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THE EXTERNAL VERTICES CONJECTURE IN CASE N = 4∗
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Abstract. The determinantal conjecture of M. Marcus and G. N. de Oliveira is known in many
special cases. The case of 3 × 3 matrices was settled by N. Bebiano, J. K. Merikoski and J. da
Providência. The case n = 4 remains open. In this article a technical conjecture is established
implying a weakened form of the determinantal conjecture for n = 4.
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1. Introduction. Let A and B be normal n×n matrices with prescribed com-
plex eigenvalues α1, . . . , αn and β1, . . . , βn respectively. We define the OM vertices
v(σ) by

v(σ) =
n∏

j=1

(αj − βσ(j)),

where σ ∈ Sn and Sn denotes the group of all permutations of {1, . . . , n}.
The determinantal conjecture of M. Marcus [5] and G. N. de Oliveira [7] can be

stated in the following way.
The de Oliveira – Marcus Conjecture (OMC)
We have

det(A − B) ∈ co {v(σ);σ ∈ Sn},
where co denotes the convex hull taken in the complex plane.

Actually the conjecture was originally stated slightly differently. We have replaced
an addition by a subtraction. The conjecture is known in many special cases. It was
established for n = 3 in N. Bebiano, J. K. Merikoski and J. da Providência [2]. It
remains open however in the case n ≥ 4. In an earlier paper [4], we proposed a related
conjecture motivated by the work of J. K. Merikoski and A. Virtanen.

The external vertices conjecture (EVC)
Suppose that the OM vertices v(σ) satisfy �v(σ) ≥ 1 for all σ in Sn. Then there

exist nonnegative numbers tIJ such that

�v(σ) = 1 +
∑
IJ

tIJPIJ(σ) ∀σ ∈ Sn,

the sum being taken over all pairs of subsets I and J of {1, . . . , n} with the same
number of elements.
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The notation PIJ(σ) is an extension of the usual permutation matrix notation

PIJ(σ) =
{

1 if σ(I) = J ,
0 otherwise.

The EVC is known for n ≤ 3 and also in the case where α1, . . . , αn and β1, . . . , βn

are real [1]. The main result of this paper is the following
Theorem 1.1. The EVC is true for n = 4.
One consequence of this result is the following.
Corollary 1.2. Let A and B be normal 4× 4 matrices with prescribed complex

eigenvalues α1, . . . , α4 and β1, . . . , β4 respectively. Suppose that 0 /∈ co {v(σ);σ ∈ S4}.
Then

det(A − B) ∈ co {rv(σ);σ ∈ S4, r ≥ 1}.

Proof. We assert that if H is a closed half-space not containing zero for which
v(σ) ∈ H for all σ ∈ S4, then det(A−B) ∈ H . By scaling and rotating the problem,
we can always assume without loss of generality that H = {z;�z ≥ 1}. Next, we
infer the existence of a 4 × 4 unitary matrix U with determinant 1 such that

det(A − B) =
∑

σ∈S4

sU(σ)v(σ)

where sU(σ) = sgn(σ)�
(∏4

j=1 uj,σ(j)

)
, see J. K. Merikoski and A. Virtanen [6, The-

orem 1] for details. So, since sU(σ) is real, we have, using Theorem 1.1 that

� det(A − B) =
∑
σ∈S4

sU(σ)�v(σ)

=
∑
σ∈S4

sU(σ)

(
1 +

∑
IJ

tIJPIJ(σ)

)
,

= 1 +
∑
IJ

tIJ |uIJ |2,

≥ 1,

where uIJ denotes the corresponding cofactor of U and because∑
σ∈S4

sU(σ)PIJ (σ) = |uIJ |2

by J. K. Merikoski and A. Virtanen [6, equation 16]. This proves the assertion. Let
∆ = co {v(σ);σ ∈ S4}. To complete the proof, suppose that the conclusion fails.
Then for 0 < s ≤ 1, we find that s det(A − B) /∈ ∆ and this is also true for s = 0 by
hypothesis. Therefore the two compact convex sets ∆ and the line segment joining 0
to det(A − B) do not meet. The separation theorem for convex sets now allows the
construction of a closed half-space H containing ∆ but neither 0 nor det(A − B).
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2. Linear and Multiplicative Issues. Around the end of the nineteenth cen-
tury, the representation theory of the symmetric group Sn was worked out by Alfred
Young. He proved that the irreducible representations of Sn are in one to one corre-
spondence with the partitions of n realized as Ferrers diagrams. We refer the reader
to B. E. Sagan [9], the only book we know that allows the non-specialist easy access
to this topic.

