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MATRIX INEQUALITIES BY MEANS OF EMBEDDING∗
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Abstract. In this expository study some basic matrix inequalities obtained by embedding
bilinear forms 〈Ax, x〉 and 〈Ax, y〉 into 2 × 2 matrices are investigated. Many classical inequalities
are reproved or refined by the proposed unified approach. Some inequalities involving the matrix
absolute value |A| are given. A new proof of Ky Fan’s singular value majorization theorem is
presented.
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1. Introduction. It has been evident that 2×2, ordinary or partitioned, matri-
ces play an important role in various matrix problems. For example, the well-known
Toeplitz-Hausdorff Theorem on the convexity of numerical range can be proved by a
reduction to the 2 × 2 case; see, e.g., [6, p. 18]. While the sets of values x∗Ax and
y∗Ax with some constraints on vectors x and y have been extensively studied as nu-
merical ranges or fields of values, we shall inspect a number of matrix equalities and
inequalities that involve the quadratic terms x∗Ax and x∗Ay through the standpoint
of embedding, where ∗ denotes conjugate (−) transpose (T ). Namely, we will embed
x∗Ax and x∗Ay in 2 × 2 matrices of the forms

(
x∗Ax

�
�
�

)
and

(
x∗Ay

�
�
�

)
, respectively,

where � stands for some entries irrelevant to our discussions, so that the results on
2 × 2 matrices can be utilized to derive equalities or inequalities of x∗Ax and x∗Ay.
This idea is further used to “couple” matrices A and X in the form

(
�
�
〈A,X〉

�

)
when

a trace inequality involving tr(AX∗) = 〈A,X〉 is to be studied.
As usual, we write A ≥ 0 if A is a positive semidefinite matrix, i.e., x∗Ax ≥ 0

for all vectors x of appropriate size. The notation A ≤ B or B ≥ A means that
B − A ≥ 0 for Hermitian A and B of the same size. For any matrix A, |A| is the
matrix absolute value of A, defined to be (A∗A)1/2. Denote by 〈u, v〉 the inner product
of vectors u and v in a vector space. In particular, for matrices A and B in the unitary
space (symbolized by Mm,n or simply Mn if m = n) of all m × n complex matrices,
〈A,B〉 = tr(B∗A), and for x, y ∈ Cn, 〈x, y〉 = y∗x.

We shall examine a variety of important matrix inequalities by a unified approach
and obtain some new inequalities as well. We will then extend our studies to the
matrix absolute values and Key Fan singular value majorization theorem. We must
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point out that many inequalities in this paper are classical and they have been proved
in a number of different ways.

2. Embedding approach. We begin with a lemma in which the inequalities
may have appeared in a fragmentary literature. For example, (2.1) is the Corollary
of Theorem 1 in [10].

Lemma 2.1. Let A =
(

a
b̄

b
c

)
be a 2 × 2 Hermitian matrix and let α and β be the

(necessarily real) eigenvalues of A with α ≥ β. Then

2|b| ≤ α− β.(2.1)

Further, if A is positive definite, that is, if α ≥ β > 0, then

|b|√
ac

≤ α− β

α+ β
,(2.2)

|b|
a

≤ α− β

2
√
αβ

,(2.3)

and

|b|√
c
≤ √

α−
√
β.(2.4)

Proof. The inequalities (2.1) and (2.2) follow from the observation that

α, β =
(a+ c) ± √

(a− c)2 + 4|b|2
2

.

To show (2.3), notice that for any real parameter t

(α+ β)t− αβ ≤ (α+ β)2

4αβ
t2.

Put t = a. Replace α+ β with a+ c, αβ with ac− |b|2 on the left hand side.
To prove (2.4), use, for all t > 0,

(α+ β) − αβt ≤ t−1 + (
√
α−

√
β)2.

Set t = c−1 and α+ β = a+ c, αβ = ac− |b|2 on the left hand side.

Remark 1. We shall frequently use an equivalent form of (2.2):

|b|2 ≤
(
α− β

α+ β

)2

ac.(2.5)

In addition, (2.3) holds for c in place of a. This reveals the inequality

4|b| ≤ α2 − β2

√
αβ

.(2.6)
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In the same spirit, from (2.4), one obtains
√

2|b| ≤ (
√
α−

√
β)

√
α+ β.(2.7)

It is worth noticing that, as α−β is considered to be the spread of the Hermitian
matrix A, the above inequalities (2.1)–(2.7) give lower bounds for the spreads of the
matrices A, A2, A1/2 in terms of the entries of A.

