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DETERMINANT PRESERVING TRANSFORMATIONS ON
SYMMETRIC MATRIX SPACES∗

CHONGGUANG CAO† AND XIAOMIN TANG†

Abstract. Let Sn(F) be the vector space of n × n symmetric matrices over a field F (with
certain restrictions on cardinality and characteristic). The transformations φ on the space which
satisfy one of the following conditions:

1. det(A + λB) = det(φ(A) + λφ(B)) for all A, B ∈ Sn(F) and λ ∈ F;
2. φ is surjective and det(A + λB) = det(φ(A) + λφ(B)) for all A, B and two specific λ;
3. φ is additive and preserves determinant

are characterized.
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1. Introduction and statement of the results. Linear preserving problems
is an active research area in matrix theory. The first result on linear preservers is due
to Frobenius [1] who studied linear transformations on matrix algebras preserving
the determinant. Let Mn(F) be the vector space of n × n matrices over a field F.
Frobenius characterized a linear map φ : Mn(F) → Mn(F) satisfying

det(φ(A)) = det(A), for all A ∈ Mn(F)(1.1)

when F = C (the complex field).
Recently, Dolinar and Šemrl [2] and Tan and Wang [4] respectively modified the

problem by removing the linearity of φ and changing condition (1.1) to

det(φ(A) + λφ(B)) = det(A + λB), for all A,B ∈ Mn(F) and all λ ∈ F.

This paper is motivated by [2] and [4]. We study determinant preservers on the
vector space of symmetric matrices.

Let F be a field. Let F∗ denote the set of all nonzero elements in F. Let Sn(F)
be the vector space of all n × n symmetric matrices over F. For A ∈ Sn(F), let aij

denote the (i, j)- entry of A, Aij the (i, j)-cofactor of A, and adj A the adjoint of A.
Let E(i, j) denote the matrix with 1 at the (i, j)- entry and 0 elsewhere, In the n×n
identity matrix and D(i, j) the matrix E(i, j) + E(j, i) for all i < j. For A ∈ Mn(F),
we denote by At the transpose of A. For A ∈ Sn(F), we denote by vA the column
vector

(a11, a12, · · · , a1n, a22, a23, · · · , a2n, · · · , an−1,n−1, an−1,n, ann)t.
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We define a map σ from Sn(F) to the column space F
n(n+1)

2 by σ(A) = vA for all
A ∈ Sn(F). Obviously, σ is a nonsingular linear map. For A,B ∈ Sn(F), we use
DA,B(t) to denote the polynomial det(A + tB). It is easy to see that the coefficient
of tn−1 in DA,B(t) is equal to

∑n
i=1

∑n
j=1 aijB

ij .
In this paper we will prove the following main results.
Theorem 1.1. Let F be a field with |F| ≥ n, |F| > 3 and chF �= 2, or F = F2

and n = 2. Then φ : Sn(F) → Sn(F) is a transformation which satisfies the condition

det(A + λB) = det(φ(A) + λφ(B)), for all A,B ∈ Sn(F) and all λ ∈ F(1.2)

if and only if φ has the form

φ(A) = αPAP t, for all A ∈ Sn(F)(1.3)

where α ∈ F∗, P ∈ GLn(F) (the set of all nonsingular matrices in Mn(F)) and
det(αP 2) = 1.

Theorem 1.2. Let F be a field with |F| ≥ n, |F| > 3 and chF �= 2 and φ :
Sn(F) → Sn(F) be a surjective transformation satisfying

det(A + λiB) = det(φ(A) + λiφ(B)), for all A,B ∈ Sn(F)

and i = 1, 2, where λi ∈ F∗ and (λ1/λ2)k �= 1 for 1 ≤ k ≤ n − 2. Then φ is of the
form as given by (1.3).

Theorem 1.3. Let F be a field such that chF = 0 or chF ≥ n and |F| > 3,
and let φ : Sn(F) → Sn(F) be an additive transformation. If φ satisfies the condition
detA = detφ(A) for all A ∈ Sn(F), then φ is of the form as given by (1.3).

Because the proofs of Theorems 1.2 and 1.3 are similar to those for Theorems 2
and 3 of [4], they are omitted. In section 2 we will prove Theorem 1.1.

2. The proof of Theorem 1.1. In order to prove Theorem 1.1, we need several
lemmas.

Lemma 2.1. [5] Suppose F is a field with |F| > 3, and φ : Sn(F) → Sn(F) is
a nonsingular linear transformation which is a rank-one preserver. Then φ is of the
form

φ(A) = αPAP t for all A ∈ Sn(F),

where α ∈ F∗ and P ∈ GLn(F).
Recall that a matrix A ∈ Mn(F) is said to be alternate if xtAx = 0 for all x ∈ Fn.