The irreducible representations having a Ferrers diagram with at most two rows
will be termed Saxl representations . The notation πk stands for the Saxl representa-
tion with n− k places in the first row and k places in the second row. This notation
applies for 0 ≤ k ≤ � 1

2n�. Thus π0 denotes the trivial representation.
On the other hand the k-ply representation (0 ≤ k ≤ n) is given by

σ −→ (PIJ (σ−1))IJ

where, on the right, the matrix is indexed by the subsets of {1, . . . , n} with k elements.
It is not irreducible unless k = 0 or k = n and will be denoted π(k). Again π(0) is just
the trivial representation.

J. Saxl [10] worked out the the way in which π(k) breaks down into irreducible
constituents

π(k) =
k⊕

j=0

πj(2.1)

for 0 ≤ k ≤ � 1
2n�. For the other values of k it is clear that π(k) and π(n−k) are

equivalent representations.
We define the space Saxln of Saxl functions on Sn to be the linear subspace of

functions on Sn whose non abelian Fourier transform is carried on the set of Saxl
representations. Alternatively, it is the linear span of the functions PIJ (·). Since we
have

v(σ) =
n∏

j=1

(αj − βσ(j)) =
∑
IJ

αI(−β)JPIJ(σ)

where αI =
∏

i∈I αi and (−β)J =
∏

j∈J (−βj), we see that an arbitrary OM vertex
function v is a Saxl function and indeed Saxln is the linear span of such functions [4].
It turns out that dim(Saxln) = Cn, where Cn denotes the nth Catalan number. In
the case of interest in this article dim(Saxl4) = C4 = 14.

Aside from this linear structure, the OM vertex function has an obvious multi-
plicative structure, exploited for example in [3]. In this article we need to extend that
structure. Let us denote αn+j = βj and then consider products

v(µ) =
n∏

j=1

(αµ(2j−1) − αµ(2j))(2.2)
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as µ runs over S2n. In general, the mapping µ �→ v(µ) is not one to one and we
identify µ1 and µ2 if they are equal as polynomials in α1, . . . , α2n. We call these
equivalence classes OM roots. The term root comes from the passing resemblance to
Lie algebra root systems. If the OM root (2.2) is written in term of α1, . . . , αn and
β1, . . . , βn then each constituent factor has one of the four forms

(αp − αq), (βp − βq), (αp − βq), (βp − αq),

and it is clear that the number k of factors of the first type is equal to the number of
factors of the second type. Matching these together and applying an identity of the
form

(αp − αq)(βr − βs) = (αp − βr)(αq − βs) − (αp − βs)(αq − βr)

to each matched pair, it can be seen that each OM root can be written in one of the
forms v(σ), −v(σ) for σ ∈ Sn if k = 0 and otherwise in the form∑

ε1,...,εk∈{0,1}
(−1)

∑k
j=1 εjv(στ ε1

1 · · · τ εk

k ),

where σ is some fixed permutation in Sn and τ1, . . . , τk are disjoint transpositions.
Here we have 1 ≤ k ≤ � 1

2n�.
Thus, each root (thought of as a polynomial in α1, . . . , αn, β1, . . . , βn) can be

written as a linear combination of the OM vertices v(σ) with integer coefficients,
say v(µ) =

∑
σ∈Sn

cσv(σ). We extend the notation PIJ (σ) to PIJ(µ) by defining
PIJ(µ) =

∑
σ∈Sn

cσPIJ (σ) where cσ are as above. This definition is independent of
the choice of (cσ) since in fact for every I, J with |I| = |J |, there is a choice of complex
numbers α1, . . . , αn, β1, . . . , βn that yields v = PIJ (see [4] for details).

