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A NOTE ON LINEAR DISCREPANCY∗
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Abstract. Close upper and lower bounds on the linear discrepancy of incidence matrices of di-
rected graphs are determined. For such matrices this improves on a bound found in the work of Doerr
[Linear discrepancy of basic totally unimodular matrices, The Electronic Journal of Combinatorics,
7:Research Paper 48, 4 pp., 2000].
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1. Introduction. The linear discrepancy of an m × n matrix A is defined as

lindisc(A) = max
p∈[0,1]n

min
x∈{0,1}n

‖A(p − x)‖∞.

See [3] for a treatment of linear discrepancy in connection with set-systems. A matrix
is totally unimodular if the determinant of each square submatrix is −1, 0 or 1. The
following theorem was proved in [2].

Theorem 1.1. Let A be a totally unimodular m × n matrix which has at most
two nonzeros in every row. Then

lindisc(A) ≤ 1− 1/(n+ 1).

A major subclass of the totally unimodular matrices, which frequently arises
in applications, consists of the incidence matrices of digraphs. Consider a digraph
D = (V, E) with vertex set V and arc set E, and define n = |V | and m = |E|. The
associated incidence matrix A is the m×n matrix whose rows correspond to the arcs
as follows: the row corresponding to the arc (i, j) has a 1 in column j, a −1 in column
i, and zeros in the remaining columns. So, an incidence matrix has two nonzeros in
every row. We consider the problem of bounding the linear discrepancy of incidence
matrices of digraphs.

The incidence vector χS of a subset S ⊆ V is the vector in R
V whose vth coordi-

nate equals 1 if v ∈ S and 0 otherwise. By the terms path and cycle we mean simple
path and simple cycle. The length of a path or a cycle is its number of edges. We
shall identify the spaces R

V and R
n.

2. The result. Let A be the incidence matrix of a digraph D = (V, E). If
z ∈ R

n and (i, j) is an arc in D, then the corresponding component (Az)(i,j) of Az is
equal to zj −zi. So ‖A(p−x)‖∞ = max(i,j)∈E |(pj −pi)−(xj −xi)| and it follows that
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lindisc(A) depends on D only via the associated undirected graph G (so the direction
of each arc plays no role).

Note that a simple lower bound on lindisc(A) is 1/2. For, if i and j are adjacent
vertices and we define pi = 0 and pj = 1/2, then |(pi − pj)− (xi −xj)| ≥ 1/2 for each
x ∈ {0, 1}V .

We now give our main result.
Theorem 2.1. Let A be the incidence matrix of a (nontrivial) digraph D, and

let G be the undirected graph corresponding to D. Let d (d′) be the maximum length
of a path (cycle) in G (if no cycle exits, we let d′ = 0). Finally, define k(A) =
max{d − 2, d′ − 1, 2}. Then

1− 1
k(A)

≤ lindisc(A) ≤ 1− 1
k(A) + 2

.

Proof. We first prove the lower bound. If d ≤ 2, then k(A) = 2 and we get the
trivial bound lindisc(A) ≥ 1/2. So assume that d ≥ 3. Consider a path in G of length
d, say P : w, v0, v1, . . . , vd−2, w

′. Define pw = 1, pvj = j/(d−2) for j = 0, 1, . . . , d−2,
and pw′ = 0, and let the remaining components of the vector p ∈ R

V be arbitrary. We
shall prove that min{‖A(p− x)‖∞ : x ∈ {0, 1}V } ≥ 1− 1/(d− 2). So let x ∈ {0, 1}V ,
and we may assume that ‖A(p − x)‖∞ < 1. This implies that xw = 1, xv0 = 0,
xvd−2 = 1 and xw′ = 0. So there must exist a j ∈ {0, 1, . . . , d − 3} with xvj = 0 and
xvj+1 = 1. But pvj+1 − pvj = 1/(d − 2) so

‖A(p − x)‖∞ ≥ |(pvj+1 − pvj )− (xvj+1 − xvj )| = 1− 1/(d − 2)

as desired. Next, assume that G contains a cycle of length d′, say with vertices
v0, v1, . . . , vd′ . We define p by letting pvj = j/(d′−1) for j = 0, 1, . . . , d′−1 and using
arguments as above we see that ‖A(p−x)‖∞ ≥ 1− 1/(d′− 1). This discussion proves
that lindisc(A) ≥ 1− 1/k(A).

