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GRAPHS WHOSE MINIMAL RANK IS TWO∗

WAYNE BARRETT† , HEIN VAN DER HOLST ‡ , AND RAPHAEL LOEWY§

Abstract. Let F be a field, G = (V, E) be an undirected graph on n vertices, and let S(F, G)
be the set of all symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the
positions corresponding to the edges of G. For example, if G is a path, S(F, G) consists of the
symmetric irreducible tridiagonal matrices. Let mr(F, G) be the minimum rank over all matrices in
S(F, G). Then mr(F, G) = 1 if and only if G is the union of a clique with at least 2 vertices and
an independent set. If F is an infinite field such that charF �= 2, then mr(F, G) ≤ 2 if and only
if the complement of G is the join of a clique and a graph that is the union of at most two cliques
and any number of complete bipartite graphs. A similar result is obtained in the case that F is an
infinite field with charF = 2. Furthermore, in each case, such graphs are characterized as those for
which 6 specific graphs do not occur as induced subgraphs. The number of forbidden subgraphs is
reduced to 4 if the graph is connected. Finally, similar criteria is obtained for the minimum rank of
a Hermitian matrix to be less than or equal to two. The complement is the join of a clique and a
graph that is the union of any number of cliques and any number of complete bipartite graphs. The
number of forbidden subgraphs is now 5, or in the connected case, 3.

Key words. Rank 2, Minimum rank, Symmetric matrix, Forbidden subgraph, Bilinear sym-
metric form.
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1. Introduction. Given any field F , let charF be the characteristic of F , let F ∗

be the nonzero elements of F , and let Fn = {[x1, . . . , xn]t|x1, . . . , xn ∈ F}. Given a
(simple, undirected) graph G = (V,E) with vertex set V = {1, 2, . . . , n}, let S(F,G)
be the set of all symmetric n × n matrices A = [aij ] with entries in F such that
aij �= 0, i �= j, if and only if ij ∈ E. There is no restriction on the diagonal entries of
A. We study the problem of minimizing the rank for all A ∈ S(F,G). Let

mr(F,G) = min{rankA|A ∈ S(F,G)}.

If F = R, we abbreviate mr(F,G) and S(F,G) to mr(G) and S(G), respectively. Then
minimizing the rank is equivalent to maximizing the multiplicity of an eigenvalue of
A ∈ S(G). It is easy to see that the maximum multiplicity of an eigenvalue of
A ∈ S(G) is n −mr(G). This problem is completely solved for trees by Duarte and
Johnson [8]. Several additional results have been obtained for the multiplicities of
eigenvalues of a matrix in S(G) in the case G is a tree ([10], [9], [11]). Results in a
different direction were obtained by Colin de Verdière, Lovász, Schrijver, and van der
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Holst ([2, 12, 13, 5]). They are associated with a graph parameter µ(G) introduced
in [2] and defined in terms of the multiplicity of the second smallest eigenvalue of
matrices in S(G) with a particular sign pattern and satisfying a certain transversality
condition. Many of these results are gathered together in the survey paper [7]. Colin
de Verdière introduced another graph parameter ν(G) in [3] more in line with this
paper. It is the largest nullity attained by a positive semidefinite matrix in S(G) that
also satisfies a transversality condition. Van der Holst considered the parameter τ(G)
in [6], the largest nullity of an n-by-n Hermitian positive semidefinite matrix with
graph G (without the transversality condition), and building upon the results in [3]
was able to characterize those graphs G with τ(G) ≤ 1 and τ(G) ≤ 2. Later, we will
also consider special cases of our results when F = R. We let S+(G) be the set of
positive semidefinite matrices in S(G) and let

mr+(G) = min{rankA|A ∈ S+(G)}.

In this paper we identify all graphs in S(F,G) for which mr(F,G) ≤ 2 for any
infinite field F (or, equivalently, the nullity is greater than or equal to n−2). We first
show that the complements of such graphs have a simple explicit form (Theorems 1
and 2). We also give forbidden subgraph characterizations of this class of graphs in
Theorems 6 and 7 and in Theorems 9 and 10 (the connected case). In the final section
of the paper we depart from the theme of symmetric matrices and determine similar
criteria for a Hermitian matrix to have minimum rank at most 2.

Before proceeding, we introduce some notation from graph theory.

Definition Given a graph G = (V,E), the complement of G is the graph Gc =
(V,Ec). Given two graphs G = (V1, E1) and H = (V2, E2), with V1 and V2 disjoint,
the union of G and H is G ∪ H = (V1 ∪ V2, E1 ∪ E2). The join, G ∨H , is the graph
obtained from G∪H by adding an edge from each vertex of G to each vertex of H . If
S ⊂ V , G[S] denotes the subgraph of G induced by S. A vertex u ∈ V is a dominating
vertex, if u is adjacent to all other vertices in V .

Definition We denote the path on n vertices by Pn. The complete graph on n
vertices will be denoted by Kn and we will refer to K3 as the triangle. We abbreviate
Kn ∪ · · · ∪ Kn (m times) to mKn. The complete multipartite graph, Km1,m2,...,ms is
the complement of Km1 ∪Km2 ∪ · · · ∪Kms . We will be particularly interested in the
complete bipartite graphs Km,n as well as the complete tripartite graph K3,3,3. In
Km,n we may allow m or n to equal 0, in which case Km,0 = mK1 or K0,n = nK1.

Definition A clique of a graph G is a set of pairwise adjacent vertices. A maximal
clique is a clique that is not a proper subset of another clique. Given positive integers
m,n, t with t < min{m,n}, we will call the graph on m+ n− t vertices with exactly
two maximal cliques, {1, 2, . . . ,m}, {m− t + 1,m− t+ 2, . . . ,m− t + n}, the clique
sum of Km and Kn on Kt. We will also refer to such graphs as clique sums.
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Note that if mr(F,G) = 1, then the rank 1 matrix A attaining this rank must
have the form cxxt, c ∈ F ∗, x ∈ Fn. Let W = {i ∈ V (G)|xi �= 0} and m = |W |. It
follows that G = Km ∪Kc

n−m. Moreover, if m ≥ 2, any A ∈ S(F,Km ∪Kc
n−m) has a

nonzero entry and Jm ⊕On−n (with Jm the m-by-m all ones matrix) is a matrix in
S(F,Km ∪Kc

n−m) with rank 1. Thus, we have

Observation 1 mr(F,G) = 1 if and only if G = Km ∪Kc
n−m, m ≥ 2.

In particular, if G is connected, mr(F,G) = 1 if and only if G is complete.
We note that one can reduce the problem of finding mr(F,G) to the connected

case because it follows immediately from the definition that

Observation 2 If G = ∪k
i=1Gi, then mr(F,G) =

∑k
i=1 mr(F,Gi).