For every root µ, there is a corresponding negative root −µ such that v(−µ) =
−v(µ). We further define the level of a root µ, denoted 11(µ) as

∑
σ∈Sn

cσ. The OM
vertices have level 1, their negatives have level −1 and all other roots have level 0. In
effect, 11(µ) = P∅,∅(µ).

In case n = 4, there are in fact, 210 distinct OM roots having one of the forms
• v(σ), σ ∈ S4 (24 cases).
• −v(σ), σ ∈ S4 (24 cases).
• v(σ) − v(στ) for σ ∈ S4 and τ is a transposition (144 cases).
• v(σ)− v(στ1)− v(στ2) + v(στ1τ2) for σ ∈ S4 and where τ1 and τ2 are disjoint

transpositions (18 distinct cases).

3. Cross Ratios. The cross ratio of 4 complex numbers is given by

[ζ1, ζ2, ζ3, ζ4] =
(ζ1 − ζ2)(ζ3 − ζ4)
(ζ1 − ζ4)(ζ3 − ζ2)

.

It is fairly clear that [ζσ(1), ζσ(2), ζσ(3), ζσ(4)] = [ζ1, ζ2, ζ3, ζ4], where σ is an element of
the 4-group generated by the double transpositions of S4. The quantity

〈ζ1, ζ2, ζ3, ζ4〉 = sgn(�[ζ1, ζ2, ζ3, ζ4])(3.1)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 11, pp. 180-191, August 2004

http://math.technion.ac.il/iic/ela



ELA

184 S.W. Drury

has special significance. In the case that ζ1, ζ2, ζ3 and ζ4 are distinct points, we
consider the circle1 through the points ζ2, ζ3, ζ4 and traversed in that order. The
quantity in (3.1) is +1 if ζ1 is on the left of this circular path (i.e. inside the circle if the
circle is being traversed anticlockwise and outside it if it is being traversed clockwise)
and the quantity is −1 if ζ1 is on the right of the circular path. The quantity is zero
if ζ1 actually lies on the circular path. More generally 〈ζ1, ζ2, ζ3, ζ4〉 = 0 if the four
points ζ1, ζ2, ζ3 and ζ4 lie on a circle. It makes sense to overrule the definition (3.1)
by setting 〈ζ1, ζ2, ζ3, ζ4〉 = 0 in case that ζ1, ζ2, ζ3 and ζ4 ! are not distinct. We have

〈ζσ(1), ζσ(2), ζσ(3), ζσ(4)〉 = sgn(σ)〈ζ1, ζ2, ζ3, ζ4〉(3.2)

for all σ in S4.
There is a way of understanding 〈α1, α2, β1, β2〉 in terms of the root geometry in

case n = 2 (and which is inherited in root geometry for n ≥ 2). We have three roots
summing to zero

(β1 − α1)(α2 − β2) + (α2 − β1)(α1 − β2) + (α1 − α2)(β1 − β2) = 0.

Whenever we have w1, w2, w3 ∈ C with w1 + w2 + w3 = 0 we can distinguish three
cases.

1. The points w1, w2, w3 line on a straight line passing through the origin. In
the example above, this is the case where α1, α2, β1, β2 lie on a circle and
〈α1, α2, β1, β2〉 = 0.

2. The points w1, w2, w3 are arranged around the origin in anticlockwise order,
the angle between consecutive points in the cycle being strictly between zero
and π. In the case above 〈α1, α2, β1, β2〉 = −1.

3. The points w1, w2, w3 are arranged around the origin in clockwise order, the
angle between consecutive points in the cycle being strictly between −π and
zero. In the case above 〈α1, α2, β1, β2〉 = 1.

4. The Simplex Algorithm. It will be impossible to give in this paper a com-
plete proof of Theorem 1.1 because it is based on calculations that could only be
carried out with a digital computer. Most of the calculations involve the Simplex
Algorithm. The Simplex Algorithm involves a system of linear equations Ax = b and
one seeks to maximize or minimize a linear function f(x) subject to the constraints
xj ≥ 0, j = 1, . . . , J . We will need three types of computation. We use fractional
arithmetic so that roundoff error is never a problem.

