable if and only if Rn(A,B)
contains a monomial submatrix of order n, that is, there are n distinct monomial vec-
tors; see [6]. Recall that a monomial vector is a (nonzero) multiple of some unit basis
vector, and a monomial matrix M is a matrix whose columns are distinct monomial
vectors, and can be decomposed as M = DP where D is a diagonal matrix and P is
a permutation matrix.

The sequence of positively reachable vectors at time j is the cone Rj(A,B) gen-
erated by the column vectors of the matrix

Rj(A,B) =
[
B | AB | . . . | Aj−1B

]
and a positive system is reachable if and only if Rn(A,B) is the positive orthant.

The general reachability property is preserved under similarity transformations,
and canonical systems of each equivalent class of reachable systems can be con-
structed; see [2]. However, as is pointed out in the following section, two similar
positive systems are not necessarily both positively reachable.

2. Similar positively reachable systems. It is well-known that the system
(A,B) is similar to the system (Â, B̂) if there exists a nonsingular matrix T such that

Â = T−1AT, B̂ = T−1B.
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As it was mentioned the reachability property, for general systems, is transferred under
similarity transformations. However, things are different with positive restrictions.
Let consider the following example.

Example 2.1. Consider the positive system

A =
[
4 1
0 0

]
, B =

[
0
1

]
.

It is easy to check that this system is positively reachable, since the reachability
matrix R2(A,B) = [B | AB] contains a monomial submatrix of order 2.

If for instance, we use the transformation matrix

T =
[

2 0
−3 1

]
,

whose inverse is

T−1 =

[
1
2 0
3
2 1

]
,

then, the similar system (T−1AT, T−1B), given by

T−1AT =

[ 5
2

1
2

15
2

3
2

]
and T−1B =

[
0
1

]

remains positive but, it is not positively reachable (the reachability matrix does not
contain a monomial submatrix of order 2). Note that the transformation T preserves
the positiveness of the system, but it does not transfer the positive reachability prop-
erty. However, considering both systems as general systems, without restrictions,
both of them are reachable.

This fact, together with the construction of canonical systems in [1] by similarity
permutation, motivates us to consider a special similarity concept for positive systems
(in [8] the concept of similar matrices by a monomial matrix was introduced).

Definition 2.2. Two positive systems (A,B) and (Â, B̂) are positively similar
if there exists a square nonnegative monomial matrix M satisfying

Â = M−1AM and B̂ = M−1B.

The following property, of invertible nonnegative matrices, is used in the proof of
Theorem 2.4.

Remark 2.3. (see [13]) The only nonnegative matrices having nonnegative in-
verses are monomial.

Next, we give a characterization of two positively similar systems.
Theorem 2.4. Let (A,B) ≥ 0 be a positively reachable system similar to the

system (Â, B̂) ≥ 0. Then, the system (Â, B̂) is positively reachable if and only if both
systems are positively similar.
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Proof. First, since the positive system (Â, B̂) is similar to the positive system
(A,B), there exits an invertible matrix M such that Â = M−1AM and B̂ = M−1B.
Therefore, the reachability matrices of both systems are related by

Rn(Â, B̂) =
[
M−1B | M−1AMM−1B | . . . | M−1An−1MM−1B

]
= M−1

[
B | AB | . . . | An−1B

]
= M−1Rn(A,B).

Thus,

Rn(Â, B̂) = M−1Rn(A,B) ≥ 0.(2.1)

Since (A,B) is positively reachable, Rn(A,B) contains a monomial submatrix of size
n, and hence the matrix M−1 is nonnegative.

Suppose that the two considered systems are positively similar, in which case,
M is a nonnegative monomial matrix. By Definition 2.2 and by the remark, M−1

is monomial. Then, from this fact and equation (2.1) the reachability matrix of the
system (Â, B̂) contains a monomial submatrix of order n, and hence that system is
positively reachable.

Conversely, consider the positively reachable system (Â, B̂). By the above remark,
it suffices to prove that the matrix M is nonnegative. Since Rn(Â, B̂) contains a
monomial submatrix of size n, using equation (2.1) there exist n columns of the type
M−1col(AkB) = αiei, with αi > 0, i = 1, . . . , n. Therefore, αicoliM = αiMei =
col(AkB) ≥ 0. Hence, M ≥ 0.

