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Abstract. Results on the simultaneous scaling of nonnegative matrices involving one sided
inequalities are presented. These are applied to scalings involving two sided inequalities. The proofs
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1. Introduction. Let R+ be the set of nonnegative numbers and let R
mn
+ be

the set of all nonnegative m×n matrices. If A ∈ R
nn
+ and X is a nonsingular positive

diagonal matrix in R
nn
+ , then XAX−1 is called a diagonal similarity scaling of A.

If A ∈ R
mn
+ and X and Y are a nonsingular diagonal matrices in R

mm
+ and R

nn
+

respectively, then XAY is called a diagonal equivalence scaling of A.
Results on the diagonal scaling of matrices have a long history and they and their

proofs are of several different types. In this paper we consider results that involve
only scaling and inequalities (thus we do not consider results that also involve sums of
elements of matrices). We generalize and apply a result found in [8] which was proved
by means of a theorem of the alternative. In contrast, our proofs heavily involve
graphs and cyclic products of elements. References to previous results will be found
in the various sections.
Our basic results are to be found in Section 2 of this paper. Let A(k), B(k),

k = 1, . . . , s, be matrices in R
nn
+ . In Section 2 we prove necessary and sufficient

conditions for the existence of a positive diagonal n× n matrix X such that

XA(k)X−1 ≤ B(k), k = 1, . . . , s,

see Theorem 2.5. This result is applied to obtain necessary and sufficient conditions
in Theorem 2.18 for the existence of a positive diagonal n× n matrix X such that

C(k) ≤ XA(k)X−1 ≤ B(k), k = 1, . . . , s,

where C(1), . . . , C(s) are also matrices in R
nn
+ .
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In Section 3, we find necessary and sufficient conditions in Corollary 3.4 such that
there exists a positive diagonal matrix X such that

lA(k) ≤ XB(k)X−1, k = 1, . . . , s,

for a given positive number l and, in Theorem 3.8, we obtain conditions equivalent to

lB ≤ XAX−1 ≤ uB,

for given positive l and u.
In Section 4 we prove analogous results on diagonal equivalence. In Section 5

we generalize the setting of our results to lattice ordered commutative groups with
an additional minimal element 0. Some results for the noncommutative case may be
found in [4]. Results with the order relations reversed could be obtained by adjoining
a maximal element in place of a minimal element.

2. Simultaneous diagonal similarity. Notation 2.1. Let A and B be ma-
trices in R

mn
+ .

(i) We denote by A/B the m× n matrix defined by

(A/B)ij =
{

aij/bij if bij �= 0
0 otherwise

(ii) We denote by 1/B the m× n matrix defined by

(1/B)ij =
{
1/bij if bij �= 0
0 otherwise

(iii) For matrices A(1), . . . , A(s), B(1), . . . , B(s) in R
mn
+ we define the matrix

Q = max{(A(1)/B(1)), . . . , (A(s)/B(s))}
by

qij = max{(A(1)/B(1))ij , . . . , (A(s)/B(s))ij}, i, j = 1, . . . , n.

Similarly, we define the matrix

R = min{(A(1)/B(1)), . . . , (A(s)/B(s))}
by

rij = min{(A(1)/B(1))ij , . . . , (A(s)/B(s))ij}, i, j = 1, . . . , n.

Notation 2.2. Let Γ be a digraph.
(i) For a path α in Γ we denote by |α| the number of arcs in α.
(ii) For a vertex i in Γ we denote by Pi(Γ) be the set of all nonempty paths ending

at i (whatever their length may be).
(iii) For a (simple) cycle γ in Γ we identify γ with the set of arcs that form the cycle.
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Notation 2.3. Let n be a positive integer.
(i) We denote by Γn the complete digraph with vertices {1, . . . , n}.
(ii) Let M be an n × n matrix. For a set α of arcs in Γn we denote by Πα(M) the

product Π(i,j)∈αmij . If α is a cycle in Γn, then the product Πα(M) is said
to be a cyclic product of the matrix M .

Definition 2.4. Let M be an n× n matrix. The digraph Γ(M) of M is defined
to be the digraph with vertices {1, . . . , n} and where there is an arc from i to j if and
only if mij �= 0.

Theorem 2.5. Let A(k), B(k), k = 1, . . . , s, be matrices in R
nn
+ with Γ(A(k)) ⊆

Γ(B(k)), k = 1, . . . , s. Let Q = max{(A(1)/B(1)), . . . , (A(s)/B(s))}. Then the follow-
ing are equivalent:
(i) The positive diagonal matrix X = diag (x1, . . . , xn), defined by

xi := max
{

max
δ∈Pi(Γn), 1≤|δ|≤n−1

Πδ(Q) , 1
}
, i = 1, . . . , n, (2.6)

satisfies

XA(k)X−1 ≤ B(k), k = 1, . . . , s. (2.7)

(ii) There exists a positive diagonal n× n matrix X such that (2.7) holds
(iii) There exists a positive diagonal n×n matrix X such that all entries of the matrix

XQX−1 are less than or equal to 1.
(iv) All cyclic products of the matrix Q are less than or equal to 1.

Proof. (i)⇒ (ii) is trivial.
(ii)⇒ (iii) is obvious, since it follows from (2.7) that

xiqijx
−1
j = max

k=1,...,s
xi(a

(k)
ij /b

(k)
ij )x

−1
j ≤ 1. (2.8)

(iii) ⇒ (iv). By (iii), all cyclic products of XQX−1 are less than or equal to 1. But
corresponding cyclic products of Q and XQX−1 coincide, which yields (iv).
(iv) ⇒ (i). Define xi, i = 1, . . . , n, by (2.6). Since all cyclic products of Q are less
than or equal to 1, it follows that actually

xi := max
{
max

δ∈Pi(Γn)
Πδ(Q) , 1

}
, i = 1, . . . , n. (2.9)

Assume first that qij > 0. if xi = maxδ∈Pi(Γn)Πδ(Q) then, clearly, xiqij is the
maximum of path products ending at j whose last arc is (i, j). Else, we have xi = 1
and, again, xiqij = qij is the maximum of path products ending at j whose last arc is
(i, j). Thus, we have xiqij ≤ xj , implying that xi(a

(k)
ij /b

(k)
ij )x

−1
j ≤ xiqijx

−1
j ≤ 1, and

it follows that

xia
(k)
ij x−1

j ≤ xib
(k)
ij x−1

j . (2.10)