1. The first step of the algorithm, which determines if the feasible set is empty
or if it is non-empty determines an extreme point.

2. The determination of whether the strict problem Ax = b with the constraints
xj > 0, j = 1, . . . , J has a feasible solution. If the regular problem does not
have a solution, neither does the strict problem. If the regular problem does
have a solution, we can maximize each of the variables xj in turn for the
regular problem. If there is a variable xj for which maxxj = 0, then the strict
problem does not have a solution. If maxxj > 0 for all j, then by taking a

1In this paper, we will always consider a straight line to be a special case of a circle.
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convex combination we see that the strict problem does have a solution. (In
practice, whenever we visit an extreme point, we take note of which variables
are strictly positive, thus eliminating much of the work).

3. Facet finding. We use the gift wrapping method described in [8]. Note that
finding the facets of a bounded polytope is equivalent to finding all the ex-
treme points of the dual (polar) polytope. This can be achieved by com-
bining the Simplex Method with a depth first search. Each “wrap” in the
gift wrapping method on the original polytope corresponds to a single step
in the Simplex Algorithm on the dual polytope. In our problem we have
non-simplicial facets which usually create havoc. We deal with this by spon-
taneous symmetry breaking. For example, if one perturbs the extreme points
of a cube, each originally square facet breaks up into two triangles.

Proposition 4.1. Let

Γ =


f ; f ∈ Saxl4, f =

∑
I,J with |I|=|J|

tIJPIJ , tIJ ≥ 0


 .

The facet inequalities of the cone Γ are of two types
1. f(σ) ≥ 0 for some fixed σ ∈ S4.
2. u(fρ1,ρ2) ≥ 0 for some fixed linear functional u on Saxl4 and some ρ1, ρ2 ∈ S4.
We have denoted fρ1,ρ2(σ) = f(ρ1σρ

−1
2 ).

We will detail the functional u at the beginning of the next section. It will be normal-
ized so that u(11) = 1.

Proof. The first step is to define a base of the cone by intersecting it with the hy-
perplane

∑
σ∈S4

f(σ) = 1. We then use computer calculation using the gift-wrapping
method to determine the facets of the resulting polytope and hence also of Γ.

Proposition 4.2. Let α1, . . . , α4 and β1, . . . , β4 be such that �v(σ) ≥ 1 for all
σ ∈ S4. Then u(�v) ≥ 1 where u is as in Proposition 4.1.

Proof of Theorem 1.1 given Proposition 4.2. We check that �v − 11 satisfies the
facet inequalities of the cone Γ. The first set of inequalities is obvious by hypothesis.
For the second set, we need to verify that u((�v − 11)ρ1,ρ2) ≥ 0 for all ρ1, ρ2 ∈ S4.
But

(�v − 11)ρ1,ρ2 = �(vρ1,ρ2) − 11(4.1)

and

vρ1,ρ2(σ) =
4∏

j=1

(
αρ2(j) − βρ1(σ(j))

)

are a perfectly good set of OM vertices. But vρ1,ρ2 satisfies the hypotheses of Propo-
sition 4.2 for all ρ1, ρ2 ∈ S4 and therefore u(�(vρ1,ρ2) − 11) ≥ 0. Combining this with
(4.1) gives the desired result.
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5. The Linear Domain. We give below 10 ways of writing the functional u.
Recall that f ∈ Saxl4, so that there are many linear relations between the f(σ). This
accounts for the multitude of equivalent expressions.

u(f) =
1
3

(
f(3214) + f(4132) + f(3421) + f(2341)− f(3241)

)
=

1
3

(
f(3214) + f(4132) + f(2431) + f(4321)− f(4231)

)
=

1
3

(
f(3124) + f(4132) + f(3412) + f(2341)− f(3142)

)
=

1
3

(
f(3124) + f(1432) + f(4312) + f(2341)− f(1342)

)
=

1
3

(
f(2314) + f(4123) + f(3412) + f(2431)− f(2413)

)
=

1
3

(
f(3214) + f(4123) + f(4312) + f(2431)− f(4213)

)
=

1
3

(
f(2314) + f(4123) + f(1432) + f(3421)− f(1423)

)
=

1
3

(
f(2134) + f(4123) + f(3412) + f(2341)− f(2143)

)
=

1
3

(
f(3124) + f(2314) + f(1432) + f(4321)− f(1324)

)
=

1
3

(
f(2134) + f(3214) + f(1432) + f(4321)− f(1234)

)
.