We now address the problem of finding all graphs for which mr(F,G) = 2. We
begin with some sufficient conditions.

Let Jm,n be the m-by-n all ones matrix and let Jn = Jn,n. Let F2 be the field
with two elements.

Observation 3 If m, n ≥ 1, m+ n ≥ 3, then mr(F,Km,n) = 2.

Apply Observation 1, and the fact that the matrix
[

0 Jm,n

Jn,m 0

]
∈ S(F,Km,n) and

has rank 2.

Observation 4 Let G be the clique sum of Km and Kn on Kt.
(a) If F �= F2, then mr(F,G) = 2,
(b) If t = 1, then mr(F,G) = 2,
(c) If m = n = t+ 1, then mr(F,G) = 2,
(d) If t ≥ 2, and max{m,n} ≥ t+ 2, then mr(F2, G) = 3.

For (a) let α be distinct from 0 and −1. Then
[
Jm 0
0 0

]
+ α

[
0 0
0 Jn

]
∈ S(F,G)

and has rank 2. (If charF �= 2, just take α = 1.)

For (b) use the fact that
[
Jm 0
0 0

]
+

[
0 0
0 Jn

]
∈ S(F,G) and has rank 2.

For (c) use the fact that


 0 J1,t 0
Jt,1 Jt Jt,1

0 J1,t 0


 ∈ S(F,G) and has rank 2.

We will make no use of (d), so only give an abbreviated argument. The matrix

K =


 Jm−t Jm−t,t 0
Jt,m−t Jt Jt,n−t

0 Jn−t,t Jn−t


 ∈ S(F2, G) and has rank 3 (


1 1 0
1 1 1
0 1 1




is a submatrix), so mr(F2, G) ≤ 3.
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Now suppose that M =


 A Jm−t,t 0
Jt,m−t B Jt,n−t

0 Jn−t,t C


 ∈ S(F2, G); so each non-

diagonal entry of A,B,C is 1. Without loss of generality, say n ≥ t + 2. If some

diagonal entry of C is 0, either


1 0 0
1 1 1
1 0 1


 or


1 0 0
1 1 1
1 1 0


 is a submatrix of M and

rank M ≥ 3. So assume that C = Jn−t. A similar argument shows that rank M ≥ 3
if some diagonal entry of B is 0, so we assume B = Jt. Then it is obvious that if a
diagonal entry of A is 0, that rank M ≥ 3. And if A = Jm−t, then M = K and rank
M ≥ 3. Consequently, mr(F2, G) = 3.

It follows from Observations 4(c), 4(b) and 3 that the graphs

, , ,
diamond paw C4 claw

on 4 vertices all have minimum rank 2 in any field.
On the other hand, easy necessary conditions follow from

Observation 5 If H is an induced subgraph of G, mr(F,G) ≥ mr(F,H).

For if B is a principal submatrix of A, rank B ≤ rank A.

It follows from Observation 5 that if mr(F,H) = 3, H may not occur as an
induced subgraph of any graph whose minimum rank is 2. In other words, H is a
forbidden subgraph for the class of minimum rank 2 graphs. It is common to call
such graphs H-free. Moreover, if F is a set of graphs, a graph is F -free if it is H-free
for each H ∈ F .

2. Forbidden Subgraphs. We identify 6 forbidden subgraphs for the minimum
rank 2 graphs.

1. P4, which we label 1 2 3 4 .

If A ∈ S(F, P4),

A =



a1 b1 0 0
b1 a2 b2 0
0 b2 a3 b3
0 0 b3 a4


 with b1b2b3 �= 0.

Then rank A ≥ rank


b1 0 0
a2 b2 0
b2 a3 b3


 = 3. Since



1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


 +



0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


+



0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1


 ∈ S(F, P4),mr(F, P4) = 3.
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We note that any proper induced subgraph of P4 has minimum rank ≤ 2.

2. Let G be the graph

2 4

5

1

3

which we will denote by �. Then if A ∈ S(F,�),

A =




d1 a12 a13 a14 a15

a12 d2 a23 0 0
a13 a23 d3 0 0
a14 0 0 d4 0
a15 0 0 0 d5




with a12a13a14a15a23 �= 0. Then

rank A ≥ rank A[1 2 4 | 1 3 5] = rank


 d1 a13 a15

a12 a23 0
a14 0 0


 = 3.

Since 

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0


 +



1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0


 +



1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1


 ∈ S(F,�),

mr(F,�) = 3 for any field. Again, any proper induced subgraph of � has minimum
rank ≤ 2.

3. Let G be the dart

3

2 1

4

5

Following a similar argument to �, we see that mr(F, dart) ≥ rank A[1 2 4 | 1 3 5]

= 3. Furthermore, the matrix



1 + 1 1 1 1 1
1 1 1 1 0
1 1 0 0 0
1 1 0 0 0
1 0 0 0 1


 ∈ S (F , dart) and has rank 3.
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So mr(F, dart) = 3 for any field. Again, any proper induced subgraph of the dart has
minimum rank ≤ 2.

We also need to consider two disconnected graphs.

4. G = P3 ∪K2. By Observation 2,

mr(F, P3 ∪K2) = mr(F, P3) + mr(F,K2).

Clearly, we have mr(F, P3) = 2 and mr(F,K2) = 1, so mr(F, P3 ∪K2) = 3.

5. G = 3K2. Then mr(F, 3K2) = 3mr(F,K2) = 3.

Our final graph is

6. G = K3,3,3. Assume that the tripartite sets are P1 = {1, 2, 3}, P2 = {4, 5, 6} and
P3 = {7, 8, 9}. Then any A ∈ S(F,K3,3,3) has the form

A =




d1 0 0 a14 a15 a16 a17 a18 a19

0 d2 0 a24 a25 a26 a27 a28 a29

0 0 d3 a34 a35 a36 a37 a38 a39

a14 a24 a34 d4 0 0 a47 a48 a49

a15 a25 a35 0 d5 0 a57 a58 a59

a16 a26 a36 0 0 d6 a67 a68 a69

a17 a27 a37 a47 a57 a67 d7 0 0
a18 a28 a38 a48 a58 a68 0 d8 0
a19 a29 a39 a49 a59 a69 0 0 d9




with aij �= 0, for all i, j in distinct Pk’s. We first note that if all the di’s in any of the

3 diagonal blocks


dr 0 0
0 ds 0
0 0 dt


 are nonzero, then rank A ≥ 3. So suppose each of

these diagonal blocks has at least one di equal to 0. Then A has a principal submatrix
of the form 

0 a c
a 0 b
c b 0


 , a, b, c �= 0.