3. Positive reachability indices. Recall that for a system without restrictions
(A,B) the r-numbers or Brunovsky numbers are defined as (see [2])

rj = rankRj(A,B) − rankRj−1(A,B), j = 1, 2, . . . , n,

where R0(A,B) = 0. It is clear that r1 ≥ r2 ≥ · · · ≥ rn. From this sequence the
reachability indices are defined as

ki = card{j : rj ≥ i}, i = 1, 2, . . . ,m,

where the symbol “card” denotes the cardinal of a sequence. The nonnegative se-
quence {k1, k2, . . . , km} is a nonincreasing sequence, and it is the dual sequence of
the Brunovsky numbers; see for instance [12]. The sum of the reachability indices is
less than or equal to the dimension of the space n. When that sum is n the pair is
reachable.

For the pair (A,B), where B = [b1 | b2 | b3 | . . . | bm] the reachability indices can
be obtained from the linearly independent vectors with respect to the precedent rows
in the table:

b1 b2 b3 . . . bm

B × × ⊗ . . . ×
AB × × . . . ⊗
A2B × ⊗ . . .
...

...
An−1B ⊗
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where the symbol × denotes a linearly independent vector with respect to the previ-
ously considered vectors (in the same and the previous rows) and the symbol ⊗ stands
for the linearly dependent vectors. Then, we can consider the following sequence

S = {b1, Ab1, . . . , Ak′
1−1b1, b2, Ab2, . . . , Ak′

2−1b2,

. . . , bm, Abm, . . . , Ak′
m−1bm}

formed by m chains of length k′i of linearly independent vectors, obtained from the
columns bi, for all i = 1, 2, . . . ,m, in the reachability matrix. Then, the reachabil-
ity indices {k1, k2, . . . , km} are the ordered sequence obtained from the sequence
{k′1, k′2, . . . , k′m}. Note that the way of constructing the reachability indices is sim-
ilar to the characterization of the reachability property in terms of the rank of the
reachability matrix. Then, when the pair (A,B) is reachable the sequence of vectors
S is a basis of R

n constructed from the column vectors of Rn(A,B).
Now, let us focus on a positive pair (A,B). In this case, as we mentioned in

the introduction the characterization of positive reachability is given in terms of the
monomial vectors of the Rn(A,B). Then, the attention must be addressed to detect
the monomial columns in this matrix.

Denoting by monRj(A,B) the number of distinct monomial columns (up to scalar
multiples) of the matrix Rj(A,B), we give the following definition.

Definition 3.1. Consider the positive system (A,B). The differences

mj = monRj(A,B) −monRj−1(A,B), j = 1, 2, . . . , n,

where R0(A,B) = 0 are called the m–numbers of the system (A,B).
The dual sequence of the m–numbers is denoted by

di = card{j : mj ≥ i}, i = 1, 2, . . . ,m.

In the next example we show that the reachability indices {k1, k2, . . . , km} cannot
coincide with the sequence {d1, d2, . . . , dm}.

Example 3.2. Let the system (A,B) where

A =


 1 0 1

0 0 0
0 0 0


 , B =


 0 1

0 1
1 0


 .

For each j, j = 1, 2, 3, we construct the reachable matrix Rj(A,B). Then, it is easy
to check that the r-numbers are {2, 1, 0}. Hence the sequence of reachability indices,
{k1, k2} is {2, 1}.

If now we consider the different monomial vectors in the reachability matrices,
then the m-numbers are {1, 1, 0} and its dual sequence {d1, d2} is {2, 0}.

Note that this system is reachable in the general sense (without restrictions) but
is not positively reachable.

Let the system (A,B) ≥ 0 where B = [b1 | b2 | b3 | . . . | bm]. We try to proceed
as before with the systems without restrictions. Tracking the columns of B, consider
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all distinct monomial vectors (up to scalar multiples), with respect to the previously
considered vectors (in the same and the previous rows). Note that the considered
vectors are in the generator vector sequences of the cones Rj(A,B), j = 1, 2, . . . , n.
In the following table

b1 b2 b3 . . . bm

B × × ⊗ . . . ×
AB × × × . . . ⊗
A2B ⊗ × . . . ⊗
A3B × ×
...