We proceed to inspect, using embedding techniques, some matrix equalities and
inequalities that have frequently made their appearance; that is, we formulate a matrix
inequality in terms of a sesquilinear form involving 〈Ax, x〉 or 〈Ax, y〉 as an inequality
involving the entries of a matrix or a submatrix of the original matrix.

The Cauchy-Schwarz inequality. The classical Cauchy-Schwarz inequality
(see, e.g., [5, p. 261]) states that for any n-column complex vectors x, y ∈ C

n,

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉.(2.8)

Proof. This well-known inequality is traditionally proved by examining the dis-
criminant of the quadratic function 〈x + ty, x+ ty〉 in t. We now notice that

(x, y)∗(x, y) =
(
x∗

y∗

)
(x, y) =

(
x∗x x∗y
y∗x y∗y

)
≥ 0.

The inequality follows at once by taking the determinant of the 2×2 matrix. Equality
in (2.8) occurs if and only if the rank of (x, y) is 1; that is, x and y are linearly
dependent.

The Wielandt inequality. Let A be a nonzero n-square positive semidefinite
matrix having eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. The Wielandt inequality (see, e.g., [5,
p. 443]) asserts that for all orthogonal x, y ∈ Cn,

|x∗Ay|2 ≤
(
λ1 − λn

λ1 + λn

)2

(x∗Ax)(y∗Ay).(2.9)

Proof. Inequality (2.9) involves the quadratic terms x∗Ax, x∗Ay, and y∗Ay. It is
natural for us to think of the 2 × 2 matrix(

x∗Ax x∗Ay
y∗Ax y∗Ay

)
.

If λn = 0, (2.9) follows immediately by taking the determinant. Let λn > 0 and
M be the 2 × 2 matrix. Then M = (x, y)∗A(x, y), which is bounded from below
by λn(x, y)∗(x, y) and from above by λ1(x, y)∗(x, y). We may assume that x and y
are orthonormal by scaling both sides of (2.9). Then λnI2 ≤M ≤ λ1I2 and thus the
eigenvalues λ and µ ofM with λ ≥ µ are contained in [λn, λ1]. Therefore λ−µ

λ+µ ≤ λ1−λn

λ1+λn

since t−1
t+1 is monotone in t.

An application of (2.5) to M results in

|x∗Ay|2 ≤
(
λ− µ

λ+ µ

)2

(x∗Ax)(y∗Ay) ≤
(
λ1 − λn

λ1 + λn

)2

(x∗Ax)(y∗Ay).
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In a similar manner, by (2.3), we have

|x∗Ay| ≤ λ− µ

2
√
λµ

(x∗Ax), |x∗Ay| ≤ λ− µ

2
√
λµ

(y∗Ay).

Note that λ−µ
2
√

λµ
= 1

2

(√
λ
µ − √

µ
λ

)
. Since t− 1

t is an increasing function in t, we have

|x∗Ay| ≤ λ1 − λn

2
√
λ1λn

min{x∗Ax, y∗Ay}(2.10)

and, likewise, by (2.4),

|x∗Ay|2 ≤ (
√
λ1 −

√
λn)2 min{x∗Ax, y∗Ay}.(2.11)

Remark 2. The first part of the above proof is essentially the same as in the
literature (see, e.g., [5, pp. 441–442]). We include it for completeness. The proof also
shows that the spectrum of the matrix M is contained in the interval [λn, λ1]. In
fact, for any n-square complex matrix A, with M defined as above for orthonormal
x and y, the numerical range of M is contained in that of A. This is because, for
z = (a, b)T ∈ C2,

z∗Mz = z∗(x, y)∗A(x, y)z = (ax+ by)∗A(ax+ by).

Note that if z is a unit vector in C2, then so is ax+by in Cn as x and y are orthonormal.

Refinement of an inequality. Consider the 2 × 2 partitioned matrix

M =
(

A B
B∗ C

)
≥ 0,

where A ∈ Mm, C ∈ Mn are Hermitian, B ∈ Mm,n. For x ∈ Cm, y ∈ Cn, let

N =
(
x∗ 0
0 y∗

)
M

(
x 0
0 y

)
=

(
x∗Ax x∗By
y∗B∗x y∗Cy

)
.

If x and y are unit, let U be an (m+n)× (m+n) unitary matrix with the 1st column(
x
0

)
and the 2nd column

(
0
y

)
. It follows that

U∗MU =
(
N �
� �

)
=


 x∗Ax x∗By

y∗B∗x y∗Cy �

� �


 .