We now turn to the upper bound. Define k′ = k(A)+ 2. We first reformulate the
problem combinatorially.

Claim 1: Let p ∈ [0, 1]n. If S ⊆ V satisfies

(i) |pj − pi| ≤ 1− 1/k′ when i and j are adjacent vertices in the same
set among S and V \ S, and

(ii) pi ≤ pj − 1/k′ when i ∈ V \ S and j ∈ S are adjacent,
(2.1)

then ‖A(p − χS)‖∞ ≤ 1− 1/k′.
Proof of Claim 1: Let x = χS and consider ∆ij := |(pj − pi) − (xj − xi)| where

i and j are adjacent. If i and j belong to the same set among S and V \ S, then
∆ij = |pj − pi| ≤ 1 − 1/k′ as desired. If i and j are in different sets among S
and V \ S, we may assume that i ∈ V \ S and j ∈ S. Then, as pi, pj ∈ [0, 1],
∆ij = |pj − pi − 1| = −pj + pi + 1 ≤ 1− 1/k′ by (ii), and the claim follows.
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Let now p ∈ [0, 1]n be given. We shall define a set S with properties as in Claim
1, but we need some preparations first. Define

E′ = {[i, j] ∈ E(G) : |pi − pj| < 1/k′}

and let V1, V2, . . . , Vt be the partition of V corresponding to the connected components
of the subgraph (V, E′) of G. From this partition we construct a digraph D∗ with
vertices V1, V2, . . . , Vt and, for each r �= s, D∗ contains an arc (Vr, Vs) if there are
vertices i ∈ Vr and j ∈ Vs such that [i, j] ∈ E and pi < pj . Note that we then have
the stronger inequality pi ≤ pj − 1/k′ as [i, j] ∈ E(G) \ E′.

We may find a reordering of the vertices of the digraph D∗, say, for notational
simplicity,

V1, . . . , Vr1 , Vr1+1, . . . , Vr2 , . . . , Vrm−1+1, . . . , Vrm

so that (i) the strongly connected components of D∗ are Si := {Vri+1, . . . , Vri+1}
(i = 0, 1, . . . , m − 1) where we let r0 = 0 and rm = t, and (ii) each arc of D∗ that
do not join two vertices in the same strong component has the form (Vr, Vs) where
r < s. We remark that with this reordering of the vertices the adjacency matrix of
D∗ is in the Frobenius normal form (see [1]).

An arc (Vr, Vs) in D∗ is called red if there are adjacent vertices (in G) i ∈ Vr and
j ∈ Vs with pj−pi > 1−1/k′. Note that, in this case, pi < 1/k′ and pj > 1−1/k′. We
may now define our set S ⊆ V . If there is no red arc, simply let S = V . Otherwise,
let q be smallest possible such that the strong component Sq contains a vertex Vs

with an ingoing red arc, and let

S = ∪t
h=qSh.

More precisely, S is the union of the vertex sets Vs contained in some Sh (h ≥ q).
Note that no arc in D∗ leaves S due to the ordering of the sets Vr discussed above.

Claim 2: No strong component Sh contains both a red arc entering it and a red
arc leaving it.