Since the determinant is 2abc, this is invertible if charF �= 2 and we conclude again
that rank A ≥ 3. Now consider the matrix

B =


03 J3 J3

J3 03 J3

J3 J3 03


 ∈ S(F,K3,3,3).
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Clearly, rank B ≤ 3. If char F �= 2,

rank B ≥ rank


0 1 1
1 0 1
1 1 0


 = 3

while if charF = 2, rank B = 2. We summarize the results of this section.

Observation 6 Let F be a field.
(a) mr(F, P4) = mr(F,�) = mr(F, dart) = mr(F, P3 ∪K2) = mr(F, 3K2) = 3.

(b) mr(F,K3,3,3) =

{
3 if charF �= 2,
2 if charF = 2.

Consequently, if G is a graph with mr(F,G) ≤ 2, none of the graphs P4,�, dart, P3 ∪
K2, 3K2 is an induced subgraph of G. We call such graphs (P4,�, dart, P3∪K2, 3K2)-
free. If, in addition, charF �= 2, K3,3,3 is also not an induced subgraph of G. We will
later see (Theorem 6) that this is a complete list of forbidden subgraphs for the class
of minimum rank 2 graphs when charF �= 2 and F is infinite. We shall also see that
if charF = 2, then K3,3,3 is replaced by (P3 ∪ 2K3)c.

3. Nondegenerate, bilinear symmetric forms on F 2. A line in F 2 is a one
dimensional subspace of F 2. We let S2(F ) denote the symmetric 2× 2 matrices over
F .

Let B = [bij ] ∈ S2(F ) be invertible. Then B defines a nondegenerate, bilinear
symmetric form

(x, y) �→ xtBy, x, y ∈ F 2.

Given any line L in F 2 define its orthogonal complement (relative to the given form)
by

L⊥ = {y ∈ F 2| ytBx = 0 ∀ x ∈ L}.
Since B is invertible, L⊥ is a line in F 2.

Observation 7
(i) y ∈ L⊥ ⇔ ytBu = 0 where {u} is a basis of L.
(ii) (L⊥)⊥ = L.

It is possible that L⊥ = L. In that case we say L is an isotropic line.
Now we consider the existence and the number of isotropic lines. For this purpose

we can replace B ∈ S2(F ) by any matrix congruent to it. We distinguish two cases.

Case (I) charF �= 2.

Here we can assume B is a diagonal matrix, and since we may replace B by 1
α B for

any α ∈ F ∗, we can assume B = diag(1, d), d ∈ F ∗. A line L = Span{x} is isotropic
if and only if

(3.1) x2
1 + dx2

2 = 0.
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Thus, there exist isotropic lines iff −d = β2 for some β ∈ F ∗. If this is the case, we

have exactly two distinct isotropic lines, Sp {
[
x1

x2

]
} and Sp {

[
x1

−x2

]
}, where x1, x2 ∈

F ∗ and satisfy (3.1). Otherwise, there are no isotropic lines.

We note that for the case F = R, isotropic lines exist if and only if B has exactly
one negative and one positive eigenvalue. So if B is (positive or negative) definite,
there are no isotropic lines.

Case (II) charF = 2.

If b11 �= 0 or b22 �= 0, we can diagonalize B by a congruence, and, as in the previous
case, L = span{x} is isotropic if and only if equation (3.1) holds. If −d is not a
square, there is no isotropic line, and if −d = β2, x2

1 − β2x2
2 = (x1 − βx2)2, and there

is one isotropic line, x1 − βx2 = 0. If b11 = b22 = 0, we can assume without loss of
generality

B =
[
0 1
1 0

]
,

so xtBy = x2y1 + x1y2 = x2y1 − x1y2. Hence every line L is isotropic.

4. Graphs G with mr(F, G) ≤ 2. We need the following elementary result
and include its proof for the sake of completeness.

Lemma 1 Let A ∈ Sn(F ) with rank two. Then there is an invertible B ∈ S2(F ) such
that A = U tBU , where U is a 2× n matrix.

Proof: We may assume without loss of generality that the first two columns of A are
linearly independent. Since A has rank two, there is a 2× n matrix W such that the
matrix

A

[
I2 W
0 In−2

]

has columns 3, 4, . . . , n equal to 0. Then[
I2 W
0 In−2

]t

A

[
I2 W
0 In−2

]
=

[
B 0
0 0

]

with B ∈ S2(F ) and invertible. Let U =
[
I2 −W

]
. Then A = U tBU . ✷

Theorem 1 Let F be a field and G a graph on n vertices for which mr(F,G) ≤ 2.
1. If charF �= 2, then Gc is of the form

(4.1) (Ks1 ∪Ks2 ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr,

for appropriate nonnegative integers s1, s2, k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi >
0, i = 1, 2, . . . , k.
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2. If charF = 2, then Gc is either of the form

(4.2) (Ks1 ∪Ks2 ∪ · · · ∪Ksk
) ∨Kr

or of the form

(4.3) (Ks1 ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for some appropriate nonnegative integers k, s1, s2, . . . , sk, r, p1, q1, p2, q2, . . . , pk, qk

with pi + qi > 0, i = 1, 2, . . . , k.

Proof: The theorem is true if mr(F,G) = 1 by Observation 1, so assume mr(F,G) = 2,
and let A ∈ S(F,G) with rank A = 2. By Lemma 1, A = U tBU , where B is an
invertible 2 × 2 symmetric matrix over F and U is 2 × n. For i = 1, 2, . . . , n, let

wi =
[
xi

yi

]
denote the ith column of U (so [xi, yi] is the ith row of U t), and let

Li = Sp{wi}.
Consider now 1 ≤ i �= j ≤ n. We have

(4.4) ij ∈ E(Gc) ⇔ ij /∈ E(G) ⇔ wt
iBwj = 0.

Suppose that r of the vectors w1, w2, . . . , wn are 0; we may assume wn−r+1 = wn−r+2

= · · · = wn = 0. It follows that

Gc = H ∨Kr,

where H is the subgraph of Gc induced by {1, 2, . . . , n− r}.
It remains to determine the structure of H . For i = 1, 2, . . . , n − r, Li is a line,

and it follows from (4.4) that for j = 1, 2, . . . , n− r,

ij ∈ E(Gc) ⇔ ij /∈ E(G) ⇔ Lj = L⊥
i ⇔ Li = L⊥

j ,

where the orthogonal complement is with respect to the bilinear form defined by B.

1. Suppose that charF �= 2. Then there are no isotropic lines or exactly two.

If there are two isotropic lines, denote them by L(1) and L(2). Consider now all
1 ≤ i ≤ n − r such that Li = L(1). Suppose that there are s1 such indices. Then
H must have a connected component which is Ks1 . Similarly, working with L(2) we
conclude ∃ s2 ≥ 0 such that Ks2 is another connected component of H .