...
An−1B

the symbol × denotes distinct monomial vectors and ⊗ denotes the remaining vectors
(monomial or nonmonomial). As is displayed in the table, there are examples where
a monomial vector can appear after a nonmonomial vector; see Example 3.4. In this
case, α will denote the first power of A which provides the new monomial vector.
Then, we consider the following sequence of distinct monomial vectors

S = S1 ∪ S2 ∪ · · · ∪ · · ·Sm,

where, for i = 1, 2, . . . ,m,

Si = {Aα1ibi, Aα1i+1bi, . . . , Aα1i+p1i−1bi︸ ︷︷ ︸
S1i

,

Aα2ibi, Aα2i+1bi, . . . , Aα2i+p2i−1bi︸ ︷︷ ︸
S2i

,

. . .(3.1)
Aαliibi, Aαlii+1bi, . . . , Aαlii+plii−1bi︸ ︷︷ ︸

Slii

}

is the sequence of all distinct monomial vectors obtained from the column vector bi

in the reachability matrix, and it is the union of li subsequences Ski, i = 1, 2, . . . ,m,
k = 1, . . . , li. Each subsequence Ski is formed by a chain of length pki of distinct
monomial vectors, k = 1, . . . , li, and αki denotes the first power of A which provides
the first monomial vector.

Note that

pi = p1i + p2i + · · ·+ plii, i = 1, . . . ,m,(3.2)

is the number of distinct monomial vectors obtained from the ith column bi. Then
we give the following definition.

Definition 3.3. Given the system (A,B) ≥ 0. The indices

{p11, p21, . . . , pl11; p12, p22, . . . , pl22; . . . ; p1m, p2m, . . . , plmm}
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are called the p–numbers of the positive system (A,B). In the following example, note
that the dual sequence of m–numbers and the sequence of p–numbers can be distinct.
This fact shows again the differences between systems with or without nonnegative
restrictions.

Example 3.4. Let (A,B) ≥ 0 where,

A =




0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1 0 0




B =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0




with n = 12 and m = 4. Constructing the above table, the different monomial vectors
are (ei denotes the ith canonical vector of R

n)

b1 b2 b3 b4
B e1 e2 e3 e10

AB e4 e6 e5 e11 + e12

A2B e5 e7 + e3 e9 e11

A3B e9 e8 + e5 e12

A4B e12 e7 + e9

A5B e8 + e12

A6B e7

A7B e8

which are in the reachability matrix R12(A,B).
According to the Definition 3.1, the m–numbers are {4, 3, 2, 1, 0, 0, 1, 1, 0, 0, 0, 0}.

The corresponding dual sequence is {6, 3, 2, 1}.
The sequences Si, i = 1, 2 . . . , 4 are

S1 = {b1, Ab1} = {e1, e4},

S2 = S12

⋃
S22 = {b2, Ab2

...A6b2, A
7b2} = {e2, e6, e7, e8},

S3 = {b3, Ab3, A
2b3, A

3b3} = {e3, e5, e9, e12},

S4 = S14

⋃
S24 = {b4

...A2b4} = {e10, e11},
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and the p–numbers are {2; 2, 2; 4; 1, 1}; see Definition 3.3. Observe that the sequence
of p–numbers does not coincide with the dual sequence of the m–numbers.

Remark 3.5. As the above example shows, in general, the sequence of p–numbers
does not coincide with the dual sequence of the m–numbers. However, both sequences
coincide when, in each column of the table, all distinct monomial vectors are obtained
consecutively.

Following the construction of the reachability indices of a general system from the
Brunovsky numbers and bearing in mind the above remark, the positive reachability
indices are introduced as follows.

Definition 3.6. Let (A,B) be a positive system. Consider the numbers pi, i =
1, 2, . . . ,m given in the equation (3.2) ordered as pi1 ≥ pi2 ≥ · · · ≥ pim . The sequence
of p–numbers of this system ordered for each r = 1, 2, . . . ,m in a nonincreasing order

pj1ir ≥ pj2ir ≥ · · · ≥ pjlir ,

is said to be the sequence of positive reachability indices of the positive system (A,B).
Remark 3.7. If card(Si) = card(Sj), i �= j, the indices of Si will be reordered

before those of Sj when i ≥ j or Si has less subsequences than Sj .
We have the following positive reachability characterization.
Theorem 3.8. The system (A,B) ≥ 0 is positively reachable if and only if,

p1 + p2 + · · ·+ pm = n.
Proof. If the pair (A,B) is positively reachable the reachable matrix Rn(A,B)

contains n distinct monomial vectors (up to scalar) which are considered in the se-
quences Si, i = 1, 2, . . . ,m, then p1 + p2 + · · ·+ pm = n.

