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PROPERTIES OF A COVARIANCE MATRIX WITH AN
APPLICATION TO D-OPTIMAL DESIGN∗
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Abstract. In this paper, a covariance matrix of circulant correlation, R, is studied. A pattern of
entries in R−1 independent of the value ρ of the correlation coefficient is proved based on a recursive
relation among the entries of R−1. The D-optimal design for simple linear regression with circulantly
correlated observations on [a, b] (a < b) is obtained if even observations are taken and the correlation
coefficient is between 0 and 0.5.
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1. Introduction. D-optimal experimental designs for polynomial regressions on
the interval [−1, 1] with uncorrelated observations have been developed; see [4], [9].
However, in the presence of correlations among the observations within each block
of the design, these known designs for uncorrelated observations may be inefficient.
Atkin and Cheng [1] obtained D-optimal designs for linear and quadratic polynomial
regression with a balanced, completely symmetric correlation structure involving a
single correlation parameter, ρ. From the results they obtained, we see that D-
optimal design in this setting did not always match the known D-optimal designs with
uncorrelated observations. Similarly, Kiefer and Wynn [7] studied block designs with
a nearest neighbor correlation structure. Properties of the covariance or correlation
matrices impacted the optimal designs. In this paper, we consider another correlation
structure, that of observations circulantly correlated with the common correlation,
and we derive a specific algebraic structure for the inverse of the correlation matrix,
which leads to D-optimal simple linear regression design for the observations with the
specified correlation structure.

In a statistical linear regression problem with observations y1, y2, . . . , yn at points
�x1, �x2, . . . , �xn, which are in a compact region, the statistical model is

yj = βT f(�xj) + εj,

where the εj ’s are random errors and the variances and covariances among the obser-
vations or the random errors are assumed to be

cov(yi, yj) =



σ2 if i = j,
σ2ρ if |i− j| = 1, or |i− j| = n− 1 ,
0 otherwise,

(1.1)
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i.e., the observations are correlated circulantly. The covariance matrix of the obser-
vations will be σ2R, where matrix R is defined as

R =




1 ρ 0 · · · 0 ρ
ρ 1 ρ · · · 0 0
0 ρ 1 · · · 0 0

. . . . . .
0 0 0 · · · 1 ρ
ρ 0 0 · · · ρ 1



.(1.2)

In regression design and analysis, the covariance matrix of the observations plays a
vital role, forming part of information matrix, M = XTR−1X , where

X = [f( �X1), f( �X2) ...., f( �Xn)]

is the design matrix.
This paper derives D-optimal simple linear regression designs with circulant blocks

and a correlation structure given by (1.2). Specifically, we show that, in contrast to
the uncorrelated case, D-optimality depends not only on the values of the support
points, but also on the order of these points. More significantly, the result is shown to
hold for any correlation ρ, 0 < ρ < 0.5, for even block size, and is thus not constrained
by nor dependent upon the value of ρ itself. The generality of this D-optimality is
a consequence of the pattern of signs of the entries of R−1. Section 2 contains some
properties of circulant matrices and a recursive relation among the entries of R−1.
The critical result detailing the signs of these entries, for −0.5 < ρ < 0.5, is presented
in Section 3. Section 4 provides the derivation of the values and order of the support
points of a D-optimal design, and examples are given.

2. Preliminary properties. Denote a circulant matrix

C =




c1 c2 c3 · · · cn−1 cn
cn c1 c2 · · · cn−2 cn−1

cn−1 cn c1 · · · cn−3 cn−1

. . .
. . .

c2 c3 c4 · · · cn c1




by

C = cir(c1, c2, c3, . . . , cn).

Obviously, R is a circulant symmetric matrix. So is R−1 if the inverse of R exists. If
the correlation coefficient ρ is restricted to (−0.5, 0.5), which is the interval we are
interested in, the inverse will exist. We denote it by

R−1 = cir(v1, v2, v3, . . . , vn),
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where v1, v2, . . . , vn are the entries of the first row. For the entries of the first row of
R−1, the following relations (2.1), (2.2), and (2.3) hold.

vi = vn−i+2,(2.1)

where i = 1 + �(n
2 )�, . . . , n;

v2 =
1 − v1

2ρ
;(2.2)

and for 2 ≤ i ≤ 1 + �(n
2 )�,

vi = −v(i−1) + ρv(i−2)

ρ
.(2.3)

Define matrix L to be

L =




1 ρ 0 · · · 0 0
ρ 1 ρ · · · 0 0
0 ρ 1 · · · 0 0

. . .
0 0 0 · · · 1 ρ
0 0 0 · · · ρ 1



.