Now pick any line among L1, L2, . . . , Ln−r which is not isotropic, say Lz, and
consider all 1 ≤ i ≤ n− r such that Li = Lz. Suppose we have p1 such indices. We
now consider all 1 ≤ j ≤ n− r such that Lj = L⊥

i . Suppose we have q1 such indices.
Then H must contain the component Kp1,q1 . Repeating the process we complete the
proof. (If there are no isotropic lines, s1 = s2 = 0.)

2. Suppose that charF = 2. Then there is at most one isotropic line or each line
is isotropic.
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Let us first assume that each line is isotropic. Then ij ∈ E(H) if and only if
Li = Lj. Hence H is a disjoint union of complete graphs.

Assume now that there is at most one isotropic line, L(1). The vertices i with
Li = L(1) induce a connected component which is a complete graph. The remainder
of the proof is identical to the last paragraph in part 1. ✷

Corollary 1 Let G be a graph on n vertices. Then if mr+(G) ≤ 2, Gc is of the form

(4.5) (Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for appropriate nonnegative integers k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0, i =
1, 2, . . . , k.

Proof: The B in the proof of Theorem 1 is now positive definite, so there are no
isotropic lines. Then the components Ks1 and Ks2 in (4.1) are absent. �

Theorem 2 Let F be an infinite field.
1. If charF �= 2, let G be any graph whose complement is of the form (4.1).
2. If charF = 2, let G be any graph whose complement is of the form (4.2) or

(4.3).
Then mr(F,G) ≤ 2.

Proof: First, assume that charF �= 2 and let Gc have the form (4.1). Let E =
[
0 1
1 0

]
.

It suffices to show there exists a U ∈ F 2,n such that A = U tEU ∈ S(F,G). We note
that the symmetric, bilinear form corresponding to E is given by

[x1, x2]E
[
y1

y2

]
= x1y2 + x2y1.

Thus, the isotropic lines are Sp

{
e1 =

[
1
0

]}
and Sp

{
e2 =

[
0
1

]}
.

Let wi, i = 1, 2, . . . , n denote the columns of U . Choose wn−r+1 = wn−r+2 =
· · · = wn = 0. Now let w1 = w2 = · · · = ws1 = e1 and ws1+1 = ws1+2 = · · · =
ws1+s2 = e2.

Now pick a ∈ F ∗ and let x(1) =
[
1
a

]
. Then, for L = Sp{x(1)} we clearly have

L⊥ = Sp{y(1)}, where y(1) =
[
1
−a

]
. So among the remaining wi’s we pick p1 to be

equal to x(1) and q1 to be equal to y(1). We now choose b ∈ F ∗, b �= a, b �= −a and

pick p2 (resp. q2) of the remaining wi’s to be equal to
[
1
b

] (
resp

[
1
−b

])
. Since F is

infinite and since the only zeros in the submatrix A[{1, 2, . . . , n− r}] result when x, y
belong to the same isotropic line or belong to one of the pairs L,L⊥ above, we can
continue the process and obtain a matrix A of rank ≤ 2 in S(F,G).
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We now assume that charF = 2. Consider first the case where the complement
of G is of the form

(Ks1 ∪Ks2 ∪ · · · ∪Ksk
) ∨Kr.

Let E =
[
0 1
1 0

]
. It suffices to show there exists a U ∈ F 2,n such that A = U tEU ∈

S(F,G). Each line in F 2 is isotropic. Let wi, i = 1, 2, . . . , n denote the columns of U .
Choose wn−r+1 = wn−r+2 = · · · = wn = 0. Choose k distinct lines L1, L2, . . . , Lk in
F 2 and choose v1, v2, . . . , vk such that Li = Sp{vi}, i = 1, 2, . . . , k. Let w1 = w2 =
· · · = ws1 = v1, ws1+1 = ws1+2 = · · · = ws1+s2 = v2, . . . , wn−r−sk+1 = · · · = wn−r =
vk. Then U tEU ∈ S(F,G).

We now assume that the complement of G is of the form

(Ks1 ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr.

Let E =
[
1 0
0 1

]
. Notice that Sp{e := [1, 1]t} is an isotropic line. Choose wn−r+1 =

wn−r+2 = · · · = wn = 0. Choose w1, w2, . . . , ws1 = e.
Now pick a ∈ F\{1} and let x(1) = [1, a]t and y(1) = [a, 1]t. Then Sp{x(1)} is

orthogonal to Sp{y(1)}. Among ws1+1, ws1+2, . . . , wn−r we pick the first p1 equal to
x(1) and the q1 after these equal to y(1). Since F has an infinite number of elements,
we can continue this process and obtain a matrix A of rank ≤ 2 in S(F,G). ✷

Theorem 2 is false if F is finite.

Example Let F be a finite field with q elements and let Gc = (q + 2)K2. Suppose
mr(F,G) = 2 (it can’t be 1), and let A ∈ S(F,G) with rank A = 2. By Lemma
1, A can be factored A = U tBU . Write U = [w1, w2, . . . , w2q+4] ∈ F 2,2q+4. If
0, 1, a1, a2, . . . , aq−2 are the elements of F , there are q + 1 distinct lines in F 2, those

spanned by
[
0
1

]
,

[
1
0

]
,

[
1
1

]
,

[
1
a1

]
, . . . ,

[
1

aq−2

]
. Consequently, there is a vertex i in one

K2 and a vertex j in another K2 such that wj = αwi, α ∈ F ∗. Since ij is an edge
of G, wi is not orthogonal to wj , so it follows that wi is not isotropic. Let k be the
neighbor of i in Gc. Then wk ⊥ wi, so wk ⊥ wj which implies that jk is an edge in
Gc, a contradiction. Therefore mr(F,G) ≥ 3.

For the case F = R we have

Corollary 2 If G is a graph whose complement is of the form (4.1), then mr(G) ≤ 2.
Furthermore, if mr(G) = 2, the minimum is attained at a matrix with one positive
and one negative eigenvalue.

Proof: This follows from Theorem 2, Theorem 1, and Sylvester’s law of inertia. �

Theorem 3 Let G be a graph on n vertices. Then mr+(G) ≤ 2 if and only if Gc has
the form (4.5).
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Proof: The forward implication is Corollary 1. For the reverse implication, instead
of adapting the proof of Theorem 2, we give a geometrical argument. Let G be a
graph of the form (4.5). Define a 2 × n matrix U = [u1, u2, . . . , un] as follows. For
each i ∈ V (Kr), let ui = 0. Choose nonzero vectors w1, w2, . . . , wk ∈ R2 such that
for i �= j, wi and wj are linearly independent and wt

iwj �= 0. Let x1, x2, . . . , xk be
nonzero vectors such that wt

ixi = 0, i = 1, 2, . . . , k. Let Si, Ti be the color classes of
Kpi,qi , i = 1, 2, . . . , k. For v ∈ Si, define uv = wi and for v ∈ Ti define uv = xi. Then
U tU ∈ S+(G) and has rank ≤ 2. �

5. Forbidden Subgraph Characterizations. We now show how the graphs
in (4.1), those in (4.2) and (4.3), and those in (4.5) can be characterized in terms of
forbidden subgraphs through a series of propositions. It is clear that a graph G is a
union of complete graphs if and only if G is P3-free. Taking complements, a graph G
is a complete multipartite graph if and only if G is (K2 ∪K1)-free. It follows that G
is a complete bipartite graph if and only if G is (triangle, K2 ∪K1)-free.