Conversely, if p1 + p2 + · · · + pm = n, it is clear that the sequence of distinct
monomial vectors

S = S1 ∪ S2 ∪ · · · ∪ Sm

is a generator sequence of the cone R
n
+, and hence the system (A,B) is positively

reachable.
Let us illustrate the above definition and theorem with an example.
Example 3.9. Consider the system from the Example 3.4. Then, the positive

reachability indices are {4; 2, 2; 2; 1, 1}. The sum of all reachability indices is 12 and
thus, the system (A,B) is positively reachable. The reachability matrix R12(A,B)
contains a monomial submatrix of order 12.

4. Canonical form. The choice of the positive reachability indices given in Def-
inition 3.6 is basic for the study of canonical forms of positively reachable systems.
Due to the canonical forms given in the literature (see [1]) were constructed for char-
acterizing when a positive system is positively reachable, they are not related to these
positive reachability indices. In this section a canonical form is constructed such that
the sequence of the sizes of its diagonal blocks coincides with the sequence of posi-
tive reachability indices. Moreover, in the last section, using this canonical form we
will show that the positive reachabilility indices are a sequence of invariants under
monomial transformations.
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Theorem 4.1. Let (A,B) ≥ 0 be positively reachable and the sequence

{p11, p21, . . . , pl11; p12, p22, . . . , pl22; . . . ; p1m, p2m, . . . , plmm}
its positive reachability indices. Then, there exists a nonnegative monomial matrix
MS such that the positive similar system Ac = M−1

S AMS and Bc = M−1
S B has

Ac =
[
Acij

]m

i,j=1
structured in blocks as follows:

a) for each i = 1, 2, . . . ,m, the diagonal block Acii has order pi from (3.2).
Moreover, Acii =

[
Ahk

cii

]li

h,k
, where for each h, k = 1, 2, . . . , li, the diagonal

block Ahh
cii

has order phi and it is


0 0 · · · 0 ∗
1 0 0 ∗
0 1

. . . 0 ∗
...

...
. . .

...
...

0 0 · · · 1 ∗




and the nondiagonal block Ahk
cii

has size phi × pki and it is
 0 · · · 0 ∗

...
...

...
0 · · · 0 ∗


 ,(4.1)

where phi (pki) is the hth (kth) index of the ith subsequence of the sequence
of reachability indices, and the symbol ∗ denotes a nonnegative entry.

b) for each i, j = 1, 2, . . . ,m, i �= j, the off diagonal block, Acij is decomposed
in blocks of appropriated sizes and with the structure given in (4.1).

Proof. From each column vector bi, consider the pi distinct monomial vectors
of the sequence Si, i = 1, 2, . . . ,m; see (3.1). Without loss of generality, consider
these sequences of vectors ordered according to Definition 3.6, that is, the sequences
of vectors Si are arranged in a nonincreasing order of its cardinals pi. And, in each
sequence Si, the subsequences of vectors Ski, k = 1, 2, . . . , li, are ordered in a non-
increasing order of its cardinals pki, k = 1, 2, . . . , li. Now, denote by MS the n × n
matrix whose columns are the vectors of all ordered sequences S1, S2, . . . , Sm. This
matrix is monomial and nonsingular; see Theorem 3.8.

Since the column vectors ofMS are of type Aαbi, the columns of AMS are Aα+1bi,
and thus, they are in the same sequence Ski, except the last vector of each chain.
Note that these last vectors are nonnegative linear combination of all columns of MS .
Therefore, the matrix M−1

S AMS has a block structure with the diagonal blocks given
in part a.1) and the off diagonal blocks given in part a.2).

Thus, the pair (Ac, Bc)=(M−1
S AMS ,M

−1
S B) has the desired structure.