If the eigenvalues of N are α and β, then, by the interlacing eigenvalue theorem
(see, e.g., [13, p. 222]), α and β are contained in [µ, λ], where λ and µ are the largest
and smallest eigenvalues of M , respectively. We may assume µ > 0. By (2.5),

|x∗By|2 ≤
(
α− β

α+ β

)2

(x∗Ax)(y∗Cy) ≤
(
λ− µ

λ+ µ

)2

(x∗Ax)(y∗Cy).(2.12)
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Inequality (2.12) is stronger than the one in Theorem 7.7.7(a) of [5, p. 473] or
Theorem 6.26 [13, p. 203].

Example. Let

M =




1 0 1 0
0 1 0 1
1 0 3 1
0 1 1 3


 .

Then M is a positive definite matrix having eigenvalues

µ =
3 −√

5
2

,
3 +

√
5

2
,

5 −√
13

2
,

5 +
√

13
2

= λ,

and so
(
λ− µ

λ+ µ

)2

= 0.70045...

By setting

A = B =
(

1 0
0 1

)
and C =

(
3 1
1 3

)
,

we have

|x∗By|2 ≤ 0.71(x∗Ax)(y∗Cy), for all x, y ∈ C2.

Remark 3. There is no fixed universal scalar less than 1 that fits in (2.12) in

the place of
(

λ−µ
λ+µ

)2

(or
(

λ1−λn

λ1+λn

)2

in (2.9)), for
(

λ−µ
λ+µ

)2

can be 1.

A theorem of Mirsky. The spreads of Hermitian matrices have been studied
by many authors (see, e.g., [11]). Recall that the spread of a Hermitian matrix A is
defined to be s(A) = λmax − λmin, where λmax and λmin are the largest and smallest
eigenvalues of A, respectively. It is shown in [9] and [10] that

s(A) = 2 sup
u,v

|u∗Av|,(2.13)

where the upper bound is taken with respect to all pairs of orthonormal u, v.

Proof. To show (2.13), place the term u∗Av in a 2 × 2 matrix as follows: Let

M = (u, v)∗A(u, v) =
(
u∗Au u∗Av
v∗Au v∗Av

)
.

Let U be a unitary matrix with u as the first column and v the second. Then

U∗AU =
(
M �
� �

)
.
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By the interlacing eigenvalue theorem, |λmax − λmin| ≥ |λ − µ|, where λ and µ are
the eigenvalues of M . On the other hand |λ− µ| ≥ 2|u∗Av| by (2.1). It follows that
s(A) ≥ 2|u∗Av|. For the other direction of the inequality, that s(A) ≤ 2 supu,v |u∗Av|
is seen, as in [10], by taking u = 1√

2
(x + iy) and v = 1√

2
(x − iy), where x and y are

the orthonormal eigenvectors belonging to λmax and λmin, respectively.

Remark 4. Equation (2.13) is proved in two separate papers. The inequality
“≥” follows from a discussion on the results of normal matrices in [9] (see Eq. (6)),
while “≤” is shown in [10].

A theorem of Bellman. Let A > 0, i.e., A is positive definite. Then as shown
in [3],

〈A−1x, x〉 = max
y

[2 Re(x, y) − (Ay, y)] .(2.14)

Proof. The proof suggested in [3] is by integration and limit process. Now
(
A−1 I
I A

)
≥ 0 ⇒

(
x∗A−1x x∗y
y∗x y∗Ay

)
≥ 0.

By pre- and post-multiplication of (1,−1) and (1,−1)T , respectively, we have

(1,−1)
(
x∗A−1x x∗y
y∗x y∗Ay

) (
1
−1

)
= x∗A−1x+ y∗Ay − 2 Re(x∗y) ≥ 0

or

x∗A−1x ≥ 2 Re(x∗y) − y∗Ay.

Thus

x∗A−1x ≥ max
y

[2 Re(x∗y) − y∗Ay] .

Equality follows by taking y = A−1x.
An interesting application of the representation (2.14) is to deduce the well-known

matrix inequality

A ≥ B > 0 ⇒ B−1 ≥ A−1.