Assume that Dn is the determinant of L with dimension n×n. L is a Jacobi matrix.
From [5], we can find the following relation for the determinants of L matrices,

Dn = Dn−1 − ρ2Dn−2,(2.4)

whereDn−1 andDn−2 denotes the determinants of L’s with dimensions (n−1)×(n−1)
and (n− 2) × (n− 2), respectively. By matrix operations we find that

detR = Dn−1 − 2ρ2Dn−2 − 2(−1)nρn(2.5)

and

v1 =
Dn−1

detR
.(2.6)

If we apply the relations (2.2), (2.3), (2.4), (2.5), and (2.6) for different correlation
coefficients, ρ, and block size n. We obtain the first 1 + �n

2 � entries of the first row of
R−1. Examples are shown in Table 2.1.

From Table 2.1 the following patterns about these entries emerge.
(1) for positive ρ between 0 to 0.5, the odd entries are positive , the even entries

are negative.
(2) for negative ρ between −0.5 to 0, all the entries are positive.
These patterns depend only on the sign of ρ. They do not depend on the specific

value of ρ and the number of the observations.
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Table 2.1
The first (1 + �n

2
�) entries of the first row of R−1

n(# observations) ρ (corr. coef.) v11, v12, . . . , v1(1+�n
2 �)(entries)

4 0.4 1.8889 , -1.1111 , 0.8889
4 -0.4 1.8889 , 1.1111111 , 0.8889
5 0.4 1.5657 , -0.7071 , 0.2020
5 -0.4 1.7742 , 0.9677 , 0.6452
7 -0.2 1.0911 , 0.2278 , 0.0480 , 0.0120
7 0.2 1.0911 ,-0.2276 , 0.0471 , -0.0078
8 0.2 1.0911 , -0.2277 , 0.0476 , -0.0104 , 0.0041
8 -0.2 1.0911 , 0.2277 , 0.0476 , 0.0104 , 0.0041

Theorem 2.1. Assume that a matrix S is invertible and all its row sums equal
σ, then its inverse, S−1, has all row sums equal to 1/σ.

Proof. Assume that vector �1 is a vector with all elements 1. S�1 = σ�1 since S
has row sums of σ. So S−1S�1 = σS−1�1, that is, S−1�1 = 1

σ
�1, which establishes the

theorem.
Applying Theorem 2.1 to matrix R, we have the following result.
Corollary 2.2. The sum of each row or each column of matrix R−1 is 1/1 + 2ρ.

3. Proof of Pattern in R−1. From [11] or [3] we can conclude that the eigen-
values λj ’s, j = 0, 1, . . . , n− 1, of R are given by

λj = 1 + 2ρ cos(
2πj
n

).

Further we can represent the entries of R−1 in terms of λj ’s as follows

vk =
1
n

n−1∑
j=0

e−2πijk/nλ−1
j ,

where vk’s are the entries of the first row of R−1 and i is the imaginary unit. How-
ever, these existing expressions do not lend themselves to derivation of the D-optimal
design(s), in part because the D-criterion function becomes a weighted average of all
the eigenvalues, and neither the values nor the order of the support points are evident
from this weighted average. In particular, it is not clear whether optimality depends
on ρ. Instead, what matters is the pattern of signs of the entries of R−1. This pattern
is derived here, using the recursive relations shown in section 2.

The relation (2.4) for the determinants of L and the relation (2.3) for the en-
tries of R−1 are two homogeneous second order difference equations. For the general
homogeneous second order difference equation, we have the following result from [10].

Lemma 3.1 (Quinney). For a homogeneous second order difference equation of
the form

yn+1 + ayn + byn−1 = 0,
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where n ∈ N, its auxiliary equation

r2 + ar + b = 0

has solutions r1, r2. Then the general solution form of the homogeneous second order
difference equation is

yn = Arn1 + Brn2 , if r1 	= r2
yn = (A+ nB)rn1 , if r1 = r2.

We can use Lemma 3.1 to derive an explicit representation of the entries of the
inverse of R.