Consider the last two terms in the first expression where f = �v.

�(v(2341)− v(3241))

= �
((

(α1 − β2)(α2 − β3) − (α1 − β3)(α2 − β2)
)(

(α3 − β4)(α4 − β1)
))

= �
(
(α1 − α2)(β2 − β3)(α3 − β4)(α4 − β1)

)
= �v(ν)

for a certain root ν. If the hypotheses of Proposition 4.2 hold and �v(ν) ≥ 0, then
we get

u(�v) =
1
3

(
�v(3214) + �v(4132) + �v(3421) + �v(ν)

)
≥ 1

3
(1 + 1 + 1 + 0) = 1

giving the conclusion of Proposition 4.2. If Proposition 4.2 fails, it follows that
�v(µ) > 0 where µ = −ν. There are many such inequalities apparent from the
definition of u. We want however to discover all such root inequalities and to state a
result asserting that they cannot all be true.

We define 28 expressions ωj (j = 1, 2, . . . , 28) by ω1 = (α2 −α1), ω2 = (α3 −α1),
ω3 = (α3 − α2), ω4 = (α4 − α1), ω5 = (α4 − α2), ω6 = (α4 − α3), ω7 = (β1 − α1),
ω8 = (β1 − α2), ω9 = (β1 − α3), ω10 = (β1 − α4), ω11 = (β2 − α1), ω12 = (β2 − α2),
ω13 = (β2 − α3), ω14 = (β2 − α4), ω15 = (β2 − β1), ω16 = (β3 − α1), ω17 = (β3 − α2),
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ω18 = (β3 − α3), ω19 = (β3 − α4), ω20 = (β3 − β1), ω21 = (β3 − β2), ω22 = (β4 − α1),
ω23 = (β4 − α2), ω24 = (β4 − α3), ω25 = (β4! − α4), ω26 = (β4 − β1), ω27 = (β4 − β2)
and ω28 = (β4 − β3).

We also define a set of 57 roots using the shorthand Ωa,b,c,d = ωaωbωcωd.
v(µ1) = −Ω26,16,12,6, v(µ2) = −Ω27,16,8,6, v(µ3) = −Ω28,11,8,6, v(µ4) = −Ω22,18,15,5,
v(µ5) = −Ω28,11,9,5, v(µ6) = −Ω22,19,15,3, v(µ7) = −Ω28,12,9,4, v(µ8) = −Ω24,21,10,1,
v(µ9) = −Ω27,18,10,1, v(µ10) = Ω23,20,11,6, v(µ11) = Ω23,21,7,6, v(µ12) = Ω22,21,9,5,
v(µ13) = Ω24,20,11,5, v(µ14) = Ω27,18,7,5, v(µ15) = Ω26,16,14,3, v(µ16) = Ω22,21,10,3,
v(µ17) = Ω27,16,10,3, v(µ18) = Ω28,14,7,3, v(µ19) = Ω28,15,4,3, v(µ20) = Ω24,17,15,4,
v(µ21) = Ω23,20,13,4, v(µ22) = Ω26,17,13,4, v(µ23) = Ω23,21,9,4, v(µ24) = Ω25,17,15,2,
v(µ25) = Ω26,17,14,2, v(µ26) = Ω25,20,12,2, v(µ27) = Ω27,19,8,2, !v(µ28) = Ω28,14,8,2,
v(µ29) = Ω27,20,5,2, v(µ30) = Ω25,18,15,1, v(µ31) = Ω25,20,13,1, v(µ32) = Ω26,19,13,1,
v(µ33) = Ω26,21,6,1, v(µ34) = Ω22,17,13,10, v(µ35) = Ω23,16,13,10, v(µ36) = Ω22,18,12,10,
v(µ37) = Ω24,16,12,10, v(µ38) = Ω23,18,11,10, v(µ39) = Ω24,17,11,10, v(µ40) = Ω22,17,14,9,
v(µ41) = Ω23,16,14,9, v(µ42) = Ω22,19,12,9, v(µ43) = Ω25,16,12,9, v(µ44) = Ω23,19,11,9,
v(µ45) = Ω25,17,11,9, v(µ46) = Ω22,18,14,8, v(µ47) = Ω24,16,14,8, v(µ48) = Ω22,19,13,8,
v(µ49) = Ω25,16,13,8, v(µ50) = Ω24,19,11,8, v(µ51) = Ω25,18,11,8, v(µ52) = Ω23,18,14,7,
v(µ53) = Ω24,17,14,7, v(µ54) = Ω2!3,19,13,7, v(µ55) = Ω25,17,13,7, v(µ56) = Ω24,19,12,7,
v(µ57) = Ω25,18,12,7.