If qij = 0 then it follows from the graph inclusions Γ(A(k)) ⊆ Γ(B(k)) that a(k)
ij =

0, b(k)
ij ≥ 0, and so xia

(k)
ij x−1

j = 0 ≤ xib
(k)
ij x−1

j . It now follows that (2.10) holds for all
i, j and k, and so the diagonal matrix X = diag (x1, . . . , xn) satisfies (i).
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We observe that, for k = 1 and B = E, the all 1’s matrix, a result equivalent
to Theorem 2.5 was proven by Fiedler-Ptak [5, Theorem 2.2] using a graph theoretic
argument close to our proof of Theorem 2.5. This was preceded by Afriat [1, Theorem
7.1] who essentially proved the equivalence of (ii) and (iii) in the same special case
of Theorem 2.5 by means of a theorem of the alternative . In these papers the result
is stated additively. For k = 1 and irreducible matrices A and B this result also
appears in [6, Theorem 3.3], and in [4, Theorem 4.1] in the setting of lattice ordered
(non-commutative) groups.

Remark 2.11. Let A(k), B(k), k = 1, . . . , s, be matrices in R
nn
+ , and let R =

min{(B(1)/A(1)), . . . , (B(s)/A(s))}. By Notation 2.1 we have (A(k)/B(k))ij �= 0 if and
only if a(k)

ij b
(k)
ij �= 0. Thus, (A(k)/B(k))ij = 0 if and only if (B(k)/A(k))ij = 0. It

follows that if rij > 0, then qij > 0. Also, in this case we have rij = 1/qij . Therefore,
Condition (iii) of Theorem 2.5 implies the following condition:
(v) All nonzero cyclic products of the matrix R are greater than or equal to 1.
The converse, however, does not hold in general, since qij > 0 does not necessarily
imply that rij > 0. For example, if one of the matrices A(k) is a zero matrix then
R = 0. Nevertheless, in the case that s = 1 we indeed have qij > 0 if and only if
rij > 0, and thus in this case Condition (v) above is equivalent to the conditions of
Theorem 2.5.

Remark 2.12. Since XA(k)X−1 ≤ B(k) is equivalent to A(k) ≤ X−1B(k)X , it
follows immediately that the second statement of Theorem 2.5 is also equivalent to
the existence of a positive diagonal matrix Y ∈ R

nn
+ such that A

(k) ≤ Y B(k)Y −1, k =
1, . . . , s.

Remark 2.13. In general, the scaling obtained by (2.6) is not the unique diagonal
similarity that satisfies Condition (ii). For example, if we define

pi = max
δ∈Pi(Γn), 1≤|δ|≤n

Πδ(Q), i = 1, . . . , n, (2.14)

then any positive diagonal matrix X which satisfies
{

xi = pi , if pi ≥ 1,
pi ≤ xi ≤ 1 , otherwise, (2.15)

also satisfies (2.7). However, in this paper the main focus is on the applications of
the equivalence of Conditions (ii), (iii) and (iv) of Theorem 2.5, and therefore we do
not attempt to determine the set of positive diagonal matrices which satisfy (2.7)
or (equivalently) Condition (iii) of Theorem 2.5. We note that further inequality
requirements stronger than Condition (iii) can be satisfied, and that these lead to
a unique scaling matrix X (up to constants) when Q is irreducible, see [13] and
[14]. Finally, we observe that conditions similar to (i) of Theorem 2.5 that lead to
computational tests could be added to most of our subsequent theorems, though these
are stated as existence theorems.

Remark 2.16. We note that Theorem 2.5 yields an efficient O(n3) algorithm
for testing simultaneous diagonal similarity to satisfy the inequalities (2.7). For if X
is the matrix defined by (2.6), then the required scaling exists if and only if XQX−1
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satisfies Condition (iii), in which case one such scaling is given by X . We now give
more detail on the computation involved.
Step 1. Find the elementwise quotients of the matrices Ai, Bi, i = 1, . . . , s (treating

0/0 as 0) and then take the elementwise maximum.
Step 2. We next compute the maximal path products defined in 2.6 by starting with

the vector x0 = [1, . . . , 1] ∈ R
n and successively compute the multiplicative

max algebra products xi = xi−1 ⊗ Q, i = 1, . . . n − 1. We then put x =
max(x0, . . . , xn−1), see [2, Algorithm 3.4] for a related algorithm and remarks
following [2, Theorem 4.1] for further explanation.

Step 3. Put X = diag(x). This is the matrix X of (2.7).
Then either all elements of XQX−1 are less than or equal to 1, in which case X
satisfies (2.7) or no X satisfying (2.7) exist. It should be noted that in Step 2 we
could equally put x = max(x1, . . . , xn), and thus obtain xi = pi, i = 1, . . . , n, where
the pi are given by (2.14). In general, we obtain a different scaling satisfying (2.7).
Our algorithm can be applied to several of our theorems below. For example, it will
find a matrix X that satisfies Condition (i) Theorem 2.18 below or determine that no
such X exists. Note also, that by putting Ck = Bk, k = 1, . . . , s, in Theorem 2.18 we
can find a matrix X that simultaneous satisfies XAkX−1 = Bk, k = 1, ..., s, if any
such X exists.

Theorem 2.17. Let A(k), B(k), C(k) be matrices in R
nn
+ with Γ(C(k)) ⊆ Γ(A(k))

⊆ Γ(B(k)), k = 1, . . . , s. Let X be a positive diagonal n×n matrix. Then the following
are equivalent:

(i) C(k) ≤ XA(k)X−1 ≤ B(k), k = 1, . . . , s.
(ii) XA(k)X−1 ≤ B(k), k = 1, . . . , s
and X(C(k))tX−1 ≤ (A(k))t, k = 1, . . . , s.

Proof. The result follows since C(k) ≤ XA(k)X−1 is equivalent to X−1C(k)X ≤
A(k), which in turn is equivalent to X(C(k))tX−1 ≤ (A(k))t.
Combining Theorem 2.5 and Theorem 2.17 we now obtain one of our main results.
Theorem 2.18. Let A(k), B(k), C(k) be matrices in R

nn
+ with Γ(C(k)) ⊆ Γ(A(k))

⊆ Γ(B(k)), k = 1, . . . , s. Let X be a positive diagonal n × n matrix. Let Q =
max{(A(1)/B(1)), . . . , (A(s)/B(s)), (C(1))t/(A(1))t, . . . , (C(s))t/(A(s))t}. Then the fol-
lowing are equivalent:

(i) C(k) ≤ XA(k)X−1 ≤ B(k), k = 1, . . . , s.