Lemma 3.2. The determinant of the matrix L with dimension n× n is

Dn = A(
1 +

√
1 − 4ρ2

2
)n +B(

1 −
√

1 − 4ρ2

2
)n ,

where

A =
1 +

√
1 − 4ρ2

2
√

1 − 4ρ2
and B = −1 −

√
1 − 4ρ2

2
√

1 − 4ρ2
.

Proof. The auxiliary equation for the homogeneous second order difference equa-
tion (2.4) is

r2 − r + ρ2 = 0

Its solutions are

r1 =
1 +

√
1 − 4ρ2

2
and r2 =

1 −
√

1 − 4ρ2

2
.

Now, (2.4) has initial values D1 = 1 and D2 = 1− ρ2. Applying Lemma 3.1, we have

A(
1 +

√
1 − 4ρ2

2
) +B(

1 −
√

1 − 4ρ2

2
) = 1,

A(
1 +

√
1 − 4ρ2

2
)2 +B(

1 −
√

1 − 4ρ2

2
)2 = 1 − ρ2.

Solving the above system for A and B and applying Lemma 3.1, the proof is com-
plete.

Theorem 3.3. The first 1 + �n
2 � entries of the first row of R−1 are given by

vi = A(
−1 +

√
1 − 4ρ2

2ρ
)i + B(

−1 −
√

1 − 4ρ2

2ρ
)i ,
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where

A =
−(1 + v11)

√
1 − 4ρ2 − (1 − 4ρ2)v11 − 1

4ρ
√

1 − 4ρ2
,

B =
−(1 + v11)

√
1 − 4ρ2 + (1 − 4ρ2)v11 + 1
4ρ

√
1 − 4ρ2

,

and i = 1, . . . , �n
2 � + 1.

We can use the same reasoning and procedure as we used in Lemma 3.2 to prove
Theorem 3.3. Based on the analytic forms of the entries of R−1, we have the following
theorem.

Theorem 3.4. Assume that v1, v2, . . . , v(�n
2 �+1) are the first �n

2 � + 1 entries of
the first row of R−1. Then
(1) if 0 < ρ < 0.5, the odd entries are nonnegative, the even entries are non-positive;
(2) if −0.5 < ρ < 0, all the entries are nonnegative.

Proof. To simplify the notation, we define

γ1 =
−1 +

√
1 − 4ρ2

2ρ
, and γ2 =

−1 −
√

1 − 4ρ2

2ρ
,

which are the solutions of the auxiliary equation of (2.3). By (2.5), we have

Dn−1 =
rn1 − rn2√
1 − 4ρ2

and Dn−2 =
rn−1
1 − rn−1

2√
1 − 4ρ2

,

where r1 and r2 are the solutions of the auxiliary equation of (2.4), which are defined
in Lemma 3.2. Thus,

detR =
rn1 − rn2 − 2ρ2(rn−1

1 − rn−1
2 )√

1 − 4ρ2
− 2(−1)nρn = rn1 + rn2 − 2(−1)nρn

and

v1 =
Dn−1

detR
=

rn
1 −rn

2√
1−4ρ2

rn1 + rn2 − 2(−1)nρn
.

Since γ1 = −r2/ρ and γ2 = −r1/ρ, by Theorem 3.3

vi =
1

2
√

1 − 4ρ2
[(1 + v11

√
1 − 4ρ2)γi−1

1 + (−1 + v11
√

1 − 4ρ2)γi−1
2 ]

=
1

2
√

1 − 4ρ2
[

2rn1 − 2(−1)nρn

rn1 + rn2 − 2(−1)nρn

(−1)i−1

ρi−1
ri−1
2

+
−2rn2 − 2(−1)nρn

rn1 + rn2 − 2(−1)nρn

(−1)i−1

ρi−1
ri−1
1 ]

= C[(rn1 − (−1)nρn)ri−1
2 + (−rn2 + (−1)nρn)ri−1

1 ] ,(3.1)
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where C = (−1)i−1/
√

1 − 4ρ2(rn1 + rn2 − 2(−1)nρn)ρi−1 and 1 ≤ i ≤ �n
2 � + 1. So for

0 < ρ < 0.5, C < 0 if i is even, C > 0 if i is odd; for −0.5 < ρ < 0, C > 0. If
∆ = [(rn1 − (−1)nρn)ri−1

2 + (−rn2 + (−1)nρn)ri−1
1 ] is nonnegative, the theorem will be

established.
For n even,

∆ = [(rn1 − ρn)ri−1
2 + (−rn2 + ρn)ri−1

1 ].(3.2)

Since r2 ≤ |ρ| ≤ r1 for 0 < |ρ| < 0.5, rn1 > ρn and rn2 < ρn. Thus, in (3.2), ∆ is
nonnegative for 0 < |ρ| < 0.5.