Proposition 5.1. There do not exist complex numbers α1, . . . , α4 and β1, . . . , β4

such that �v(µj) > 0 for j = 1, . . . , 57.
Proof of Proposition 4.2 given Proposition 5.1. For each fixed zero-level root ν,

we use the Simplex Algorithm to examine the polytope defined by the equations∑
σ∈S4

t(σ)PIJ (σ) + tPIJ (ν) = u(PIJ ),(5.1)

as I and J run over all subsets of {1, 2, 3, 4} with |I| = |J |. We are seeking t(σ) and
t nonnegative. If there is such a solution, then by linearity, we get∑

σ∈S4

t(σ)f(σ) + tf(ν) = u(f)

for all f ∈ Saxl4. In particular, putting f = 11 and using the fact that ν is zero level,
we get ∑

σ∈S4

t(σ) =
∑
σ∈S4

t(σ)11(σ) + t11(ν) = u(11) = 1.

Now suppose that �v(σ) ≥ 1 for all σ ∈ S4. Then if also �v(ν) ≥ 0,

u(�v) =
∑
σ∈S4

t(σ)�v(σ) + t�v(ν) ≥
∑

σ∈S4

t(σ) = 1

and the Proposition is proved. So, assuming that Proposition 4.2 is false, we obtain
�v(µ) > 0 where µ = −ν. In this way we obtain a list of 33 roots µj (j = 1, 2, . . . , 33)
such that �v(µj) > 0. The remaining 24 roots (listed as µj for j = 34, 35, . . . , 57) with
this property are the OM vertices themselves and come directly from the hypothesis
that �v(σ) ≥ 1 for all σ ∈ S4. Proposition 5.1 now yields the desired contradiction.
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6. The Multiplicative Domain. Proof of Proposition 5.1. Our task is to show
that

�v(µk) > 0 (k = 1, 2, . . . , 57)(6.1)

is impossible. We assume that (6.1) is true for some set of complex numbers α1, . . .,
α4, β1, . . . , β4. In this case we can (and do) perturb these points so that no four
of them lie on a circle while maintaining the veracity of (6.1). We then define θk

(k = 1, 2, . . . , 57) in the range −π/2 < θk < π/2 by θk = arg(v(µk)).
Next, we look for multiplicative relations between the v(µk). One of these is

v(µ1)v(µ8) = v(µ33)v(µ37). Consequently

θ1 + θ8 − θ33 − θ37 = 2nπ,

where n is an integer. But −2π < θ1 + θ8 − θ33 − θ37 < 2π and we are forced to
conclude that n = 0. Thus, we obtain a linear relation

θ1 + θ8 − θ33 − θ37 = 0

between the θk which is just one of a possible 24. However, the dimension of the space
spanned by such linear relations is 20. We will call these type one relations.