(ii) All cyclic products of the matrix Q are less than or equal to 1.
Let A ∈ R

nn
+ . In [10] and [8] the term ”cycle” was defined in a more general

manner in reciprocal pair with one member of this pair corresponding to a cycle of
max{A, 1/At} in the present paper. Thus, as a corollary to Theorem 2.5 and to
Theorem 2.18 we obtain a result for the case s = 1, proven in [8, Theorem 4.1] by
means of theorems of the alternative.

Corollary 2.19. Let A, B and C be matrices in R
nn
+ with Γ(C) ⊆ Γ(A) ⊆ Γ(B).

Then the following are equivalent:
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(i) There exists a positive diagonal n× n matrix X such that

C ≤ XAX−1 ≤ B.

(ii) All cyclic products of the matrix max{A/B,Ct/At} are less than or equal to 1.
(iii) For every cycle γ in the graph Γ(A/B + Ct/At) and every set of arcs δ, δ ⊆ γ,

we have

Πδ(A/B)Πγ\δ(Ct/At) ≤ 1.
Proof. (i)⇔ (ii) follows immediately from Theorem 2.5 and Theorem 2.18.

(ii) ⇒ (iii). Let Q = max{A/B,Ct/At}. Note that for every i and j, 1 ≤ i, j ≤
n, we have (A/B)ij , (Ct/At)ij ≤ qij . Therefore, for every cycle γ in the graph
Γ(A/B + Ct/At) and every set of arcs δ, δ ⊆ γ, we have

Πδ(A/B)Πγ\δ(Ct/At) ≤ Πγ(Q),

and so (iii) follows from (ii).
(iii) ⇒ (ii). Let γ be a cycle in Γ(Q). Let δ be the set of arcs, δ ⊆ γ, defined by
δ = {(i, j) : (A/B)ij > (Ct/At)ij}. Note that

Πγ(Q) = Πδ(A/B)Πγ\δ(Ct/At),

and so (ii) follows from (iii).
Example 2.20. Let

A =


 2 0 2

3
9 1 2
3 1

2 0


 , B =


 3 0 13 1 3
3 1 0


 , C =


 1 0 11 1 1
1 1 0


 .

We have

Q = max{A/B,Ct/At} =



2
3

1
9

2
3

3 1 2
3
2

1
2 0


 .

Applying (2.6) to the matrix Q we obtain the positive diagonal matrix

X =


 3 0 00 1 0
0 0 2


 .

Hence

XQX−1 =




2
3

1
3 1

1 1 1
1 1 0


 .

It follows by an application of Theorem 2.7 that

S = XAX−1 =


 2 0 13 1 1
2 1 0
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is a scaling that satisfies C ≤ S ≤ B. (Of course, this may be verified directly. In this
particular example it is also easy to see that all cyclic products of Q are less than or
equal to 1.)
However, if we replace the matrix C by the matrix

C =


 1 0 11 1 2
1 1 0




then we have

Q = max{A/B,Ct
/At} =




2
3

1
9

2
3

3 1 2
3
2 1 0


 .

Applying (2.6) to the matrix Q we obtain

X =


 3 0 00 2 0
0 0 2


 .

Hence

T := XQX
−1
=




2
3

1
6 1

2 1 2
1 1 0


 .

Since some elements of T exceed 1 it follows that there cannot be a positive diagonal
matrix Z with C ≤ ZAZ−1 ≤ B, see Remark 2.16. (In this particular example, it is
also clear that the cyclic products of Q corresponding to the cycles (2, 3) and (1, 3, 2)
are greater than 1).
In order to proceed we prove the following easy lemma.
Lemma 2.21. Let A and B be matrices in R

nn
+ , and let Q = max{A/B,Bt/At}.

Then Γ(Q) = Γ(Qt). Furthermore, whenever qij �= 0 we have qijqji ≥ 1.
Proof. Since

qij �= 0 ⇔ aijbij �= 0 or ajibji �= 0 ⇔ qji �= 0,

it follows that Γ(Q) = Γ(Qt). Assume now that qij �= 0. Without loss of generality
assume that aijbij �= 0. If ajibji = 0 or if aij/bij = bji/aji then qij = aij/bij and
qji = bij/aij , and it follows that qijqji = 1. Otherwise, we have ajibji �= 0 and
aij/bij �= bji/aji. Without loss of generality assume that aij/bij > bji/aji > 0. It
follows that qij = aij/bij and qji = aji/bji > bij/aij , and so qijqji > 1. The same
conclusion is obtained under the assumption that aij/bij < bji/aji.
If we now let B = C in Corollary 2.19, then we obtain the following result,

originally proven in [10, Theorem 2.1], see also [8, Corollary 4.4]. These papers
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provide references to previous results for the special case when the matrices A and B
are assumed to be irreducible (which leads to a considerable simplification).

Corollary 2.22. Let A and B be matrices in R
nn
+ with Γ(A) = Γ(B). Then

the following are equivalent:
(i) There exists a positive diagonal n× n matrix X such that

XAX−1 = B.

(ii) All cyclic products of the matrix max{A/B,Bt/At} are less than or equal to 1.
(iii) All nonzero cyclic products of the matrix max{A/B,Bt/At} are equal to 1.
(iv) For every cycle γ in the graph Γ(A + At) and every set of arcs δ, δ ⊆ γ, such

that Πγ\δ(At) �= 0, we have

Πδ(A)
Πγ\δ(At)

=
Πδ(B)
Πγ\δ(Bt)

.