Proposition 1 The graph G is a union of complete bipartite graphs if and only if G
is (triangle, P4)-free.

Forward implication. Since G is bipartite, G is triangle-free. If P4 is an induced
subgraph of G, it is an induced subgraph of some component, and then so is K2∪K1,
a contradiction.

Reverse implication. Let H = (V,E) be a component of a (triangle, P4)-free graph
G. Since H is P4-free, H has no odd cycles, and is therefore bipartite. If H is not
complete bipartite, P4 is an induced subgraph, contrary to assumption. ✷

Proposition 2 Let G = (V,E) be a connected paw-free graph containing a triangle.
Then

1. every vertex of G lies on a triangle.
2. G does not contain a cut vertex.

Proof: Suppose u is not on a triangle, let k be the minimum distance from u to a
triangle, G[{w, x, y}], and let P = [u0 = u, u1, u2, . . . , uk = w] be a path from u to
the triangle. Since G[{uk−1, w, x, y}] is not a paw, we may assume uk−1x ∈ E. Then
{uk−1, w, x} induces a triangle at distance k − 1 from u, a contradiction.

Now suppose w is a cut vertex of G, and assume {w, x, y} induces a triangle.
Then there is a vertex u adjacent to w and lying in a component of G − w distinct
from the component containing {x, y}. Then {u,w, x, y} induces a paw, contrary to
assumption. ✷

Proposition 3 A connected (paw, diamond)-free graph that contains a triangle is
complete.

Proof: Let G be such a graph. The proof is by induction on n, the number of
vertices of G. If n = 3, G is K3. Suppose n ≥ 4 and that the theorem is true for all
graphs with fewer than n vertices. Assume {u1, u2, u3} induces a triangle and let u
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be a vertex of G distinct from u1, u2, u3. By Proposition 2, G− u is connected, so is
complete by the induction hypothesis.

Since G is connected, u is adjacent to a vertex x. Let y, z be any other vertices
of G− u. Since G− u is complete, {x, y, z} induces a triangle. Since G[{u, x, y, z}] is
neither a paw nor a diamond, it is K4, and u is adjacent to y and z. Consequently,
G is complete. ✷

Proposition 4 A graph G can be expressed as the union of complete graphs and of
complete bipartite graphs if and only if G is (P4, paw, diamond)-free.

Remark: The decomposition of a graph in this proposition is not unique. For example,
G = K4 ∪ K3 ∪K2 ∪ K2 ∪ K2,2 ∪K1,5 can be thought of as the union of 4 complete
graphs and 2 complete bipartite graphs, as the union of 2 complete graphs and 4
complete bipartite graphs, or of 3 of each.

Forward implication. None of P4, paw, and diamond can be an induced subgraph of
a component of G.

Reverse implication. We may express

G = E1 ∪ · · · ∪Ej ∪H1 ∪ · · · ∪Hk

where the Ei and Hi are the components of G, each Ei contains a triangle, and each
Hi is (triangle, P4)-free. By Proposition 1, each Hi is a complete bipartite graph, and
by Proposition 3, each Ei is complete. ✷

Our next step is to characterize the class of graphs obtained by taking the join of
a graph in Proposition 4 and a complete graph. Let Ŵ4 be the graph on 5 vertices

Theorem 4 A graph G has the form

(5.1) (Ks1 ∪Ks2 ∪ · · · ∪Kst ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for nonnegative integers t, s1, s2, . . . st, k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0,
i = 1, 2, . . . , k, if and only if G is (P4, paw ∪K1, diamond ∪K1, Ŵ4,K2,2,2)-free.

Forward implication. Any induced subgraph of (5.1) containing a vertex of Kr must
contain a dominating vertex, so cannot be any of the graphs in

F = {P4, paw ∪K1, diamond ∪K1, Ŵ4,K2,2,2}.
Therefore, if a graph in F is induced, it must be a subgraph of Ks1 ∪ Ks2 ∪ · · · ∪
Kst ∪Kp1,q1 ∪Kp2,q2 ∪· · ·∪Kpk,qk

. Since the diamond is an induced subgraph of both
Ŵ4 and K2,2,2, it follows from Proposition 4 that no graph in F can be an induced
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subgraph of Ks1 ∪Ks2 ∪ · · · ∪Kst ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
. Therefore, a graph

of the form (5.1) must be F -free.

Reverse implication. Let G = (V,E) be an F -free graph. Let D be the set of
dominating vertices of G, let r = |D|, and let C = V \D. Then G = G[C] ∨Kr. We
now show that G[C] is a (paw, diamond)-free graph.

Suppose that y z

w

x

is an induced subgraph of G[C]. Since y /∈ D,

there exists a vertex u ∈ C not adjacent to y. Since paw ∪K1 is not induced, u is
adjacent to at least one of w, x, z. If u is adjacent to a nonempty proper subset of
{w, x, z}, P4 is induced in G[C], and therefore G, contrary to hypothesis, while if u
is adjacent to each of w, x, z, Ŵ4 is induced, also contrary to assumption. Therefore
G[C] is paw-free.

Suppose that y

z

w

x is an induced subgraph of G[C]. Since x, y are not

dominating vertices, there exist vertices a, b ∈ C with a not adjacent to y and b not
adjacent to x. If a = b, then since diamond ∪K1 is not induced, a is adjacent to at
least one of w and z, say w. Then {a,w, x, y} induces a paw, a contradiction. So
a �= b. Then, since diamond ∪K1 is not induced, a is adjacent to at least one of w, x, z
and b is adjacent to at least one of w, y, z. Suppose that a and x are not adjacent.
Then, if a is adjacent to only one of w and z, P4 is induced, and if a is adjacent to w
and z, Ŵ4 is induced, both contrary to assumption. Therefore a is adjacent to x, and
by symmetry b is adjacent to y. Then a and b are adjacent, else {a, x, y, b} induces
P4. So

y

z

w

x

a b

is a subgraph of G[C]. Since G[C] is paw-free, G[{a,w, x, y}] has more than 4 edges.
But a and y are not adjacent, so aw is an edge. A similar argument shows that bw, az,
and bz are edges. Since ay, bx, wz are not edges, G[{a, b, w, x, y, z}] = K2,2,2, contrary
to assumption. Therefore G[C] is diamond-free.