The following result is known ([3, p.155; p.161, Theorem 7; p.171, Theorem 10]):
Remark 2.2. Let F be a field and let A ∈ Sn(F). Then there exists P ∈ GLn(F)

such that
(i) P tAP is a diagonal matrix if chF �= 2, or chF = 2 and A is not alternate; and

(ii) P tAP is of the form diag(S, . . . , S, 0, . . . , 0), where S =
[

0 1
1 0

]
if chF = 2

and A is alternate.
Lemma 2.3. Suppose φ is a linear transformation from Sn(F) into itself satisfying

detA = detφ(A), for all A ∈ Sn(F). Then φ is bijective.
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Proof. It is sufficient to prove that φ is an injective transformation, or to show
that φ(A) = 0 implies that A = 0. Consider any A ∈ Sn(F) such that φ(A) = 0.
Then detA = detφ(A) = 0. This means rankA < n. By Remark 2.2, it is readily
seen that there exists B ∈ Sn(F) such that rankB = n− rankA and det(A+B) �= 0.
Then we get detB = detφ(B) = detφ(A + B) = det(A + B) �= 0. Thus we have
rankB = n. This implies rankA = 0, i.e., A = 0.

Lemma 2.4. Suppose F is a field with |F| > 2 and chF �= 2, and φ is a linear
transformation from Sn(F ) into itself satisfying detA = detφ(A), for all A ∈ Sn(F).
Then φ is a rank-one preserver.

Proof. We need to show that for every rank-one matrix A ∈ Sn(F) we have
rankφ(A) = 1. By Remark 2.2, we may write A as aNE(1, 1)N t where a ∈ F∗

and N ∈ GLn(F). By Lemma 2.3, φ is injective; so φ(A) �= 0. If rankφ(A) =
r > 1, since chF �= 2, by Remark 2.2 we may assume that φ(A) = M(Dr ⊕
O)M t, where M ∈ GLn(F), Dr = diag(b1, · · · , br) with b1, · · · , br ∈ F∗. Set B =
M(diag(0,−b2, · · · ,−br) ⊕ In−r)M t. By Lemma 2.3, φ is surjective; so there exists
C ∈ Sn(F) such that φ(NCN t) = B. Hence for every λ ∈ F, we have

(i) det(λaE(1, 1) + C)
= (detN)−2 det(N(λaE(1, 1) + C)N t)
= (detN)−2 det(λA + NCN t)
= (detN)−2 det(λφ(A) + B)
= (detM)2(detN)−2 det(λ(b1) ⊕ (λ− 1)diag(b2, · · · , br) ⊕ In−r).

In particular, when λ = 0 and 1 we obtain, respectively,
(ii) detC = (detM)2(detN)−2 det(diag(0,−b2, · · · ,−br) ⊕ In−r) = 0; and
(iii) det(aE(1, 1) + C) = (detM)2(detN)−2 det((b1) ⊕Or−1 ⊕ In−r) = 0.

Write C as
[

c wt

w C1

]
, where C1 ∈ Sn−1(F). By (ii) and (iii) we have

a detC1 = detC + det
[

a wt

0 C1

]
= det(aE(1, 1) + C) = 0.

On the other hand, since |F| > 2, we can choose λ ∈ F , λ �= 0, 1. Then by (i) and an
argument similar to the above one we have

λa detC1 = detC + det
[

λa wt

0 C1

]
= det(λaE(1, 1) + C) �= 0.

So we arrive at a contradiction. Hence r = 1, and φ(A) is a rank-one matrix.
Lemma 2.5. Suppose F is a field with |F| > 3 and chF �= 2. Then φ : Sn(F) →

Sn(F) is a linear transformation which satisfies detA = detφ(A) for all A ∈ Sn(F),
if and only if φ has the form as given by Theorem 1.1.

Proof. The “if” part is obvious. The “only if” part follows immediately from
Lemmas 2.1, 2.3 and 2.4.

Lemma 2.6. There exists a basis for Sn(F) consisting of nonsingular matrices.
Proof. Denote by W the set of all nonsingular matrices in Sn(F ). We only need

to prove that spanW = Sn(F ), or to show that E(i, i), D(i, j) ∈ spanW for all
i, j = 1, . . . , n, i < j.
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For any j ≥ 2, it is easily checked that the matrix D(1, j) + In + E(j, j) is
nonsingular. The same is also true for the matrix D(1, j) + In + kE(1, 1), where k
denotes the k-fold sum of the identity element of F , provided that chF � |k. Note that
we have

In +
n∑

j=2

{[D(1, j) + In + kE(1, 1)]− [D(1, j) + In +E(j, j)]} = (k(n− 1) + 1)E(1, 1).