The system (Ac, Bc) obtained in above theorem will be called the canonical form
of the positive reachability indices of the positive system (A,B). It is worth noting
that the sizes of the diagonal blocks of the matrix Ac are the positive reachability
indices of the system.
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Next, we illustrate Theorem 4.1 in the following example.
Example 4.2. Consider the system given in Example 3.4. Since the positive

reachability indices are {4; 2, 2; 2; 1, 1} (see Example 3.9), the matrix MS associated
with the sequences Si reordered according to the proof is

MS =
[
e3 e5 e9 e12 | e2 e6

... e7 e8 | e1 e4 | e10

... e11

]
,

where the sequences Si are ordered as follows

MS =
{
S3 |S12

...S22|S1|S14

...S24

}
.

Thus, the canonical form [Ac ‖Bc], for this example is given by


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

0 1
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 1
0 0
0 0

0 0
0 0
0 0
1 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0
1 0

0 0
0 0

0 1
0 0

0 1
1 0

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0
0 0

0 0
0 0

0 0
1 0

0 0
0 0

0 0 0 0
0 0 0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
1 1

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0




.

Before studying the sequences of invariants, all results are computed with a new
example, in which, all possibilities appear when ordering the sequences Si. In ad-
dition, a sequence of distinct monomial vectors is constructed from a nonmonomial
column of B.

Example 4.3. Let (A,B) ≥ 0 where,

A =




0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0




, B =




0 2 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1



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with n = 12 and m = 5.
The different monomial vectors are

b1 b2 b3 b4 b5

B e12 2e1 e3 + 2e7 e3 e5 + e12

AB 6e4 2e5 + 2e8 2e5 e9

A2B 6e6 + 6e12 2e9 + 2e7 2e9 e11

A3B 12e2 2e11 + 2e8 2e11 2e10

A4B 12e6 4e10 + 2e7 4e10 2e12

A5B 24e2 4e12 + 2e8 4e12

A6B 24e6 2e7

A7B 48e2 2e8

which are in the reachability matrix R12(A,B).
The sequences Si, i = 1, 2 . . . , 5 are

S1 = {b1} = {e12},

S2 = S12

⋃
S22 = {b2, Ab2

...A3b2, A
4b2} = {2e1, 6e4, 12e2, 12e6},

S3 = {A6b3, A
7b3} = {2e7, 2e8},

S4 = {b4, Ab4} = {e3, 2e5},

S5 = {Ab5, A
2b5, A

3b5} = {e9, e11, 2e10},

and the p–numbers are {1; 2, 2; 2; 2; 3}; see Definition 3.3. Ordering this sequence
according to Definition 3.6, the positive reachability indices are

{2, 2; 3; 2; 2; 1}.

This reordering yields to the following ordered sequences {S12

...S22, |S5 |S3 |S4 |S1}.
Then, the matrix MS is

MS = [2e1 6e4

... 12e2 12e6 | e9 e11 2e10 | 2e7 2e8 | e3 2e5 | e12].
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Thus, the canonical form [Ac‖Bc] of the system is


0 0
1 0

0 0
0 0

0 0
0 1

2

0 2
1 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

0
0
0
0

0 0
0 0
0 0

0 0
0 0
0 0

0 0 0
1 0 0
0 1 0

0 0
0 0
0 0

0 2
0 0
0 0

0
0
0

0 0
0 0

0 0
0 0

0 0 0
0 0 0

0 1
1 0

0 0
0 0

0
0

0 0
0 0

0 0
0 0

0 0 0
0 0 0

0 0
0 0

0 0
1 0

0
0

0 6 0 0 0 0 2 0 0 0 0 0

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 1

2

1 0 0 0 1




.

5. Sequence of invariants. First, note that the positive reachability indices
are invariant under positive monomial transformations.

Theorem 5.1. The positive reachability indices defined in Definition 3.6 are
invariants under positive monomial transformations.

Proof. Consider two similar positively reachable systems (A,B) and (Â, B̂),
with positive reachability indices {pij , j = 1, . . . ,m, i = 1, . . . , lj} and {p̂ij, j =
1, . . . ,m, i = 1, . . . , lj}. These two systems are related by

Â = M−1AM B̂ = M−1B,(5.1)

where M is a nonnegative monomial matrix. Then, the directed digraph of Â is
isomorphic to the directed digraph of A, since the transformation M is a permutation
matrix (up to scalars) with the sequence of vertices reordered.