Because G[C] is (paw,diamond)-free and P4-free by hypothesis, by Proposition 4,
G[C] can be expressed as the union of complete graphs and complete bipartite graphs.
Then G = G[C] ∨Kr is of the form (5.1). ✷

We can now give a forbidden subgraph characterization of the graphs in (4.1).
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Corollary 3 A graph G has the form

(5.2) (Ks1 ∪Ks2 ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for nonnegative integers s1, s2, k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0,
i = 1, 2, . . . , k, if and only if G is (P4, paw∪K1, diamond∪K1, Ŵ4,K2,2,2, 3K3)-free.

Note that the 6 forbidden graphs in this statement are the complements of the
forbidden subgraphs in section 2.

Forward implication. By Theorem 4 it suffices to show that G is 3K3-free. Since 3K3

does not contain a dominating vertex, if it is an induced subgraph of G, it must be
induced in Ks1∪Ks2∪Kp1,q1∪Kp2,q2∪· · ·∪Kpk,qk

. But K3 is not an induced subgraph
of a union of complete bipartite graphs, so 3K3 must be induced in Ks1 ∪Ks2 , which
is impossible.

Reverse implication. By Theorem 4, G has the form

(Ks1 ∪Ks2 ∪ · · · ∪Kst ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr.

We may assume that s1, s2, . . . , st ≥ 3. Then if t ≥ 3, 3K3 is induced. So t ≤ 2 and
G has the form (5.2). ✷

Taking complements in Corollary 3 we have

Theorem 5 Let G be a graph. Then Gc has the form (5.2) if and only if G is
(P4, dart,�, P3 ∪K2, 3K2,K3,3,3)-free.

Combining Theorems 1, 2 (charF �= 2), and 5,

Theorem 6 Let G be a graph and let F be an infinite field such that charF �= 2.
Then the following are equivalent:

1. mr(F,G) ≤ 2.
2. Gc has the form (Ks1∪Ks2∪Kp1,q1∪Kp2,q2∪· · ·∪Kpk,qk

)∨Kr for nonnegative
integers s1, s2, k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0, i = 1, 2, . . . , k.

3. G is (P4,�, dart, P3 ∪K2, 3K2,K3,3,3)-free.

In order to state analogous results when charF = 2 we need

Corollary 4 A graph G has the form

(5.3) (Ks1 ∪Ks2 ∪ · · · ∪Ksk
) ∨Kr

or has the form

(5.4) (Ks1 ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for some appropriate nonnegative integers k, s1, s2, . . . , sk, r, p1, q1, p2, q2, . . . , pk, qk

with pi + qi > 0, i = 1, 2, . . . , k, if and only if G is (P4, paw ∪ K1, diamond ∪ K1,
Ŵ4,K2,2,2, P3 ∪ 2K3)-free.
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Forward implication. It suffices by Theorem 4 to show that P3 ∪ 2K3 is not induced.
Suppose that it is. If G is of the form (5.3), then since P3 ∪ 2K3 does not have a
dominating vertex, it must be induced in Ks1 ∪ Ks2 ∪ · · · ∪ Ksk

implying that P3 is
induced in a complete graph, a contradiction. If G is of the form (5.4), P3∪2K3 must
be induced in Ks1 ∪ Kp1,q1 ∪ Kq2,q2 ∪ · · · ∪ Kpk,qk

, implying that 2K3 is induced in
Ks1 , a second contradiction. Thus P3 ∪ 2K3 is not induced.

Reverse implication. From Theorem 4 we see that G has the form

(Ks1 ∪Ks2 ∪ · · · ∪Kst ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr.

If Ks1 ∪ Ks2 ∪ · · · ∪ Kst ∪ Kp1,q1 ∪ Kp2,q2 ∪ · · · ∪ Kpk,qk
is P3-free, it is the union of

complete graphs and G has the form (5.3). So assume that P3 is induced in Kp1,q1 .
Since P3 ∪2K3 is not induced in G, si ≥ 3 for at most one i. Then the remaining Ksi

are complete bipartite graphs and G has the form (5.4). ✷

Combining Theorems 1, 2 (charF = 2), and taking the complements of the graphs
in Corollary 4 we have

Theorem 7 Let G be a graph and let F be an infinite field such that charF = 2.
Then the following are equivalent:

1. mr(F,G) ≤ 2.
2. Gc is either of the form

(5.5) (Ks1 ∪Ks2 ∪ · · · ∪Ksk
) ∨Kr

or of the form

(5.6) (Ks1 ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for some appropriate nonnegative integers k, s1, s2, . . . , sk, r, p1, q1, p2, q2, . . .,
pk, qk with pi + qi > 0, i = 1, 2, . . . , k.

3. G is (P4,�, dart, P3 ∪K2, 3K2, (P3 ∪ 2K3)c)-free.

Theorems 6 and 7 are fairly definitive answers to the problem posed at the outset
of the paper. The problem of characterizing which graphs have mr(F,G) ≤ 2 for
finite fields is intricate and will be presented in a subsequent paper. The second
criterion of these theorems is undoubtedly the characterization that should be used
to algorithmically determine whether or not a graph has minimum rank less than
or equal to 2. The third criterion gives insight into the obstructions that prevent
a graph from having rank less than 3 by establishing that the 6 forbidden graphs
in section 2 comprise a complete list of minimal rank 3 graphs for an infinite field
with charF �= 2 and the same list with one substitution is a complete list of minimal
rank 3 graphs when charF = 2. The equivalence of 2 and 3 in each theorem is of
some interest graph theoretically as there is no transparent connection between them.
Problems of finding forbidden subgraphs for graph classes obtained through unions
and joins is investigated systematically in [1]. The problem of characterizing graphs
with mr(F,G) ≤ k for k ≥ 3 appears very difficult.
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We can also give a forbidden subgraph characterization for the class of graphs
(4.5).

Corollary 5 A graph G has the form

(5.7) (Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for nonnegative integers k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0, i = 1, 2, . . . , k, if
and only if G is (P4,K3 ∪K1, Ŵ4,K2,2,2)-free.

Forward implication. Suppose K3 ∪ K1 were an induced subgraph. Since it has no
dominating vertex, it would be induced in the union of complete bipartite graphs,
which is impossible. Moreover, P4, Ŵ4, and K2,2,2 are all forbidden by Theorem 4.

Reverse implication. Since G is (K3 ∪K1)-free, it is also (paw ∪K1, diamond ∪K1)-
free. Then by Theorem 4, G has the form

(Ks1 ∪Ks2 ∪ · · · ∪Kst ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr.