Proof. (i)⇔ (ii) follows from Corollary 2.19.
(ii) ⇒ (iii). Let i, j ∈ {1, . . . , n} be such that qij �= 0. By Lemma 2.21 we have
qijqji ≥ 1, and so by (ii) we have qijqji = 1. It now follows that for every cycle γ in
Γ(Q) the reverse cycle γ̂ is also a cycle in Γ(Q) and Πγ(Q) = 1

Πγ̂(Q) . Since, by (ii),
we have Πγ(Q),Πγ̂(Q) ≤ 1, it follows that Πγ(Q) = 1.
(iii)⇒ (ii) is trivial.
(ii) ⇒ (iv). By Corollary 2.19, (ii) is equivalent to statement (iii) of Corollary 2.19,
that is, for every cycle γ in the graph Γ(A/B+Bt/At) and every set of arcs δ, δ ⊆ γ,
we have

Πδ(A/B)Πγ\δ(Bt/At) ≤ 1. (2.23)

If we choose γ̂ to be the reverse cycle of γ and δ̂ to consist of the reverse arcs of the
arcs in γ \ δ, then we obtain

Πδ̂(A/B)Πγ̂\δ̂(B
t/At) ≤ 1,

which is equivalent to

Πδ(A/B)Πγ\δ(Bt/At) ≥ 1. (2.24)

(2.23) and (2.24) yield that for every cycle γ in the graph Γ(A+At) and every set of
arcs δ, δ ⊆ γ, such that Πγ\δ(At) �= 0, we have

Πδ(A/B)Πγ\δ(Bt/At) = 1,

which is equivalent to (iv).
(iv) ⇒ (i). Let γ be a cycle in the graph Γ(A + At) (= Γ(A/B + Bt/At)), and let δ
be a subset of γ. It follows from (iv) that whenever

Πδ(A/B)Πγ\δ(Bt/At) �= 0
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we have

Πδ(A/B)Πγ\δ(Bt/At) = 1.

We thus have

Πδ(A/B)Πγ\δ(Bt/At) ≤ 1,
and by Corollary 2.19 applied to the case B = C we obtain (i).

Remark 2.25. Let A and B be matrices in R
nn
+ with Γ(A) = Γ(B), let Q1 =

max{A, 1/At} and Q2 = max{B, 1/Bt}, and let γ be a cycle in Γ(Q1) (= Γ(Q2)).
Since clearly

Πγ(Q1) = max
δ, δ⊆γ

Πδ(A)
Πγ\δ(At)

, Πγ(Q2) = max
δ, δ⊆γ

Πδ(B)
Πγ\δ(Bt)

,

Statement (ii) of Corollary 2.22 implies that all cyclic products of Q1 are equal to the
corresponding products of Q2. The converse of this statement is, however, false in
general, as is demonstrated by the matrices A =

[
0.5

]
and B =

[
2

]
. Clearly, we

have max{A, 1/At} = max{B, 1/Bt} = [
2

]
. Nevertheless, obviously the matrices

A and B are not similar.
We note that in [10, Theorem 2.1], [8, Corollary 4.4] additional equalities are

asserted which however follow from the equalities in Statement (ii) of Corollary of
2.22.
If we add the further requirement that Γ(C) = Γ(A) = Γ(At) to Corollary 2.19,

then we get two additional equivalent conditions.
Corollary 2.26. Let A, B and C be matrices in R

nn
+ with Γ(C) = Γ(A) =

Γ(At) ⊆ Γ(B). Then the following are equivalent:
(i) There exists a positive diagonal n× n matrix X such that

C ≤ XAX−1 ≤ B.

(ii) All cyclic products of the matrix max{A/B,Ct/At} are less than or equal to 1.
(iii) All nonzero cyclic products of the matrix min{B/A,At/Ct} are greater than or

equal to 1.
(iv) For every cycle γ in the graph Γ(A/B + Ct/At) and every set of arcs δ, δ ⊆ γ,

we have

Πδ(A/B)Πγ\δ(Ct/At) ≤ 1.
(v) For every nonzero cycle γ in the graph Γ(A/B +Ct/At) and every set of arcs δ,

δ ⊆ γ, we have

Πδ(B/A)Πγ\δ(At/Ct) ≥ 1.
Proof. (i)⇔ (ii)⇔ (iv) is in Corollary 2.19.

(ii)⇔ (iii). Note that we have
(A/B)ij �= 0 ⇔ aijbij �= 0.
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Since Γ(A) ⊆ Γ(B), it follows that
aijbij �= 0 ⇔ aij �= 0.

Since Γ(C) = Γ(A) = Γ(At), it follows that

aij �= 0 ⇔ ctija
t
ij �= 0.

Since

(Ct/At)ij �= 0 ⇔ ctija
t
ij �= 0,

it now follows that

(A/B)ij �= 0 ⇔ (B/A)ij �= 0 ⇔ (Ct/At)ij �= 0 ⇔ (At/Ct)ij �= 0. (2.27)

Therefore, we have

(max{A/B,Ct/At})ij �= 0 ⇔ (min{B/A,At/Ct})ij �= 0.
Furthermore, in this case we have

(max{A/B,Ct/At})ij = 1
(min{B/A,At/Ct})ij .

The equivalence follows.
(iv)⇔ (v) follows easily, in view of (2.27).
While, as is observed in Remark 2.11, the implication (ii)⇒ (iii) in Corollary 2.26

holds in general, even without the requirement Γ(C) = Γ(A) = Γ(At), the reverse
direction does not hold in general, as is demonstrated by the following examples.

Example 2.28. Let

A =
[
2

]
, B =

[
1

]
and C =

[
0

]
.

Here we have Γ(C) �= Γ(A) = Γ(At). Note that

max{A/B,Ct/At} = [
2

]
, min{B/A,At/Ct} = [

0
]
,

and so, while Statement (iii) of Corollary 2.26 holds, Statement (ii) clearly does not
hold.

Example 2.29. Let

A =


 1 0 01 1 0
1 1 1


 and B = C =


 1 0 01 1 0
2 1 1


 .

Here we have Γ(C) = Γ(A) �= Γ(At). Note that

max{A/B,Bt/At} =

 1 1 2
1 1 1
1
2 1 1


 , min{B/A,At/Bt} =


 1 0 00 1 0
0 0 1


 ,
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and so, while Statement (iii) of Corollary 2.26 clearly holds, Statement (ii) does not
hold, since the cyclic product of the matrix max{A/B,Bt/At} corresponding to the
cycle (1, 3, 2) is greater than 1.
Similarly to Lemma 2.21 we prove the following result.
Lemma 2.30. Let A and B be matrices in R

nn
+ , and let R = min{A/B,Bt/At}.