Partitioned matrices. Let M =
(

A
B∗

B
C

)
≥ 0 and let λ and µ be the largest

and smallest eigenvalues of M , respectively. If A is nonsingular, then (see, e.g., [14])

B∗A−1B ≤
(
λ− µ

λ+ µ

)2

C.(2.15)

If A,B and C are all n-square, taking the determinants of both sides reveals

| detB|2 ≤
(
λ− µ

λ+ µ

)2n

detA detC,
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which yields

| detB|2 ≤
(
λ− µ

λ+ µ

)2

detA detC.(2.16)

In contrast, if we let

N =
(

detA detB
detB∗ detC

)

(note that M ≥ 0 ⇒ N ≥ 0) and let α and β be the eigenvalues of N , then by (2.5),

| detB|2 ≤
(
α− β

α+ β

)2

detA detC.(2.17)

Inequalities (2.16) and (2.17) seem unrelated, and both can be compared to the
well-known but weaker determinantal inequality | detB|2 ≤ detA detC.

Remark 5. Inequalities (2.16) and (2.17) are not comparable. Take

(
A B
B∗ C

)
=




1 0 2 0
0 1 0 1
2 0 4 0
0 1 0 2


 ,

(
detA detB
detB∗ detC

)
=

(
1 2
2 8

)

Then the 4 × 4 matrix is singular, whereas the 2 × 2 is nonsingular. Thus
(
α− β

α+ β

)2

< 1 =
(
λ− µ

λ+ µ

)2

.

Take

(
A B
B∗ C

)
=




1 0 1 1
0 1 1 1
1 1 100 0
1 1 0 100


 ,

(
detA detB
detB∗ detC

)
=

(
1 0
0 10000

)
.

The eigenvalues of the 4× 4 matrix are λ = 100, 55.477..., 45.523..., µ = 1, while the
eigenvalues of the 2 × 2 matrix are α = 10000, β = 1. Upon computation,

0.9996... =
(
α− β

α+ β

)2

>

(
λ− µ

λ+ µ

)2

= 0.9607....

Positivity and inner product. Let X ∈ Mn. It is well-known that X ≥ 0 ⇔
〈X,Y 〉 ≥ 0 for all n-square Y ≥ 0. It would be tempting to generalize the statement
for block matrices. Theorem 7.7.7 (a) and (d) in [5, p. 473] has shed a little light on
this. In fact, by writing x∗Ay = tr(yx∗A) = 〈A, xy∗〉 and with slight modification of
the form of Theorem 7.7.7(a), we get(

A B
B∗ C

)
≥ 0 ⇔

( 〈A, xx∗〉 〈B, xy∗〉
〈B∗, yx∗〉 〈C, yy∗〉

)
≥ 0,(2.18)
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for all x and y of appropriate sizes. This generalizes to the following result: Let
A ∈ Mm, B ∈ Mm,n, and C ∈ Mn. Then(

A B
B∗ C

)
≥ 0 ⇔

( 〈A,P 〉 〈B,Q〉
〈B∗, Q∗〉 〈C,R〉

)
≥ 0,(2.19)

whenever the conformally partitioned matrix
(

P
Q∗

Q
R

)
≥ 0.

Proof. (2.18) ensures “⇐” in (2.19) by taking P = xx∗, Q = xy∗, and R = yy∗.
For the other direction, let W be an (m+ n) × (m+ n) matrix such that(

P Q
Q∗ R

)
= WW ∗.

Let U and V be the matrices consisting of the first m rows of W and the remaining
rows of W , respectively, and denote the ith column of U by ui and the ith column of
V by vi for each i. Then

P =
m+n∑
i=1

uiu
∗
i , Q =

m+n∑
i=1

uiv
∗
i , R =

m+n∑
i=1

viv
∗
i .

By using (2.18) again, the block matrix with the inner products in (2.19), when written
as a sum of (m+ n) positive semidefinite 2 × 2 matrices, is positive semidefinite.

The equivalence statement (2.19) is seen in [2, p. 20] with a different proof by the
cone property of self-duality.

Note that the positive semidefiniteness of the block matrix with inner products
as entries in (2.19) implies the trace inequality

| tr(BQ∗)|2 ≤ tr(AP ) tr(CR).

This trace inequality will be extensively used later. As an application, for any
positive definite X ∈ Mm and for any A, B ∈ Mm,n, since block matrices(

X I
I X−1

)
and

(
AA∗ AB∗

BA∗ BB∗

)

are both positive semidefinite, we obtain the existing trace inequality

| tr(A∗B)|2 ≤ tr(A∗XA) tr(B∗X−1B).