A representative of another type of multiplicative relation is v(µ1)v(µ9)v(µ48) =
−v(µ2)v(µ32)v(µ36) which leads to

θ1 + θ9 + θ48 − θ2 − θ32 − θ36 = nπ,(6.2)

where n is now an odd integer. But −3π < θ1 + θ9 + θ48 − θ2 − θ32 − θ36 < 3π, so
that n = ±1, giving us 2 alternatives. There are 64 such relations and ostensibly
264 possibilities. However, the situation is not as bad as this. We first look for
equivalence between such relations modulo the type one relations2. We find that
there are 28 equivalence classes. So, writing down these relations we have

3∑
�=1

θmk,�
−

6∑
�=4

θmk,�
= εkπ, k = 1, 2, . . . , 28

where εk = ±1 for k = 1, 2, . . . , 28. We will call these type two relations. Further-
more, these 28 relations are not linearly independent modulo (the linear span of) the
type one relations. The dimension modulo the type one relations is 16. We write the
relations down in such a way that the first 16 form a basis modulo the type one rela-
tions. This means that there are only 216 = 65536 choices for (εk)16k=1. Furthermore,
for i = 17, 18, . . . , 28, εi is a linear combination of εk for k = 1, 2, . . . , 16. When we
calculate these εi as (εk)16k=1 runs over the 65536 possibilities, not all of them satisfy
εi = ±1. This allows the number of choices of signs to be reduced from 65536 to 1872.

2Two such relations are said to be equivalent if either the sum or the difference of the expressions
corresponding to the left-hand side of (6.2) are in the linear span of the type one relations. This
forces the corresponding signs to be either opposite or equal respectively.
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We now use the simplex algorithm in the multiplicative domain. Let

xj =
1
π
θj +

1
2

=
1
π

(
θj +

π

2

)
, xj+57 =

1
2
− 1

π
θj =

1
π

(π
2
− θj

)
,

for j = 1, 2, . . . , 57. Then xj > 0 for j = 1, 2, . . . , 114, and the type one and type two
relations hold along with the equations xj + x57+j = 1 for j = 1, 2, . . . , 57. All in all,
93 equations for 114 variables. We check to see if the feasible set for the strict simplex
problem is empty. This occurs for 1464 sign patterns of the current 1872 cases, now
leaving 408 sign patterns to be eliminated.

To make further progress, we use the interplay between the cross ratio and the
roots.

We observe that

−v(µ30)
v(µ51)

= −Ω25,18,15,1

Ω25,18,11,8
= − (β2 − β1)(α2 − α1)

(β2 − α1)(β1 − α2)
= [β2, β1, α2, α1]

and similarly

v(µ57)
v(µ30)

= [β2, α2, α1, β1] and
v(µ50)
v(µ56)

= [β2, α1, β1, α2].

Note that since the four points β2, β1, α2, α1 do not lie on a circle, none of the above
cross ratios is real. It follows from (3.2) that

−sgn
(
�v(µ30)
v(µ51)

)
= sgn

(
�v(µ57)
v(µ30)

)
= sgn

(
� v(µ50)

v(µ56)

)
.(6.3)

Now arg
(
v(µj)
v(µk)

)
= θj − θk and −π < θj − θk < π, so sgn

(
� v(µj)
v(µk)

)
= 1 implies

0 < θj − θk < π and similarly, sgn
(
� v(µj)
v(µk)

)
= −1 implies 0 < θk − θj . Therefore,

either

x51 − x30 > 0, x57 − x30 > 0 and x50 − x56 > 0(6.4)

or

x30 − x51 > 0, x30 − x57 > 0 and x56 − x50 > 0.(6.5)

It turns out that there are 38 such possible conclusions arising from the following
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triples.

+ v(µ17)
v(µ2) + v(µ12)

v(µ16) + v(µ3)
v(µ5) + v(µ28)

v(µ3) + v(µ22)
v(µ25) + v(µ10)

v(µ21)

− v(µ30)
v(µ51) + v(µ57)

v(µ30) + v(µ50)
v(µ56) − v(µ24)

v(µ45) + v(µ55)
v(µ24) + v(µ44)

v(µ54)

+ v(µ6)
v(µ42) − v(µ48)

v(µ6) + v(µ42)
v(µ48) − v(µ20)

v(µ39) + v(µ18)
v(µ19) + v(µ38)

v(µ52)

+ v(µ4)
v(µ36) − v(µ46)

v(µ4) + v(µ36)
v(µ46) + v(µ9)

v(µ17) + v(µ24)
v(µ30) + v(µ15)

v(µ25)

− v(µ31)
v(µ49) + v(µ55)

v(µ31) + v(µ47)
v(µ53) − v(µ26)

v(µ43) + v(µ14)
v(µ29) + v(µ41)

v(µ52)