Then Γ(R) = Γ(Rt). Furthermore, whenever rij �= 0 we have rijrji ≤ 1.
Proof. Since

rij �= 0 ⇔ aijbij �= 0 and ajibji �= 0 ⇔ rji �= 0,

it follows that Γ(R) = Γ(Rt). Assume now that rij �= 0. If aij/bij = bji/aji then
rij = aij/bij and rji = bij/aij , and it follows that rijrji = 1. Otherwise, without
loss of generality assume that aij/bij > bji/aji > 0. It follows that rij = bji/aji and
rji = bij/aij < aji/bji, and so rijrji < 1. The same conclusion is obtained under the
assumption that aij/bij < bji/aji.
If we add the further requirement that Γ(A) = Γ(At) to Corollary 2.22 then, by

Corollary 2.26, we obtain an extension of Corollary 2.22.
Corollary 2.31. Let A and B be matrices in R

nn
+ with Γ(A) = Γ(At) = Γ(B).

Then the following are equivalent:
(i) There exists a positive diagonal n× n matrix X such that

XAX−1 = B.

(ii) All cyclic products of the matrix max{A/B,Bt/At} are less than or equal to 1.
(iii) All nonzero cyclic products of the matrix max{A/B,Bt/At} are equal to 1.
(iv) All nonzero cyclic products of the matrix min{B/A,At/Bt} are greater than or

equal to 1.
(v) All nonzero cyclic products of the matrix min{B/A,At/Bt} are equal to 1.
(vi) For every cycle γ in the graph Γ(A) and every set of arcs δ, δ ⊆ γ, we have

Πδ(A)
Πγ\δ(At)

=
Πδ(B)
Πγ\δ(Bt)

.

Proof. (i)⇔ (ii)⇔ (iii)⇔ (vi) is in Corollary 2.22.
(ii)⇔ (iv) is in Corollary 2.26.
(iv) ⇒ (v). Let i, j ∈ {1, . . . , n} be such that rij �= 0. By Lemma 2.30 we have
0 < rijrji ≤ 1, and so by (i4) we have rijrji = 1. It now follows that for every cycle
γ in Γ(R) the reverse cycle γ̂ is also a cycle in Γ(R) and Πγ(R) = 1

Πγ̂(R) . Since, by
(iv), we have Πγ(R),Πγ̂(R) ≥ 1, it follows that Πγ(R) = 1.
(v)⇒ (iv) is trivial.

Remark 2.32. While, as is observed in Remark 2.11, the implication (ii)⇒ (iii)
in Corollary 2.31 holds in general, even without the requirement Γ(A) = Γ(At), the
reverse direction does not hold in general, as is demonstrated Example 2.29

3. Diagonal similarities into bands. Definition 3.1. Let M be an n × n
matrix, and let Γn be the complete digraph with vertices {1, . . . , n}.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 81-101, April 2003

http://math.technion.ac.il/iic/ela



ELA

92 D. Hershkowitz and H. Schneider

(i) The maximal cycle mean m(M) of the matrix M is defined as

m(M) = max
cycles γ in Γn

|γ|
√
Πγ(M)

(
= max

cycles γ in Γ(M)

|γ|
√
Πγ(M)

)
.

(ii) The minimal cycle mean m(M) of the matrix M is defined as

m(M) =




min
cycles γ in Γ(M)

|γ|
√
Πγ(M) if m(M) > 0

0 otherwise

We begin with a corollary to Theorem 2.5.
Corollary 3.2. Let A(k), B(k), k = 1, . . . , s, be matrices in R

nn
+ with Γ(A(k)) ⊆

Γ(B(k)), k = 1, . . . , s, and let Q = max{(A(1)/B(1)), . . . , (A(s)/B(s))}.
(i) If m(Q) = 0, then for every positive number u there exists a positive diagonal

n× n matrix X such that

XA(k)X−1 ≤ uB(k), k = 1, . . . , s. (3.3)

(ii) If m(Q) > 0, then there exists a positive diagonal n×n matrix X such that (3.3)
holds if and only if u ≥ m(Q).

Proof. By Theorem 2.5, we have (3.3) if and only if all cyclic products of the
matrix 1

uQ are less than or equal to 1, which is equivalent to saying that u is greater
than or equal to the maximal cycle mean of the matrix Q.
We remark that for the case B = E, Corollary 3.2 was stated in a somewhat

different form as Theorem 7.2 and Remark 7.3 in [4].
Corollary 3.4. Let A(k), B(k), k = 1, . . . , s, be matrices in R

nn
+ with Γ(A(k)) ⊆

Γ(B(k)), k = 1, . . . , s, and let Q = max{(A(1)/B(1)), . . . , (A(s)/B(s))}. Then there
exists a positive diagonal n× n matrix X such that

lA(k) ≤ XB(k)X−1, k = 1, . . . , s,

if and only if m(Q) l ≤ 1.
Proof. The claim follows immediately from Corollary 3.2, since XA(k)X−1 ≤

uB(k) is equivalent to 1
uA

(k) ≤ X−1B(k)X .
In the case that s = 1 we obtain the following equivalent formulation of Corol-

lary 3.4.
Corollary 3.5. Let A and B be matrices in R

nn
+ with Γ(B) ⊆ Γ(A).

(i) If m(A/B) = 0, then for every positive number l there exists a positive diagonal
n× n matrix X such that

lB ≤ XAX−1. (3.6)

(ii) If m(A/B) > 0, then there exists a positive diagonal n× n matrix X such that
(3.6) holds if and only if l ≤ m(A/B).
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Proof. In view of Corollary 3.4 we have to consider only the case thatm(B/A) > 0.
Note that in this case we also have m(A/B) > 0. Furthermore, it easy to verify that
in this case

m(A/B) =
1

m(B/A)
. (3.7)

By Corollary 3.4 we have

l ≤ 1
m(B/A)

,

and our claim now follows by (3.7).
Let A and B be nonnegative matrices with the same digraph. In view of Corol-

laries 3.2 and 3.5 it is natural to look for conditions for a matrix A to be diagonally
similar to a matrix between lB and uB for some positive numbers l and u. The
following characterization is a consequence of Corollary 2.19.