Remark 6. The above idea of coupling matrices in the form 〈X,Y 〉 in block
matrices may be extended and rephrased in terms of completely positive bilinear
maps. It has been evident that completely positive linear maps (see, e.g., [1]) are
a useful tool for deriving matrix or operator inequalities. In view of the matrix
Kronecker product and Hadamard product as bilinear matrix forms, we consider a
bilinear map f from Mn ×Mn to a matrix space (or a number field). We say that f is
positive if f(X,Y ) ≥ 0 whenever X,Y ≥ 0, and further call f completely positive if(

f(A,P ) f(B,Q)
f(B∗, Q∗) f(C,R)

)
≥ 0 whenever

(
A B
B∗ C

)
,

(
P Q
Q∗ R

)
≥ 0.
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It is immediate that for each fixed X ≥ 0 in Mn, fX(Y ) = f(X,Y ) is a completely
positive linear map. Similarly fY (X) is a completely positive linear map for fixed
Y ≥ 0. This definition may generalize to block matrices of higher dimensions.

Since the Kronecker product (⊗) and the Hadamard product (◦) of positive
semidefinite matrices are positive semidefinite and because a principal submatrix of
a positive semidefinite matrix is positive semidefinite, we see that f(X,Y ) = X ⊗ Y
and f(X,Y ) = X ◦ Y are completely positive bilinear maps. We saw earlier in (2.19)
that f(X,Y ) = 〈X,Y 〉 is the same kind.

3. The matrix absolute value |A|. For any matrix A ∈ Mm,n, the matrix
absolute value (or modulus) of A is defined to be |A| = (A∗A)1/2. The matrix absolute
value has many interesting properties. For instance, |A−1| = |A∗|−1 if A is square and
invertible, and |A⊗B| = |A|⊗|B| for A and B of any sizes. If A = UDV is a singular
value decomposition of a square A, where U and V are unitary, then |A| = V ∗DV
and |A∗| = UDU∗. It is easy to check that A is normal, i.e., A∗A = AA∗, if and only
if |A| = |A∗|. In addition, if A is normal, then for all α, β > 0

|αA + βA∗| ≤ α|A| + β|A∗|.(3.1)

In particular, by taking α = β = 1
2 ,

|A+A∗| ≤ |A| + |A∗|,(3.2)

which does not hold in general for non-normal matrices [12].
In what follows we make use of (2.19) with the block matrix

( |A∗| A
A∗ |A|

)
,(3.3)

which is easily seen to be positive semidefinite by singular value decomposition.
Notice that (2.19), applied to (3.3), gives the trace inequality

| tr(AQ∗)|2 ≤ tr(|A∗|P ) tr(|A|R)(3.4)

whenever (
P Q
Q∗ R

)
≥ 0.

Following are immediate consequences of (3.4) for a square A:
a) Setting P = Q = R = I yields | trA| ≤ tr |A| (see, e.g., [13, p. 260]).
b) Putting P = Q = R = J , the matrix all whose entries are 1, we have

|Σ(A)|2 ≤ Σ(|A∗|) Σ(|A|),(3.5)

where Σ(X) =
∑

ij xij , the sum of all entries of X = (xij). Note that (3.5) implies

|Σ(A)| ≤ Σ(|A|), if A is normal.(3.6)
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c) Letting P = |A|, Q = A∗, and R = |A∗|, we obtain the trace inequality

| trA2| ≤ tr(|A| |A∗|).(3.7)

Note: A =
(

0
0

1
0

)
shows tr(AA∗) �≤ tr(|A| |A∗|), while | trA2| ≤ tr(AA∗) is valid.

d) Replacing P , Q, and R with yy∗, yx∗, and xx∗, respectively, we get

|〈Ax, y〉|2 ≤ 〈|A|x, x〉〈|A∗ |y, y〉.(3.8)

Remark 7. It is interesting to notice that the converse of (3.6) is invalid; that
is, the inequality |Σ(A)| ≤ Σ(|A|) in (3.6) does not imply the normality of A. Take
the non-normal matrix A =

(
1
0

1
0

)
. Then

Σ(|A∗|) =
√

2 < Σ(A∗) = Σ(A) = 2 < 2
√

2 = Σ(|A|).

This example also indicates that |Σ(X)| can be greater than Σ(|X |) for some matrices
X . In addition, note that (3.5) is a special case of (3.8) (see, e.g., [7]).