Proof of Claim 2: Assume, on the contrary, that Sh contains Vr and Vs such
that there is a red arc entering Vs and a red arc leaving Vr. Therefore Vr contains
a vertex i with pi < 1/k′ and Vs contains a vertex j with pj > 1 − 1/k′. Since Vs

and Vr lie in the same strong component Sh of D∗, this graph contains a directed
path P ′ from Vs to Vr. From P ′ we may construct a path P in G between j and i
(so we select endvertices in V for each arc in P ′, and add paths in the corresponding
connected components Vh). Consider the components of the vector p corresponding
to the vertices of P . In the endvertices we have pj > 1−1/k′ and pi < 1/k′. Consider
an edge [u, v] in P that corresponds to an arc in P ′, where u is closer to j than v is
(in P ). Then, by the definition of the arcs of D∗ (and with appropriate choice of u
and v), pu < pv. For the remaining edges [u, v] of P we have that |pu − pv| < 1/k′.
From this it follows that P must contain at least k′ − 1 edges. So, if we add to P the
two edges corresponding to the two red arcs (these edges must be disjoint), we get a
path in G of length at least k′ + 1. Since k′ + 1 = k(A) + 3 ≥ (d − 2) + 3 = d + 1,
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this contradicts that the maximum length of a path in G is d, and we have proved
Claim 2.

Claim 3: pi ≤ pj − 1/k′ when i ∈ V \ S and j ∈ S are adjacent in G.
Proof of Claim 3: Let i ∈ V \ S and j ∈ S be adjacent in G. By the definition of

S, we must have i ∈ Vr and j ∈ Vs for some r < s. Therefore (Vr, Vs) is an arc in D∗

and pi < pj. But since [i, j] ∈ E \ E′, |pi − pj | ≥ 1/k′, it follows that pi ≤ pj − 1/k′.
Claim 4: |pj − pi| ≤ 1 − 1/k′ when i and j are adjacent vertices in the same set

among S and V \ S.
Proof of Claim 4: Let i and j be adjacent vertices in G that belong to the same

set among S and V \ S. We need to consider two cases.
Case 1: i, j ∈ Vr for some r. If [i, j] ∈ E′, then |pj − pi| < 1/k′ ≤ 1 − 1/k′ as

k′ ≥ 2. So, assume that [i, j] �∈ E′. Since Vr is a connected component of (V, E′),
there is a path P in Vr between i and j containing edges of E′ only. Say that this
path has l edges. Since |pr − ps| < 1/k′ holds for every edge [r, s] in this path, we
conclude that |pi − pj| < l/k′. But l ≤ d′ − 1 as P and the edge [i, j] make up a
cycle and the maximum length of a cycle is d′. So |pi − pj | < l/k′ ≤ (d′ − 1)/k′ =
d′/k′ − 1/k′ < 1− 1/k′ as d′ < k′.

Case 2: i ∈ Vr and j ∈ Vs where r �= s . Assume that |pj − pi| > 1 − 1/k′. We
may here assume that pj − pi > 1 − 1/k′, so (Vr , Vs) is a red arc. Therefore, by the
definition of S, Vs ⊆ S. Moreover, due to Claim 2, there is no red arc entering the
strong component that Vr belongs to. Therefore Vr ⊆ V \ S. So, i �∈ S and j ∈ S.
But this contradicts that i and j lie in the same set among S and V \ S. Therefore
|pj − pi| ≤ 1− 1/k′ and Claim 4 follows.

Finally, due to Claim 3 and Claim 4, the vector x = χS , satisfies the assumptions
(2.1) in Claim 1 and the proof of the theorem is complete.

We give some concluding remarks:
1. Since d′ ≤ n = |V | and d ≤ n−1, we see that 1− 1

k(A)+2 ≤ 1− 1
n+1 when n ≥ 3

(if n = 2 we have lindisc(A) = 1/2). Thus, the upper bound on lindisc(A) in
Theorem 2.1 is at least as good as the one given in Theorem 1.1. Clearly, the
new bound may be much better.

2. Our proof also contains a polynomial-time algorithm which for given p ∈
[0, 1]V finds a (0, 1)-vector x with ‖A(p − x)‖∞ ≤ 1− 1

k(A)+2 .
3. In connection with the bounds given in our theorem we also note that the

problem of calculating k(A) (with A as input) is NP-hard as it corresponds
to finding the longest path in a graph.
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