For n odd,

∆ = [(rn1 + ρn)ri−1
2 + (−rn2 − ρn)ri−1

1 ].(3.3)

For −0.5 < ρ < 0, −ρn > 0. Applying r2 ≤ |ρ| ≤ r1 for 0 < |ρ| < 0.5, we find that ∆
is nonnegative for −0.5 < ρ < 0. But for 0 < ρ < 0.5, (3.3) can be represented as

∆ = [(rn1 + ρn)ri−1
2 + (−rn2 − ρn)ri−1

1 ]

= r
n−(i−1)
1 ρ2(i−1) + ρnri−1

2 − rn−(i−1)
2 ρ2(i−1) − ρnri−1

1

= ρ2(i−1)r
(i−1)
1 [rn−2(i−1)

1 − ρn−2(i−1)]

+ρ2(i−1)r
(i−1)
2 [−rn−2(i−1)

2 + ρn−2(i−1)](3.4)

since r1r2 = ρ2. In (3.4), ∆ is nonnegative.
Therefore, ∆ is nonnegative for 0 < |ρ| < 0.5, and the theorem is proved.

4. D-optimal design with circulantly correlated observations. In this
section, the properties developed in the above sections is applied to the D-optimal
regression design. In linear regression with correlated observations, the order of the
regression points affects the statistical performances [12]. Exact design is considered
here. An exact design ξn with a size n is a sequence of n trails x1, x2, . . . , xn for
support points or treatment levels/combination. The D-optimality criterion is defined
by the criterion function

φ[M(ξ)] = −log [detM(ξ)].

If a design ξD minimizes this criterion function, the design ξD is called a D-optimal
design. Equivalently, we can maximize the determinant of the information matrix
M(ξ). The D-optimality is related to the volume of the confidence ellipsoid when
the estimates are normally distributed [8]. The volume of the confidence ellipsoid is
minimized by a D-optimal design.

Theorem 4.1. Consider the linear regression model

yj = β0 +
d∑

i=1

βixij + εj ,

where Xj = [1, x1j , x2j , . . . , , xdj ]T ∈ Ω, j = 1, 2, . . . , n, Ω is a compact region
in R

d+1, and yj is the observation at point Xj. If correlations among errors ε’s are
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defined in (1.1), then all circulant permutations of {X1, X2, . . . , Xn} produce the same
information matrix.

Proof. Define ε = [ε1, ε2, . . . , εn]T . Then cov[ε] = R; and define the matrix

X = [X1, X2, . . . , , Xn],

which is the transpose of the design matrix. The information matrix for this regression
is M = XR−1XT . Any circulant permutation of {X1, X2, . . . , Xn}, e.g.,

{Xn−m+1, Xn−m+2, . . . , Xn, X1, X2, . . . , Xn−m}

can be obtained by XPm, where the matrix P = cir(0, 1, 0, . . . , 0). By any cir-
culant permutation of the regression points , the information matrix will be Mp =
XPmR−1(XPm)T . Since R−1 = PmR−1(Pm)T ,

Mp = (XPm)R−1(XPm)T = X(PmR−1(Pm)T )XT = XR−1XT = M.

In simple linear regression on [−1 , 1] with uncorrelated observations, the
D-optimal design can be achieved by taking 50% of observations at 1 and −1, re-
spectively, in any order. For example, if there are 10 observations taken, then five
observations are taken at 1, and 5 observations is taken at −1, and D-optimality
is achieved. But for regression with correlated observations, the optimal design is
related with the order to take the regression points and it is possible to achieved
D-optimal design with different regression point set [12]. We obtain the following
result about D-optimality for simple linear regression on [−1 , 1] with circulantly cor-
related observations.

Theorem 4.2. Consider the simple linear regression model

yj = β0 + β1xj + εj,

where j = 1, . . . , , n and xj ∈ [−1, 1]. Assume that the correlations among yj’s are
defined by (1.1) and that n is even, i.e., an even number of observations is taken, and
0 < ρ < 0.5. Then one of the circulant permutations of

{1, −1, 1, −1, . . . , 1, −1}︸ ︷︷ ︸
n

is a D-optimal design for this simple linear regression problem.
Proof. Let

�1 = [1, 1, . . . , 1]T and �x = [x1, x2, . . . , xn]T .