Theorem 3.8. Let A and B be matrices in R
nn
+ with Γ(A) = Γ(B), and let l and

u be positive numbers. Then the following are equivalent:
(i) There exists a positive diagonal n× n matrix X such that

lB ≤ XAX−1 ≤ uB. (3.9)

(ii) For every cycle γ in the graph Γ(A+At) and every set of arcs δ, δ ⊆ γ, we have

Πδ(A/B)Πγ\δ(Bt/At) ≤ u|δ|

l|γ\δ| . (3.10)

Proof. Since Γ(A) = Γ(B), by Corollary 2.19 we have lB ≤ XAX−1 ≤ uB if and
only if for every cycle γ in the graph Γ(A + At) and every set of arcs δ, δ ⊆ γ, we
have

Πδ(A/uB)Πγ\δ(lBt/At) ≤ 1. (3.11)

Since (3.11) is equivalent to (3.10), our claim follows.
Remark 3.12. Let A and B be matrices in R

nn
+ with Γ(A) = Γ(B). If there

exists a positive diagonal n× n matrix X such that (3.9) holds, and if m(A/B) > 0,
then by Corollary 3.5 we necessarily have l ≤ m(A/B) and by Corollary 3.2 we
necessarily have u ≥ m(A/B). These inequalities also follows from Theorem 3.8.
The inequality l ≤ m(A/B) follows from (3.10) when considering empty δ’s, and the
inequality u ≥ m(A/B) follows from (3.10) when considering δ = γ. However, it will
be shown in Example 3.19 below that A is not necessarily diagonally similar to a
matrix between m(A/B)B and m(A/B)B.

Remark 3.13. Let A and B be matrices in R
nn
+ with Γ(A) = Γ(B). It immedi-

ately follows from Theorem 3.8 that for a given positive number l, l ≤ m(A/B), the
minimal positive number u such that there exists a positive diagonal n× n matrix X
for which (3.9) holds is given by

u = max
cycles γ in Γ(A+At), φ 	=δ⊆γ

|δ|
√
l|γ\δ|Πδ(A/B)Πγ\δ(Bt/At).
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Similarly, for a given positive number u, u ≥ m(A/B), the maximal positive number
l such that there exists a positive diagonal n × n matrix X for which (3.9) holds is
given by

l = min
cycles γ in Γ(A+At), δ⊆γ, δ 	=γ

−|γ\δ|
√
u−|δ|Πδ(A/B)Πγ\δ(Bt/At).

In the special case of Theorem 3.8 where l = m(A/B) and u = m(A/B) we have
the following further result.

Proposition 3.14. Let A and B be matrices in R
nn
+ with Γ(A) = Γ(B), and

assume that m(A/B) > m(A/B). If there exists a positive diagonal n× n matrix X
such that

m(A/B)B ≤ XAX−1 ≤ m(A/B)B, (3.15)

then maximal mean cycles and minimal mean cycles of A/B do not have a common
arc.

Proof. First notice that A/B and XAX−1/B have the same corresponding cyclic
products. Therefore, we have

m(A/B) = m(XAX−1/B), m(A/B) = m(XAX−1/B).

Let m∗ the maximal value of an element of XAX−1/B. It follows from (3.15) that

m∗ ≤ m(XAX−1/B). (3.16)

On the other hand, since every element XAX−1/B is less than or equal to m∗ it
follows that

m∗ ≥ m(XAX−1/B). (3.17)

It now follows from (3.16) and (3.17) that m∗ = m(XAX−1/B). Note that for
every cycle γ in Γ(XAX−1/B) that contains an element smaller than m∗ we have
Πγ(XAX−1/B) < (m∗)|γ|. Thus, in this case we have

|γ|
√
Πγ(XAX−1/B) < m∗ = m(XAX−1/B), (3.18)

and therefore it follows that every element on a maximal mean cycle of XAX−1/B
is equal to m∗. Similarly, one shows that for the minimal value m∗ of an element
of XAX−1/B we have m∗ = m(XAX−1/B), and that every element on a minimal
mean cycle of XAX−1/B is equal to m∗. Since m(XAX−1/B) > m(XAX−1/B), it
follows that maximal mean cycles and minimal mean cycles of XAX−1/B, and thus
of A/B, do not have a common arc.
In view of Proposition 3.14 we can construct a matrix A which is not diagonally

similar to a matrix between m(A/B)B and m(A/B)B.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 81-101, April 2003

http://math.technion.ac.il/iic/ela



ELA

Simultaneous inequalities for diagonal similarity of nonnegative matrices 95

Example 3.19. Let

A =


 0 1 01 0 2
4 0 0


 and B =


 0 1 01 0 1
1 0 0


 .

Note that the only (simple) cycles in Γ(A/B) are (1, 2, 1) and (1, 2, 3, 1). Therefore,
we have

m(A/B) = 3

√
Π(1,2,3,1)(A/B) = 2, m(A/B) = 2

√
Π(1,2,1)(A/B) = 1.

Since the maximal mean cycle (1, 2, 3, 1) and the minimal mean cycle (1, 2, 1) share
the arc (1, 2), it follows from Proposition 3.14 that there exists no positive diagonal
n× n matrix X such that (3.15) holds.
Theorem 3.8 allows us to obtain the following result that, in some sense, comple-

ments Corollaries 3.2 and 3.5.
Definition 3.20. LetM be an n×n matrix, and let Γn be the complete digraph

with vertices {1, . . . , n}.
(i) A set α of arcs in Γ(M) is said is said to be relevant if there exists a set β of arcs

in Γ(M t) such that the union of α and β forms a cycle in Γn.
(ii) The maximal relevant set mean û(M) of the matrix M is defined as

û(M) = max
relevant sets δ in Γ(M)

|δ|
√
Πδ(M).

(iii) The minimal relevant set mean l̂(M) of the matrix M is defined as

l̂(M) = min
relevant sets δ in Γ(M)

|δ|
√
Πδ(M).

Remark 3.21. It follows from Definition 3.20 that every cycle in Γ(M) is a
relevant set in Γ(M). It thus follows that m(M) ≤ û(M). Also, if m(M) > 0 then
m(M) ≥ l̂(M).

Theorem 3.22. Let A and B be matrices in R
nn
+ with Γ(A) = Γ(B). Then there

exists a positive diagonal n× n matrix X such that

l̂(A/B)B ≤ XAX−1 ≤ û(A/B)B.

Proof. Let γ be a cycle in Γ(A+At) and let δ ⊆ γ. Note that

Πδ(A/B)Πγ\δ(Bt/At) > 0

if and only if δ is a relevant set in Γ(A/B) and γ \ δ is a relevant set in Γ(Bt/At), in
which case it follows from Definition 3.20 that

Πδ(A/B)Πγ\δ(Bt/At) ≤ û(A/B)|δ|û(Bt/At)|γ\δ|. (3.23)
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Since clearly

û(Bt/At) = û(B/A) =
1

l̂(A/B)
, (3.24)

it now follows from (3.23) and (3.24) that

Πδ(A/B)Πγ\δ(Bt/At) ≤ û(A/B)|δ|

l̂(A/B)|γ\δ| ,

and our assertion follows by Theorem 3.8.
We remark that the band given in Theorem 3.22 is not necessarily the narrow-

est possible band. Both bounds on both sides can sometimes be improved, as is
demonstrated by the following example.