Therefore, if Aαbi is a monomial column of Rn(A,B), then M−1Aαbi is a mono-
mial column ofRn(Â, B̂), and thus, monomial vectors in the two reachability matrices
Rn(A,B) andRn(Â, B̂) appear in the same positions. Then, each column of both ma-
trices B and B̂ may provide the same chain of monomial vectors, up to the reordering
the vertices. Hence,

{pij = p̂ij , j = 1, . . . ,m, i = 1, . . . , lj}

and then, the positive reachability indices are invariant under positive monomial
transformations.

However, the sequence of positive reachability indices

{pij , j = 1, . . . ,m, i = 1, . . . , lj}

is not a complete system of invariants for nonnegative monomial transformations.
There are positive systems with the same positive reachability indices, but they are
not in the same equivalence class of positive similarity. We illustrate this assertion
with the following example.
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Example 5.2. Consider the two positive systems

A =


 0 0 1

1 0 0
0 0 0


 , B =


 1 0

0 0
0 1




and

F =


 0 0 0

1 0 0
0 0 0


 , G =


 1 0

0 0
0 1


 .

It is easy to check that they are not positively similar. However, from the tables

(A,B) (F,G)

b1 b2
B e1 e3

AB e2 e1

g1 g2

G e1 e3

FG e2 0

both systems have the same positive reachability indices

{p11 = p̂11, p21 = p̂21} = {2; 1}.
In order to find a complete system of invariants we give the following result.

Theorem 5.3. Two positively similar positive reachable systems have the same
canonical form constructed in Theorem 4.1.

Proof. Consider two positively reachable systems (A,B) and (Â, B̂) as in (5.1),
and denote by MS and MŜ the matrices which transform the systems (A,B) and
(Â, B̂) in its canonical forms, respectively; see Theorem 4.1. Reasoning in the same
way as in Theorem 5.1, the column vectors of MŜ are the transformed column vectors
of MS under the nonnegative monomial matrix M . Thus, MŜ = M−1MS and the
canonical forms

Âc = M−1

Ŝ
ÂMŜ = M−1

S MÂM−1MS = M−1
S AMS = Ac,

B̂c = M−1

Ŝ
B̂ = M−1

S MB̂ = M−1
S B = Bc

are equal.
We illustrate the above result with the following example.
Example 5.4. Consider the positive systems

A =


 0 1 0

0 4 2
3 0 0


 , B =


 2 0

0 0
0 3




and

Â =




0 0 3
3
5

0 0

0
10
3

0


 , B̂ =




2 0

0
3
5

0 0


 .
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It is easy to check that they are positively similar under the monomial matrix

M =


 1 0 0

0 0 3
0 5 0




From the tables

b1 b2

B 2e1 3e3

AB 6e3 6e2

b̂1 b̂2

B̂ 2e1
3
5
e2

ÂB̂
6
5
e2 2e3

the matrices MS = [3e3 6e2|2e1] and MŜ =
[
3
5
e2 2e3|2e1

]
transform the systems

(A,B) and (Â, B̂) into the canonical forms (Ac, Bc) and (Âc, B̂c), respectively. It can
be seen that these canonical forms are equal and are given by

Ac = Âc =


 0 0 2

1 4 0
0 3 0


 , Bc = B̂c =


 1 0

0 0
0 1


 .

It is clear that when two systems have the identical canonical form, these sys-
tems are positively similar and they have the same reachability indices and the same
nonzero entries, denoted by the symbol ∗, in that canonical form. Therefore, the
following corollary can be established with the help of Theorems 5.1 and 5.3.

Corollary 5.5. A complete sequence of invariants of positively similar positive
reachable systems is formed by the positive reachable indices {pij , i = 1, . . . , lj, j =
1, . . . ,m} and the possible nonzero pattern of the blocks of the canonical form given
in Theorem 4.1.

Popov in [14] provides a complete sequence of invariants for systems without
restrictions. This sequence is formed by the reachability indices and the nonzero
entries of the state matrix. In Corollary 5.5, a complete sequence of invariants for
positive systems is obtained. The structure of this complete sequence is in the Popov
sense, that is, is formed by the positive reachable indices and the nonzero entries of
the canonical form.
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