The information matrix of this simple linear regression is

M = [�1, �x]TR−1[�1, �x] =
[
�1TR−1�1 �1TR−1�x

�xTR−1�1 �xTR−1�x

]
.(4.1)
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The determinant of M is

detM = �1TR−1�1�xTR−1�x− (�1TR−1�x)2

= �xT (�1TR−1�1R−1)�x− �xT (V −1�1�1TR−1)�x
= �xT (�1TR−1�1R−1 −R−1�1�1TR−1)�x.(4.2)

By Corollary 2.2, (4.2) is simplified to

detM =
n

1 + 2ρ
�xTR−1�x− 1

(1 + 2ρ)2
(
n−1∑
i=0

xi)2.(4.3)

It is easy to see that detM is a quadratic form of the regression points x1, x2, . . . , xn

and that it is always nonnegative. So it is a convex function of the regression points
x1, x2, . . . , xn; see [2]. It follows that the maximum value of detM exists and it occurs
at vertices of the hypercube [−1, 1]n. So we have to take 1’s or −1’s as regression
support points to produce the D-optimal design.

We will re-index the entries of R−1. Assume that

R−1 = cir(v0, v1, . . . , vn−1).(4.4)

Consider

�xTR−1�x = v0

n−1∑
i=0

xixi + v1
n−1∑
i=0

2xix((i+1) (mod n))

+v2
n−1∑
i=0

2xix((i+2) (mod n)) + · · · + v( n
2 −1)

n−1∑
i=0

2xix((i+ n
2 −1) (mod n))

+v( n
2 )

n
2 −1∑
i=0

2xix((i+ n
2 ) (mod n)) .(4.5)

We can represent (4.5) as

�xTR−1�x = nv0 + v1[
n−1∑
i=0

(xi + x((i+1) (mod n)))2 − 2n]

+v2[
n−1∑
i=0

(xi + x((i+2) (mod n)))2 − 2n] + ...

+v( n
2 −1)[

n−1∑
i=0

(xi + x((i+ n
2 −1) (mod n)))2 − 2n]

+v( n
2 )[

n
2 −1∑
i=0

(xi + x((i+ n
2 ) (mod n)))2 − n].(4.6)

In the determinant of the information matrix, M , equation (4.3), we can max-
imize the determinant detM by minimizing (

∑n−1
i=0 xi)2 and maximizing �xTR−1�x
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simultaneously. Take one of the circulant permutations consisting of −1 and 1, for
instance, 1,−1, 1,−1, . . . , 1,−1 as regression support points {x0, x1, . . . , xn}. It is
obvious that (

∑n−1
i=0 xi)2 is minimized since n is even.

In (4.6), consider one term, the j-th term: vj [
∑n−1

i=0 (xi +x((i+j) (mod n)))2−2n].
If j is an odd number, vj ≤ 0 by Theorem 3.4, and (i+j) (mod n) is odd if i is even;
(i+ j) (mod n) is even if i is odd. So (xi +x((i+j) (mod n)))2 = 0 and the j-th term
is minimized under this arrangement. If j is an even number, vj ≥ 0 by Theorem 3.4,
and (i + j) (mod n) is even if i is even; (i + j) (mod n) is odd if i is odd. So
(xi + x((i+j) (mod n)))2 = 4 and the j-th term is maximized under this arrangement.
Therefore (4.6) is maximized under this arrangement and detM is maximized. By
Theorem 4.1, the proof is now complete.

The following is a symbolic example to illustrate Theorem 4.2.
Example 4.3. Assume that n = 6 and R−1 consists of V0 > 0, V1 < 0, V2 > 0,

V3 < 0 in the following way

R−1 =




V0 V1 V2 V3 V2 V1

V1 V0 V1 V2 V3 V2

V2 V1 V0 V1 V2 V3

V3 V2 V1 V0 V1 V2

V2 V3 V2 V1 V0 V1

V1 V2 V3 V2 V1 V0



.

Further assume that the regression support points are x0, x1, x2, x3, x4 and x5. So
the determinant of information matrix for simple linear regression is

detM =
6

1 + 2ρ
�xTR−1�x− 1

(1 + 2ρ)2
(

5∑
i=0

xi)2 .