Example 3.25. Let

A =


 0 4 02 0 3
0 1 0


 , B =


 0 1 01 0 1
0 1 0


 and X =


 1 0 0
0 7

5 0
0 0 7

3


 .

We have

XAX−1 =


 0 20

7 0
14
5 0 9

5
0 5

3 0


 ,

and so, while û(A/B) = 4 and l̂(A/B) = 1, we have

5
3
B ≤ XAX−1 ≤ 20

7
B.

A result concerning the narrowest possible band in (3.9) is given in Corollary 4.10
below.

4. Simultaneous diagonal equivalence. Definition 4.1. LetM be anm×n
matrix. The bipartite graph ∆(M) of M is defined to be the bipartite graph with
vertex sets {1, . . . ,m} and {1′, . . . , n′}, and where there is an edge between i and j′
if and only if mij �= 0.

Proposition 4.2. Let A(k), B(k), C(k) be matrices in R
mn
+ with ∆(C(k)) ⊆

∆(A(k)) ⊆ ∆(B(k)), k = 1, . . . , s. Define the (m + n) × (m + n) matrices R(k)

and S(k) by

R(k) =
[

0 A(k)

(C(k))t 0

]
, S(k) =

[
0 B(k)

(A(k))t 0

]
, , k = 1, . . . , s.

Let X and Y be a positive diagonal m ×m and n × n matrices respectively, and let
D be the positive diagonal matrix D = X ⊕ Y −1. Then the following are equivalent:

(i) C(k) ≤ XA(k)Y ≤ B(k), k = 1, . . . , s.
(ii) DR(k)D−1 ≤ S(k), k = 1, . . . , s.
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Proof. The result follows since C(k) ≤ XA(k)Y is equivalent to X−1C(k)Y −1 ≤
A(k), which in turn is equivalent to Y −1(C(k))tX−1 ≤ (A(k))t.
In view of Theorem 2.5 we now immediately obtain the following result.
Theorem 4.3. Let A(k), B(k), C(k) be matrices in R

mn
+ with ∆(C(k)) ⊆ ∆(A(k))

⊆ ∆(B(k)), k = 1, . . . , s. Define the matrices R(k) and S(k), k = 1, . . . , s as in Theo-
rem 4.2. Let Q = max{R(1)/S(1), . . . , R(s)/S(s)}. Then the following are equivalent:
(i) There exists a positive diagonal m×m matrix X and a positive diagonal n× n

matrix Y such that the matrices A(k), B(k), C(k), k = 1, . . . , s, satisfy

C(k) ≤ XA(k)Y ≤ B(k), k = 1, . . . , s.

(ii) All cyclic products of the matrix Q are less than or equal to 1.
Again we observe that Condition (i) in Theorem 2.5 leads to an algorithm for

finding an equivalence scaling that satisfies Theorem 4.3(i) if it exists or for negating
its existence.

Theorem 4.4. Let A and B be matrices in R
mn
+ with ∆(A) = ∆(B), and let T

be the (m+ n)× (m+ n) matrix defined by

T =
[

0 A/B
Bt/At 0

]
. (4.5)

Let l and u be nonnegative numbers, l ≤ u. Then the following are equivalent:
(i) There exist a positive diagonal m ×m matrix X and a positive diagonal n × n

matrix Y such that

lB ≤ XAY ≤ uB.

(ii) For every cycle γ in Γ(T ) we have

Πγ(T ) ≤
(u
l

) |γ|
2
.

Proof. Let R and S be the (m+ n)× (m+ n) matrices defined by

R =
[
0 A
lBt 0

]
, S =

[
0 uB
At 0

]
.

By Proposition 4.2 there exist a positive diagonal m × m matrix X and a positive
diagonal n × n matrix Y such that lB ≤ XAY ≤ uB if and only if there exist a
positive diagonal (m+ n) × (m+ n) matrix D such that DRD−1 ≤ S. By Theorem
2.5, the latter holds if and only if all cyclic products of the matrix R/S are less than
or equal to 1. Note that for every cycle γ in Γ(R/S) the corresponding cyclic product
contains γ/2 elements of the upper right block A/uB and γ/2 elements of the lower
left block lBt/At. Therefore, we have

Πγ(R/S) =
(
l

u

) |γ|
2

Πγ(T ).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 81-101, April 2003

http://math.technion.ac.il/iic/ela



ELA

98 D. Hershkowitz and H. Schneider

Our claim follows.
The following corollary follows immediately from Theorem 4.4.
Corollary 4.6. Let A and B be matrices in R

mn
+ with ∆(A) = ∆(B), and let

T be the (m+ n)× (m+ n) matrix defined by (4.5). The minimal ratio between two
nonnegative numbers u and l such that for some positive diagonal m ×m matrix X
and some positive diagonal n× n matrix Y we have lB ≤ XAY ≤ uB is equal to the
square of the maximal cycle mean of the matrix T .
If in Corollary 4.6 all nonzero elements of B are equal to 1 then cycles of the

matrix T defined in (4.5) correspond to the polygons defined in [9]. Thus Corollary
4.6 generalizes [9, Theorem 6’] which we here restate as:

Corollary 4.7. Let A and be a matrix in R
mn
+ and let m∗(A) be defined as

m∗(A) = max
i1,...ik, j1,...jk

k

√
ai1j1 · · · aikjk

ai1j2 · · · aikj1

. (4.8)

Then

min
X∈Dm,Y ∈Dn

(
max

i,k=1,...,m, j,l=1,...,n

xiaijyj

xkaklyl

)
= m∗(A), (4.9)

where Dm and Dn are the sets of positive diagonal matrices in R
mm
+ and R

nn
+ respec-

tively.
In the special case of Corollary 4.6 of diagonal similarity we obtain the following

corollary.
Corollary 4.10. Let A and B be matrices in R

nn
+ with Γ(A) = Γ(B), and let T

be the 2n× 2n matrix defined by (4.5). The ratio between two nonnegative numbers u
and l such that for some positive diagonal n×m matrix X we have lB ≤ XAX−1 ≤
uB is greater than or equal to the square of the maximal cycle mean of the matrix T .
We remark that unlike in the diagonal equivalence case, it is possible that in the

case of diagonal similarity the ratio between any two nonnegative numbers u and l
such that for some positive diagonal n ×m matrix X we have lB ≤ XAX−1 ≤ uB
always exceeds the maximal cycle mean of the matrix T , as is demonstrated in the
following example.