If s1 ≥ 3 and k ≥ 1, then K3 ∪ K1 is an induced subgraph, contrary to assumption.
Suppose for some i = 1, . . . , t that si ≥ 3, so that k = 0. If a second si is positive,
K3∪K1 is again an induced subgraph. So all but one si is 0 and G is complete which
is trivially of the form (5.7). So we may assume si ≤ 2 for each i. But then all of the
Ksi are bipartite and again G has the form (5.7). �

Combining Theorem 3 and Corollary 5 we have

Theorem 8 Given a graph G, the following are equivalent.
1. mr+(G) ≤ 2.
2. Gc has the form (Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk

)∨Kr for nonnegative integers
k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0, i = 1, 2, . . . , k.

3. G is (P4, claw, P3 ∪K2, 3K2)-free.

We conclude this section by specializing our results to the case that G is con-
nected. Our first result is of some interest graph theoretically.

Proposition 5 Let G be connected. Then G is (P4, dart,�)-free if and only if G is
(P4, P3 ∪K1,K2 ∪ 2K1)-free.

Reverse implication. If the dart is an induced subgraph, so is P3 ∪K1 and if � is an
induced subgraph, so is K2 ∪ 2K1.

Forward implication. Suppose that P3 ∪K1 = x y z w is an induced subgraph
of G. Let k be the minimum distance from w to x y z . Then k ≥ 2, but if
k > 2, P4 is induced. Therefore k = 2. Let u be the intermediate vertex on a shortest
path from w to x y z , so that u is adjacent to w and at least one of x, y, z. If u
is adjacent to a proper subset of {x, y, z}, P4 is induced, and if u is adjacent to each
of x, y, z, G[{x, y, z, u, w}] is a dart. So G is (P3 ∪K1)-free.
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Suppose that K2 ∪ 2K1 = xw y z is induced. If the distance from y to
xw is greater than 2, P4 is induced, so the distance is 2. Let u be the intermediate

vertex on a shortest path from y to xw . If u is not adjacent to both w and x, P4

is induced, so assume u is adjacent to both. Then

y u

w

x

is an induced subgraph of G. If z is adjacent to u, then G[w, x, u, y, z] is �, a
contradiction. So z and u are not adjacent. Replacing y by z in the argument with y

and xw , there is a vertex v �= u such that

v z

w

x

is an induced subgraph of G. If u and v are not adjacent, G[u,w, v, z] is P4, so u and
v are adjacent. If v and y are not adjacent, G[y, u, v, z] is P4, so v and y are adjacent.
Then G[w, x, v, y, z] is �, a contradiction. So K2 ∪ 2K1 is not induced. ✷

If charF �= 2, then from Theorem 6 we see that G is connected only if r = 0. We
now characterize this class of graphs.

Proposition 6 A graph can be expressed as the union of at most two complete graphs
and of complete bipartite graphs if and only if G is (P4, paw, diamond, 3K3)-free.

Forward implication. G is (P4, paw, diamond)-free by Proposition 4, and 3K3 is not
induced since K3 is not induced in a bipartite graph.

Reverse implication. By Proposition 4,

G = Ks1 ∪Ks2 ∪ · · · ∪Kst ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
,

where we may assume s1, s2, . . . , st ≥ 3. Since 3K3 is not induced, t ≤ 2. �
Taking complements we have

Corollary 6 Gc can be expressed as the union of at most two complete graphs and
of complete bipartite graphs if and only if G is (P4, P3 ∪K1,K2 ∪ 2K1,K3,3,3)-free.

We tighten this up by using the fact that G is connected.

Corollary 7 Let G be connected. Then G is (P4, dart,�,K3,3,3)-free if and only if
G is (P4, P3 ∪K1,K2 ∪ 2K1,K3,3,3)-free.

Proof: This is an immediate consequence of Proposition 5. �
Combining Corollaries 6 and 7, we have
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Corollary 8 If G is a connected graph, then Gc can be expressed as the union of
at most two complete graphs and of complete bipartite graphs if and only if G is
(P4, dart,�,K3,3,3)-free.

Therefore, in the connected case, Theorem 6 becomes

Theorem 9 Let G be a connected graph and let F be an infinite field with charF �= 2.
Then the following are equivalent:

1. mr(F,G) ≤ 2.
2. Gc can be expressed as the union of at most 2 complete graphs and of complete

bipartite graphs.
3. G is (P4, dart,�,K3,3,3)-free.

We can obtain analogues of Proposition 6 and Corollary 6 for the case charF = 2.

Proposition 7 A graph can be expressed as the union of complete graphs or as the
union of at most one complete graph and of complete bipartite graphs if and only if
G is (P4, paw, diamond, P3 ∪ 2K3)-free.

Forward implication. G is (P4, paw, diamond)-free by Proposition 4 and it is easy to
check that P3 ∪ 2K3 is not induced.

Reverse implication. If G is P3-free, then G is a union of complete graphs. So we
may assume that G has P3 as an induced subgraph. By Proposition 4, G is the union
of complete graphs and of complete bipartite graphs with P3 induced in one of the
complete bipartite graphs. Then 2K3 cannot be induced, which means that at most
one of the complete graphs has 3 vertices. Then G can be expressed as the union of
at most one complete graph and of complete bipartite graphs. ✷

Taking complements we have

Corollary 9 Gc can be expressed as the union of complete graphs or as the union
of at most one complete graph and of complete bipartite graphs if and only if G is
(P4, P3 ∪K1,K2 ∪ 2K1, (P3 ∪ 2K3)c)-free.

Proposition 8 Let G be connected. Then G is (P4, dart,�, (P3 ∪ 2K3)c)-free if and
only if G is (P4, P3 ∪K1,K2 ∪ 2K1, (P3 ∪ 2K3)c)-free.

Proof: This follows immediately from Proposition 5. ✷

Combining with Corollary 9, we have

Corollary 10 If G is a connected graph, then Gc can be expressed as the union
of complete graphs or as the union of at most one complete graph and of complete
bipartite graphs if and only if G is (P4, dart,�, (P3 ∪ 2K3)c)-free.

In the connected case we must have r = 0 in Theorem 7. So we have by Corollary
10
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Theorem 10 Let G be a connected graph and let F be an infinite field with charF =
2. Then the following are equivalent:

1. mr(F,G) ≤ 2.
2. Gc can be expressed as the union of complete graphs or as the union of at

most one complete graph and of complete bipartite graphs.
3. G is (P4, dart,�, (P3 ∪ 2K3)c)-free.