In �xTR−1�x, the terms with V1 as the coefficient are

2(x0x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x0),

which can be written as
5∑

i=0

2xix(i+1)( (mod 6)) .

We have the similar representations for the terms with the coefficients V2 and V3, so

detM =
6

1 + 2ρ
(V0

5∑
i=0

xii+ V1

5∑
i=0

2xix(i+1)( (mod 6))

+V2

5∑
i=0

2xix(i+2)( (mod 6)) + V3

2∑
i=0

2xix(i+3)( (mod 6)))

− 1
(1 + 2ρ)2

(
5∑

i=0

xi)2 .
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When x0 = 1, x1 = −1, x2 = 1, x3 = −1, x4 = 1 and x5 = −1, detM is maximized.
From the analysis in this section, we know that the analytic D-optimal design

for simple linear regression on interval [−1, 1]. A natural question to ask is what the
D-optimal design is on a general bounded interval [a, b], where a < b. In such general
cases, 0 may not be a valid regression support point, or the interval may not be sym-
metric about 0. The following propositions will show that the D-optimal design with
circulant correlated observations is invariant under scaling and shift transformations.

Proposition 4.4. Define f(x1, x2, . . . , xn) = detM , where x1, x2, . . . , xn are
regression support points and M is the information matrix defined in (4.1). Then f
is invariant under the shift transformation �z = �x + d�1, where d is a constant and
�x = [x1, x2, . . . , xn]T . That is

f(x1, x2, . . . , xn) = f(x1 + d, x2 + d, . . . , xn + d).

Proof. From (4.2) we know that

f(x1, x2, . . . , xn) =
n

1 + 2ρ
�xTR−1�x− 1

(1 + 2ρ)2
(

n∑
i=1

xi)2

=
n

1 + 2ρ
�xTR−1�x− (�xTR−1�1)2,(4.7)

so that

f(x1 + d, x2 + d, . . . , xn + d) =
n

1 + 2ρ
(�x+ d�1)TR−1(�x + d�1) − ((�x + d�1)TR−1�1)2

=
n

1 + 2ρ
(�xTR−1�x+ 2d�xTR−1�1 + d2�1TR−1�1 − [(�xTR−1�1)2

+2d�xTR−1�1�1TR−1�1 + d2(�1TR−1�1)2]

=
n

1 + 2ρ
(�xTR−1�x+ 2d�xTR−1�1 + d2�1TR−1�1 − [(�xTR−1�1)2

+
n

1 + 2ρ
(2d�xTR−1�1 + d2�1TR−1�1)](4.8)

=
n

1 + 2ρ
�xTR−1�x− (�xTR−1�1)2.

The equality (4.8) is obtained by the fact that �1TR−1�1 = n
1+2ρ . Therefore

f(x1, x2, . . . , xn) = f(x1 + d, x2 + d, . . . , xn + d). This completes the proof.
Proposition 4.5. Let the same setting as Proposition 4.4 hold. Consider the

scaling transformation �z = λ�x. If f(x1, x2, . . . , xn) has maximum value at �x0, then
f(z1, z2, . . . , zn) has maximum value at �z0 = λ�x0.

Proof. From (4.2) we have that

f(z1, z2, . . . , zn) = f(λx1, λx2, . . . , λxn)

=
n

1 + 2ρ
λ�xTR−1λ�x − (λ�xTR−1�1)2

= λ2[
n

1 + 2ρ
�xTR−1�x− (�xTR−1�1)2](4.9)
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From (4.9), we can see that f(z1, z2, . . . , zn) = λ2f(x1, x2, . . . , xn). If
f(x1, x2, . . . , xn) has maximum value at �x0, then f(z1, z2, . . . , zn) has maximum
value at �z0 = λ�x0 and the maximum value of f(z1, z2, . . . , zn) is λ2 times the maxi-
mum value of f(x1, x2, . . . , xn).

Example 4.6. Kerr and Churchill [6] describe a biological experiment using
a circulant block structure. They refer to this as a “loop” design and discuss its
statistical application and efficiency under certain conditions, although they do not
assume a common correlation of ρ between adjacent observations in a block. However,
if such a correlation structure were to be assumed, which would be reasonable if
“leakage” or “contamination” existed between adjacent experimental units because
of small or modest spatial separation, and for a simple linear regression model, then
Theorem 4.2 would apply, and a D-optimal design would be available.
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