Example 4.11. Let A and B be as in Example 3.19, and let l and u be positive
numbers for which there exists a positive diagonal n × n matrix X such that (3.9)
holds. As is commented in Remark 3.12 and Example 3.19, we have u ≥ m(A/B) = 2
and l ≤ m(A/B) = 1. In fact, it is shown there that u/l > 2. However, we have

T =
[

0 A/B
Bt/At 0

]
=




0 0 0 0 1 0
0 0 0 1 0 2
0 0 0 4 0 0
0 1 1

4 0 0 0
1 0 0 0 0 0
0 1

2 0 0 0 0



, (4.12)

and it is easy to check that all cyclic products of T are equal to 1. See [9, Theorem
6] for a precise result.
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If we let l = u in Theorem 4.4 then we obtain the following result.
Theorem 4.13. Let A and B be matrices in R

mn
+ with ∆(A) = ∆(B), and let T

be the (m+ n)× (m+ n) matrix defined by (4.5). Then the following are equivalent:
(i) The matrix A is positive diagonally equivalent to the matrix B.
(ii) All cyclic products of the matrix T are equal to 1.

Proof. Note that if γ is a cycle in Γ(T ) then so is the reverse cycle γ. Furthermore,
we have

Πγ(T ) =
1

Πγ(T )
.

Our claim now follows from Theorem 4.4.
We remark that in the special case that A is fully indecomposable, Theorem 4.13

may be reduced to [3, Corollary 4.11].
Remark 4.14. We again observe that our results can be put in a computational

form, and we illustrate this be discussing the case of the diagonal equivalence of
matrices A and B with ∆(A) = ∆(B). Let T be defined by (4.5) and let D =
diag (d1, . . . , dm+n) be the positive diagonal matrix defined by

di := max
δ
Πδ(T ), i = 1, . . . ,m+ n,

where the maximum is taken over all paths δ in Γ(T ) of length less than or equal
to m + n − 1. Then it follows by arguments similar to the proof Theorem 2.5 that
all cyclic products of T are 1 if and only if all nonzero entries of DTD−1 are 1, cf.
Remark 2.11. In this case, we obtain B = XAY where X = diag (d1, . . . , dm) and
Y = diag (dm+1, . . . , dm+n)−1. If we apply this remark to the matrices A and B
of Examples 3.19 and 4.11, then we obtain from the matrix T of (4.12) that D =
diag(1, 4, 1, 1, 1, 8). Since all nonzero elements of DTD−1 equal 1, it follows that
XAY = B for X = diag(1, 4, 1) and Y = diag(14 , 1,

1
8 ).

For a related result on diagonal equivalence see [10, Theorem 3.1].

5. Generalizations to lattice ordered Abelian groups with 0. In this
section we show that our results may be generalized by replacing Rnn by a lattice
ordered Abelian group with 0, in some instances, by a complete lattice ordered Abelian
group with 0, cf. [4], where the non-commutative case is considered. Definitions are
given below.

Definition 5.1.

(i) A nonempty set G is called a lattice ordered Abelian group if it is a (multiplicative)
Abelian group and a lattice, and for any nonempty finite subset U of G and
for all a ∈ G we have

a sup{U} = sup{ax : x ∈ U} (5.2)

and

a inf{U} = inf{ax : x ∈ U}. (5.3)
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(ii) A lattice ordered Abelian group G is called complete if the lattice order is com-
plete and is compatible with multiplication, viz. sup{U} exists for infinite
subsets of G which are bounded above and inf{U} exist in G for infinite sub-
sets U of G which are bounded below, and (5.2) and (5.3) also hold for such
subsets.

(iii) We call G0 a [complete] lattice ordered Abelian group with 0 if G is a [complete]
lattice ordered Abelian group and 0 is an additional element which satisfies

0 < a, for all a ∈ G

and

0 = 0a, for all a ∈ G.

Let G0 be lattice ordered Abelian group with 0. We note that Notation 2.3.ii
and Definition 2.4 can be applied to matrices in Gnn

0 . Results that do not involve the
maximum or minimum cycle means or the quantities û(M) or l̂(M) generalize to this
setting with essentially the same proofs.
To generalize the remaining results, we let G0 be a complete lattice ordered

Abelian group with 0. We require new definitions for the maximal and minimal cycle
meansm(M) andm(M) to replace Definition 3.1, and new definitions for the maximal
and minimal relevant set mean û(M) and l̂(M) to replace Definition 3.20.
For M ∈ Gnn

0 we define the set U(M) by

U(M) = {u ∈ G0; u|γ| ≥ Πγ(M) for all cycles γ in Γ(M)}.

It can easily be shown that U(M) is a nonempty set, containing the supremum of
the elements of M , which is bounded below by the infimum of the elements of M .
Therefore, we can define the maximal cycle mean m(M) of the matrix M by

m(M) = inf{U(M)}.

Similarly we define

L(M) = {l ∈ G0; l|γ| ≤ γ(M) for all cycles γ inΓ(M)}

and the minimal cycle mean m(M) of the matrix M by

m(M) = sup{L(M)}.

With these definitions and similar definitions for û(M) and l̂(M) (omitted here)
the remaining results in the previous sections generalize to matrices with elements in
a complete lattice ordered Abelian group with 0, with the exception of Proposition
3.14. The following example demonstrates that Proposition 3.14 does not generalize
even to matrices with elements in a complete fully ordered group with 0 that does
not contain all square roots of its elements.
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Example 5.4. Let G be the set of all integral powers of 2, and let

A =
[
0 2
1 0

]
, B =

[
0 1
1 0

]
.

It is to verify that m∗ = m(A/B) = 2 and m∗ = m(A/B) = 1. However, both
m(A/B) and m(A/B) are achieved for the same cycle (1, 2, 1).

Remark 5.5. In our results and, with some minor modifications, in definitions
and proofs it is possible to interchange ≤ and ≥ and consequently also max and min.
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