− v(µ21)
v(µ35) + v(µ54)

v(µ21) + v(µ35)
v(µ54) − v(µ13)

v(µ39) + v(µ27)
v(µ29) + v(µ34)

v(µ48)

− v(µ10)
v(µ38) + v(µ44)

v(µ10) + v(µ36)
v(µ42) + v(µ8)

v(µ37) − v(µ39)
v(µ8) + v(µ37)

v(µ39)

− v(µ16)
v(µ34) + v(µ36)

v(µ16) + v(µ34)
v(µ36) − v(µ23)

v(µ41) + v(µ44)
v(µ23) + v(µ41)

v(µ44)

− v(µ12)
v(µ40) + v(µ42)

v(µ12) + v(µ40)
v(µ42) − v(µ11)

v(µ52) + v(µ32)
v(µ33) + v(µ46)

v(µ48)

+ v(µ12)
v(µ4) + v(µ21)

v(µ23) + v(µ30)
v(µ31) + v(µ30)

v(µ4) + v(µ21)
v(µ31) + v(µ12)

v(µ23)

− v(µ32)
v(µ48) + v(µ11)

v(µ33) + v(µ46)
v(µ52) − v(µ25)

v(µ40) + v(µ53)
v(µ25) + v(µ40)

v(µ53)

− v(µ15)
v(µ41) + v(µ47)

v(µ15) + v(µ41)
v(µ47) − v(µ22)

v(µ34) + v(µ55)
v(µ22) + v(µ34)

v(µ55)

+ v(µ1)
v(µ37) − v(µ43)

v(µ1) + v(µ37)
v(µ43) + v(µ9)

v(µ36) − v(µ38)
v(µ9) + v(µ36)

v(µ38)

− v(µ27)
v(µ48) + v(µ13)

v(µ29) + v(µ34)
v(µ39) − v(µ17)

v(µ35) + v(µ37)
v(µ17) + v(µ35)

v(µ37)

− v(µ14)
v(µ52) + v(µ26)

v(µ29) + v(µ41)
v(µ43) + v(µ2)

v(µ47) − v(µ49)
v(µ2) + v(µ47)

v(µ49)

+ v(µ9)
v(µ30) + v(µ15)

v(µ17) + v(µ24)
v(µ25) − v(µ28)

v(µ46) + v(µ47)
v(µ28) + v(µ36)

v(µ37)

− v(µ18)
v(µ52) + v(µ20)

v(µ19) + v(µ38)
v(µ39) + v(µ7)

v(µ42) − v(µ43)
v(µ7) + v(µ42)

v(µ43)

+ v(µ5)
v(µ44) − v(µ45)

v(µ5) + v(µ44)
v(µ45) + v(µ3)

v(µ50) − v(µ51)
v(µ3) + v(µ50)

v(µ51)

+ v(µ3)
v(µ10) + v(µ25)

v(µ28) + v(µ21)
v(µ22) + v(µ5)

v(µ12) + v(µ2)
v(µ3) + v(µ16)

v(µ17)

For each of the remaining 408 sign patterns and each of the 38 such conditions,
we check to see if the strict simplex problem has an empty feasible set, for each choice
of sign in the analogue of (6.3). Adding in the three additional conditions and three
additional variables yields a simplex tableau with 96 equations and 117 variables. For
384 sign patterns, there is at least one of the 38 conditions where the feasible set is
empty for both choices of sign in the analogue of (6.3). These sign patterns can be
eliminated leaving only 24 sign patterns to be handled. For each of these 24 sign
patterns, we remember when we can deduce the sign of each analogue of (6.3). For
example, if when the three conditions in (6.4) are appended to the simplex tableau
we have a strict simplex problem with empty feasible set, then we can assert that
(6.5) holds and that the value of (6.3) is −1.

For one of the 24 remaining sign patterns, let us suppose that there are & such
conditions remembered. Then we can build a strict simplex problem with 93 + 3&
equations and 114+3& variables which incorporates all of the remembered conditions.
In all cases the feasible set is empty. All sign patterns have now been eliminated and
Proposition 5.1 is proved.
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