Finally, G is connected in Theorem 8 only if r = 0. Making use of Proposition 1,
we have

Theorem 11 Given a connected graph G, the following are equivalent.
1. mr+(G) ≤ 2.
2. Gc is the union of complete bipartite graphs.
3. G is (Kc

3 , P4)-free. [G is P4-free with independence number ≤ 2.]

6. Minimum Hermitian rank. In the previous sections we characterized for
any infinite field F those graphs G such that mr(F,G) ≤ 2. This included the case
F = C. But besides symmetric matrices with entries in C, we could also study the case
of Hermitian matrices. Given a graph G = (V,E) with vertex set V = {1, 2, . . . , n},
let H(G) be the set of all Hermitian n×n matrices A = [aij ] such that aij �= 0, i �= j,
if and only if ij ∈ E. There is no restriction on the diagonal entries of A. We define

hmr(G) = min{rankA | A ∈ H(G)}.

Inspection of the six graphs presented in Section 2 shows that all of them except
K3,3,3 have hmr(G) = 3, and that hmr(K3,3,3) = 2. In this section we characterize
those graphs G with hmr(G) ≤ 2. We will see that the forbidden subgraphs are the
first five graphs presented in Section 2.

A line in C2 is a one dimensional subspace of C2 over C. Let B = [bij ] be
any invertible Hermitian 2× 2 matrix. Given any line L in C2 define its orthogonal
complement (relative to B) by

L⊥ = {y ∈ C
2 | y∗Bx = 0 ∀x ∈ L}.

Observation 7 (with yt replaced by y∗) is also valid for this case. We call a line L
isotropic if L⊥ = L.

We now consider the existence and the number of isotropic lines. For this we may
replace B by any matrix of the form S∗BS, where S is a 2×2 invertible matrix over C;
we may also multiply it by −1. Therefore, we can assume that either B = diag(1,−1)
or B = diag(1, 1). Let [x1, x2]t be a nonzero vector in L. Then L is isotropic if and
only if x∗Bx = 0. Thus, there exist isotropic lines if and only if B = diag(1,−1) and
|x1|2 − |x2|2 = 0. If this is the case, we can have x1 �= 0 and x2 �= 0; we may take
x1 = 1, and then L is an isotropic line if and only if |x2|2 = 1. In particular, there
can be infinitely many isotropic lines.
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Theorem 12 Let G be a graph on n vertices. Then, if hmr(G) ≤ 2, Gc is of the
form

(6.1) (Ks1 ∪Ks2 ∪ · · · ∪Kst ∪Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk
) ∨Kr

for nonnegative integers t, s1, s2, . . . st, k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0,
i = 1, 2, . . . , k.

The proof of this theorem is similar to the proof of Theorem 1, except that in
this case there are an infinite number of isotropic lines if there are isotropic lines.

Theorem 13 Let G be any graph whose complement is of the form (6.1). Then
hmr(G) ≤ 2.

Proof: Let E =
[
1 0
0 −1

]
. It suffices to show there exists a U ∈ C

2,n such that

A = U∗EU ∈ H(G). Let wi, i = 1, 2, . . . , n denote the columns of U , and let eζ =
[
1
ζ

]
.

If ζ ∈ C and |ζ| = 1, the line spanned by eζ is isotropic. Choose t distinct complex
numbers ζ1, ζ2, . . . , ζt with |ζi| = 1 for i = 1, 2, . . . , t. Choose wn−r+1 = wn−r+2 =
· · · = wn = 0. For i = 1, 2, . . . , t, let fi = 1 +

∑i−1
j=1 sj (with the understanding that

f1 = 1), let li =
∑i

j=1 sj , and choose wfi , wfi+1, . . . , wli = eζi .
Now pick a nonzero α1 ∈ C with |α1| �= 1. Then x(1) = [1, α1]t ∈ C2 is a non-

isotropic vector and y(1) = [α1, 1]t is a vector in C2 orthogonal to x(1). Among the
remaining wi’s we pick the first p1 equal to x(1) and the q1 after these equal to y(1).
Since C\{ζ | |ζ| = 1} has an infinite number of elements, we can continue this process
and obtain a matrix A of rank ≤ 2 in H(G). ✷

Corollary 11 If hmr(G) = 2, the minimum is attained at a Hermitian matrix with
one positive and one negative eigenvalue.

Combining Theorems 12, 13 and taking complements in Theorem 4 gives

Theorem 14 Let G be a graph. Then the following are equivalent:
1. hmr(G) ≤ 2.
2. Gc has the form (Ks1 ∪Ks2 ∪· · ·∪Kst ∪Kp1,q1 ∪Kp2,q2 ∪· · ·∪Kpk,qk

)∨Kr for
nonnegative integers t, s1, s2, . . . , st, k, p1, q1, p2, q2, . . . , pk, qk, r with pi+qi >
0, i = 1, 2, . . . , k.

3. G is (P4,�, dart, P3 ∪K2, 3K2)-free.

Let H+(G) be the set of positive semidefinite Hermitian matrices in H(G) and
let

hmr+(G) = min{rankA | A ∈ H+(G)}.

Theorem 15 Let G be a graph. Then the following are equivalent:
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1. hmr+(G) ≤ 2.
2. Gc has the form (Kp1,q1 ∪Kp2,q2 ∪ · · · ∪Kpk,qk

)∨Kr for nonnegative integers
k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0, i = 1, 2, . . . , k.

3. G is (P4, claw, P3 ∪K2, 3K2)-free.

Proof: As in the proof of Corollary 1, there are no isotropic lines, soKs1 ,Ks2 , . . . ,Ksk

in equation (6.1) are absent. Thus (1) =⇒ (2). That (2) =⇒ (1) and (2) ⇐⇒ (3)
follows from Theorem 8. ✷

Recall the definition of τ(G) from the introduction. Theorem 15 says that τ(G) ≥
n−2 if and only if Gc has the form (Kp1,q1 ∪Kp2,q2 ∪· · ·∪Kpk,qk

)∨Kr for nonnegative
integers k, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0, i = 1, 2, . . . , k.

We now specialize the result of this section to the case that G is connected. As
before, we see that G is connected only if r = 0. Taking complements in Proposition 4,
we obtain

Corollary 12 Gc can be expressed as the union of complete graphs and of complete
bipartite graphs if and only if G is (P4, P3 ∪K1,K2 ∪ 2K1)-free.

Applying Proposition 5, Theorem 14 for a connected graph becomes

Theorem 16 Let G be a connected graph. Then the following are equivalent:
1. hmr(G) ≤ 2.
2. Gc can be expressed as the union of complete graphs and of complete bipartite

graphs.
3. G is (P4, dart,�)-free.

This final result is quite intuitive. In contrast with Theorems 9 and 10, for
a connected graph in the Hermitian case, the only forbidden subgraphs to having
minimal rank ≤ 2 are easily found.
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