If chF � |n, take k = 1. Then nE(1, 1) �= 0 and chF � | k (so that D(1, j)+ In + kE(1, 1)
is nonsingular); hence E(1, 1) ∈ spanW . If chF |n but chF �= 2, take k = 2. Then we
have chF � | k and also E(1, 1) ∈ spanW . If chF = 2, then

E(1, 1) =


E(1, 1) + D(1, 2) +

n∑
j=3

E(j, j)


 +


D(1, 2) +

n∑
j=3

E(j, j)


 ;

so we still have E(1, 1) ∈ spanW . This proves that in all cases E(1, 1) ∈ spanW . By
symmetry, we also have E(j, j) ∈ spanW for j = 2, . . . , n.

In view of the relation

D(1, 2) =
([

0 1
1 0

]
⊕ In−2

)
−

n∑
j=3

E(j, j),

and the proved fact that E(j, j) ∈ spanW for all j, we have, D(1, 2) ∈ spanW . By
symmetry, we also have D(i, j) ∈ spanW for all pairs of i, j (i < j). The proof is
completed.
Proof of Theorem 1.1: It is clear that we need only treat the “only if ” part. We
treat the case chF �= 2 first.

When chF �= 2, by the result of Lemma 2.5, it suffices to prove that φ is a
linear transformation. Here we are borrowing (and correcting) the arguments used
in the proof of [4, Proposition 2.1]. Note that condition (2) implies that for any
A,B ∈ Sn(F), the polynomial functions defined by the polynomials DA,B(t) and
Dφ(A),φ(B)(t) are equal. We want to prove that they are equal as polynomials. (In
the proof of [4, Proposition 2.1], the latter is taken for granted.) In view of condition
(2), φ preserves the determinant; so the coefficients of tn in the polynomials DA,B(t)
and Dφ(A),φ(B)(t), which are, respectively, detB and detφ(B), are the same. Hence,
the polynomial DA,B(t) − Dφ(A),φ(B)(t) is of degree at most n − 1. On the other
hand, by condition (2) again, each element of F is a root of the latter polynomial.
But |F| ≥ n, so the latter polynomial is equal to the zero polynomial. (The preceding
argument also shows that in the hypothesis of [4, Proposition 2.1], we need to add the
assumption that |F| ≥ n.) Let φ(A) = (ãij), by considering the coefficient of tn−1,
we have

n∑
i,j=1

aijB
ij =

n∑
i,j=1

ãijφ(B)ij .
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Noting that A and B are symmetric and recalling that adj B = (Bji), we can rewrite
the above as

vt
adj B · Γ · vA = vt

adj φ(B) · Γ · vφ(A),(2.1)

where Γ = diag(1, 2In−1, 1, 2In−2, · · · , 1, 2I2, 1, 2, 1). Since chF �= 2, Γ ∈ GLn(n+1)
2

(F).
By Lemma 2.6 there exists a basis for Sn(F ) consisting of nonsingular matrices,

say {C1, C2, . . . , Cn(n+1)
2

}. Then for each k, adj Ck = (detCk)C−1
k and a simple

calculation yields adj (adj Ck) = dkCk, where dk = (detCk)n−2. For all A ∈ Sn(F ),
by taking in (2.1) B = adj Ck for k = 1, · · · , n(n+1)

2 , we obtain

dkv
t
Ck

· Γ · vA = vt
adj φ(adj Ck) · Γ · vφ(A), for k = 1, . . . ,

n(n + 1)
2

.

Let D, X and Y be the matrices in Mn(n+1)
2

(F) given by

D = diag(d1, · · · , dn(n+1)
2

), X =




vt
C1

vt
C2
...

vt
C n(n+1)

2


 , Y =




vt
adj φ(adj C1)

vt
adj φ(adj C2)

...
vt
adj φ(adj C n(n+1)

2
)


 .