We now turn our attention to matrix normality. Let A ∈ Mn. It is known that

|〈Ax, x〉| ≤ 〈|A|x, x〉 for all x ∈ Cn ⇔ A is normal

or

|〈Ax, x〉| ≤ 〈|A∗|x, x〉 for all x ∈ Cn ⇔ A is normal.

Here we present a proof different than the ones in [7] and [4] by using (3.3).

Proof. If A is normal, then |A| = |A∗|. An application of (3.4) with P = Q =
R = xx∗ immediately yields that for all x ∈ Cn,

|〈Ax, x〉| ≤ 〈|A|x, x〉.

The necessity is done in the same way as in [7] or [4] by an induction on n, by
assuming A to be upper triangular, and by taking x = (1, 0, . . . , 0)T .

Besides, one may prove for any square matrix A

|〈Aax, x〉| ≤ 〈A|a|x, x〉,

where

Aa =
1
2

(A+A∗) and A|a| =
1
2

(|A| + |A∗|).

Note that

|〈Aax, x〉| ≤ 〈|A|x, x〉

holds for normal matrices A but not for general A by taking A =
(

1
0

1
0

)
.
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4. The Ky Fan singular value majorization. There exist a great number
of fascinating inequalities on matrix singular values. We study some well-known and
fundamentally important inequalities due to Ky Fan. To state Fan’s result, let A be
anym×n matrix and denote the singular values of A by σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A)
(which are the same as the eigenvalues of |A|). The Fan singular value majorization
theorem states that

k∑
i=1

σi(A+B) ≤
k∑

i=1

σi(A) +
k∑

i=1

σi(B),(4.1)

for k = 1, 2, . . . , q = min{m,n}; or written in majorization form [8, p. 243],

σ(A +B) ≺w σ(A) + σ(B).

With this, the matrix norm defined for each k by Nk(A) =
∑k

i=1 σi(A), known as the
Ky Fan k-norm, is subadditive; i.e., Nk(A+B) ≤ Nk(A) +Nk(B).

Fan’s theorem follows at once from the representation (see, e.g., [6, p. 195])

k∑
i=1

σi(A) = max{| tr(X∗AY )| : X ∈ Mm,k, Y ∈ Mn,k, X∗X = Ik = Y ∗Y }.(4.2)

Proof of (4.2). The term tr(X∗AY ) = tr(Y X∗A) = 〈A,XY ∗〉 suggests that we
couple the matrices A and XY ∗. So we take the positive semidefinite matrices

( |A∗| A
A∗ |A|

)
and

(
XX∗ XY ∗

Y X∗ Y Y ∗

)
.

It is immediate by (3.4) that

| tr(X∗AY )|2 ≤ tr(X∗|A∗|X) tr(Y ∗|A|Y ).

Note that if P ∈ Mn is positive semidefinite having eigenvalues λ1 ≥ · · · ≥ λn,
and U ∈ Mn,k is such that U∗U = Ik, then tr(U∗PU) ≤ λ1 + · · · + λk. Therefore,
noticing that |A∗| and |A| have the same eigenvalues, we have

tr(X∗|A∗|X) and tr(Y ∗|A|Y ) ≤ σ1(A) + · · · + σk(A).

Thus

| tr(X∗AY )| ≤ σ1(A) + · · · + σk(A).

For the other direction, let A = V DW be a singular value decomposition of A
with the ith largest singular value of A in the (i, i)-position of D for each i, where
V ∈ Mm and W ∈ Mn are unitary matrices. Then the extremal value is attained by
taking X and Y to be the first k columns of V and W ∗, respectively.

The representation (4.2) is traditionally and commonly proved using stochastic
matrix theory [8, p. 511] or by eigenvalue and singular value inequalities for matrix
products [6, p. 196]. The following two special cases are of interest in their own right.
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For the case k = 1 (see, e.g, [13, p. 91]), the largest singular value or the spectral
norm of A is given by

σ1(A) = max
‖x‖=‖y‖=1

|〈Ax, y〉|

and this can be shown directly via the pair of positive semidefinite matrices
(
σ1(A)I A
A∗ σ1(A)I

)
and

(
yy∗ yx∗

xy∗ xx∗

)
.

For the case k = m = n (see, e.g., [5, p. 430]), the Ky Fan n-norm of A or the
trace of |A| has the representation

σ1(A) + σ2(A) + · · · + σn(A) = max
unitary U ∈ Mn

| tr(UA)|(4.3)

and this is proved by simply taking the pair of positive semidefinite matrices
( |A∗| A

A∗ |A|
)

and
(

I U∗

U I

)
.
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