Then we have

D ·X · Γ · vA = Y · Γ · vφ(A), for all A ∈ Sn(F).(2.2)

It is clear that vt
C1

, · · · , vt
C n(n+1)

2

are linearly independent, as C1, C2, · · · , Cn(n+1)
2

form a basis for Sn(F). So X is nonsingular. By taking in (2.2) A = D(i, j) or E(i, i)
for all i, j = 1, · · · , n, i < j, we readily obtain

D ·X · Γ · In(n+1)
2

= Y · Γ · J,

where J is the n(n+1)
2 × n(n+1)

2 matrix with columns vφ(D(i,j)) or vφ(E(i,j)) for 1 ≤ i <
j ≤ n arranged in the natural way. So Y is nonsingular. By (2.2) we have

Γ−1Y −1DXΓvA = vφ(A) for all A ∈ Sn(F),

which implies that the transformation φ1 from F
n(n+1)

2 to itself given by

φ1(vA) = vφ(A) for all vA ∈ F
n(n+1)

2 ,

is linear. But φ = σ−1φ1σ, so φ is a linear transformation.
Now we treat the “only if ” part for the case F = F2 and n = 2.
Let Γ1 = S2(F2) \GL2(F2) and Γ2 = S2(F2) ∩GL2(F2). Then we have

Γ1 =
{
0,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 1
1 1

]}
,

Γ2 =
{
I2,

[
1 1
1 0

]
,

[
0 1
1 1

]
,

[
0 1
1 0

]}
.
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We first show that φ(0) = 0, φ

([
0 1
1 0

])
=

[
0 1
1 0

]
, φ(Γ1\{0}) = Γ1\{0}

and φ

(
Γ2\

{[
0 1
1 0

]})
= Γ2\

{[
0 1
1 0

]}
.

Since φ preserves the determinant, we have φ(Γi) ⊆ Γi for i = 1, 2. We can
readily verify the following:

10 det(A + B) �= 0 for every pair of distinct matrices A,B ∈ Γ1\{0};
20 det(0 + A) = 0 for every A ∈ Γ1\{0}.

Since φ(Γ1) = Γ1, by 10, 20 and condition (2) it follows that we have φ(Γ1\{0}) =
Γ1\{0} and φ(0) = 0.

Similarly, by making use of the fact that φ(Γ2) ⊆ Γ2 and that det(A + B) �= 0

for every pair of distinct matrices A,B ∈ Γ2\
{[

0 1
1 0

]}
, we can also show that

φ

(
Γ2\

{[
0 1
1 0

]})
= Γ2\

{[
0 1
1 0

]}
and φ

([
0 1
1 0

])
=

[
0 1
1 0

]
.

¿From the above discussion, φ(I2) equals I2,
[

1 1
1 0

]
or

[
0 1
1 1

]
. Consider the

case when φ(I2) = I2. Then φ

([
1 1
1 0

])
equals

[
1 1
1 0

]
or

[
0 1
1 1

]
. Suppose

the former happens. Then φ(A) = A for all A ∈ Γ2 and we can show that φ is in fact
the identity transformation of S2(F ) as follows.

Note that the sum of
[

1 1
1 1

]
and I2 belongs to Γ2, whereas the sum of I2

and
[

1 0
0 0

]
(or

[
0 0
0 1

]
) belongs to Γ1. But φ fixes I2, it follows that φ also

fixes
[

1 1
1 1

]
. By a similar argument, we can also show that φ fixes

[
1 0
0 0

]
and[

0 0
0 1

]
. So φ is the identity transformation when φ(I2) = I2 and φ

([
1 1
1 0

])
=[

1 1
1 0

]
.

If φ(I2) = I2 and φ

([
1 1
1 0

])
=

[
0 1
1 1

]
, then necessarily

φ

([
0 1
1 1

])
=

[
1 1
1 0

]
.

Using the same kind of argument as before, we can then show that

φ

([
1 1
1 1

])
=

[
1 1
1 1

]
,

φ

([
1 0
0 0

])
=

[
0 0
0 1

]
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and

φ

([
0 0
0 1

])
=

[
1 0
0 0

]
.

The preceding argument shows that there are at most two transformations φ that
satisfy φ(I2) = I2 and condition (2). Likewise, we can also show that there are at

most two transformations φ that satisfy condition (2) for which φ(I2) =
[

1 1
1 0

]
(or[

0 1
1 1

]
). So altogether there are at most six transformations ϕ : S2(F2) → S2(F2)

that satisfy condition (2). On the other hand, there are precisely six matrices in

GL2(F2), namely,
[

1 0
0 1

]
,
[

1 1
0 1

]
,
[

1 0
1 1

]
,
[

0 1
1 0

]
,
[

1 1
1 0

]
and

[
0 1
1 1

]
.

For each such matrix P the transformation φ given by φ(A) = PAP t clearly satisfies
condition (2), and also it is readily checked that the six transformations arising in
this way are different. This proves our result. �

We do not know whether Theorem 1.1 can be extended to include the cases
chF = 2 (but not F = F2 and n = 2, which is already covered), and |F| = 3 with
n = 2 or 3.
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