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MULTIPLICATIVE MAPS ON INVERTIBLE MATRICES THAT
PRESERVE MATRICIAL PROPERTIES∗

ROBERT M. GURALNICK† , CHI-KWONG LI‡ , AND LEIBA RODMAN‡

Abstract. Descriptions are given of multiplicative maps on complex and real matrices that
leave invariant a certain function, property, or set of matrices: norms, spectrum, spectral radius,
elementary symmetric functions of eigenvalues, certain functions of singular values, (p, q) numerical
ranges and radii, sets of unitary, normal, or Hermitian matrices, as well as sets of Hermitian matrices
with fixed inertia. The treatment of all these cases is unified, and is based on general group theoretic
results concerning multiplicative maps of general and special linear groups, which in turn are based
on classical results by Borel - Tits. Multiplicative maps that leave invariant elementary symmetric
functions of eigenvalues and spectra are described also for matrices over a general commutative field.

Key words. Linear group, Multiplicative Preserver, Norm, Eigenvalue, Spectral radius, Gener-
alized numerical range, Generalized numerical radius.
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1. Introduction. There has been considerable interest in studying linear or
multiplicative maps on matrices that leave invariant some special functions, sets, and
relations; see [4, 24, 10]. In this paper, we study multiplicative maps on invertible
matrices with such preserver properties. Although our main interest is in complex
and real matrices, we have found it advantageous to present first descriptions of
multiplicative maps of the general linear group and the special linear groups over any
(commutative) field. These descriptions are based on the Borel–Tits results, and are
presented in the next section. In this connection we note that multiplicative maps on
full matrix algebras are well understood [14].

Our main results for the complex field are presented in Section 3. Here, we de-
scribe multiplicative maps that preserve a certain function, property, or set of matri-
ces: norms, spectrum, spectral radius, elementary symmetric functions of eigenvalues,
certain functions of singular values, (p, q) numerical ranges and radii, sets of unitary,
normal, or Hermitian matrices, as well as sets of Hermitian matrices with fixed inertia.
The corresponding results for the real field are presented in Section 4. There, we also
describe multiplicative preservers of elementary symmetric functions of eigenvalues
and of spectra for matrices over a general field.

2. Group Theory Results. The following notation and conventions will be
used in this section (some of the notation will be used in subsequent sections as well).

|X| cardinality of a set X.
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All fields F are commutative.
F the algebraic closure of a field F.
F∗ the group of nonzero elements of a field F.
GL(n,F) the group of n× n invertible matrices with entries in a field F.
SL(n,F) = {A ∈ GL(n,F) : det(A) = 1}.
PSL(n,F) = SL(n,F)/{xI : x ∈ F∗, xn = 1}.
At the transpose of a matrix A.
Mn(F) the algebra of n × n matrices over the field F. To avoid trivialities, we

assume n ≥ 2 everywhere.
Fq the finite field of q elements.
Sm the group of permutations of m elements.
G1 ≤ G2 means that G1 is a subgroup of G2.
A map α : X → Y is called nontrivial if its image α(X) consists of more than

one element.

2.1. Multiplicative maps on SL(n,F). The results in this and the next sub-
section are based on a special case of the Borel–Tits results [2]. We need to do some
work in order to apply them. Let E,F be fields. We first dispose of the case where E

and F have different characteristics. The following is known:

Lemma 2.1. Let E and F be fields of distinct characteristics pE and pF. Assume
that n > 1. Let φ : SL(n,F)→ Mm(E) be a nontrivial multiplicative map. Then F is
finite, say of order q, and one of the following holds:

1. n = 2, and m ≥ (q − 1)/2; or
2. n = 2, q = 3 and m = 1; or
3. q = 2 and n ≤ 4; or
4. n > 2 and m ≥ (qn − 1)/(q − 1)− 2.
Proof. There is no harm in assuming that E is algebraically closed and also that

φ maps into GL(m,E) (passing to a smaller m if necessary). If F is infinite, then
the only proper normal subgroups of SL(n,F) are contained in the scalars. Consider
the subgroup consisting of I + tE12, t ∈ F, where E12 is the matrix with 1 in the
(1, 2) position and zeros elsewhere. We note that any two nontrivial elements in this
group are conjugate in SL(n,F). The image of this group has the same property
but also is an abelian group of semisimple elements. In particular, this group can
be diagonalized – but all elements are conjugate and so in particular have the same
set of eigenvalues. The image is thus finite and so this subgroup intersects the kernel
nontrivially, whence φ is trivial.

In the finite case, this result is known; see [9] (or [17] for a somewhat weaker
result).

We assume from now on that F and E have the same characteristic.
Fix a positive integer n > 1. We make the assumption that if n = 2, then |F| > 3.

This is equivalent to assuming that SL(n,F) is perfect (cf. [3]). Recall that a group
G is called perfect if it coincides with its commutator [G,G]:

G = [G,G] := {the subgroup generated by xyx−1y−1 : x, y ∈ G}.
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We first record the well known fact (see, e.g., [6]):

Lemma 2.2. Let fi, i = 1, 2 be two representations of a semigroup A into End(V )
with V a finite dimensional vector space over E. If f1 and f2 are equivalent over any
extension field of Ẽ of E, i.e., there exists Q ∈ GL(n, Ẽ) such that f1(x) = Q−1f2(x)Q
for every x ∈ A, then f1 and f2 are equivalent over E.

Lemma 2.3. There are no nontrivial homomorphisms from SL(n,F) to GL(m,E)
for m < n.

Proof. There is no harm in assuming that E is algebraically closed. We induct on
n. If n = 2 and |F| > 3, then the result is clear (since SL(n,F) is perfect and so any
1-dimensional representation is trivial, because GL(1,E) is abelian). Still assuming
n = 2, consider the remaining cases SL(2,F3) and SL(2,F2). We have |SL(2,F3)| =
24 and |[SL(2,F3), SL(2,F3)]| = 8. So if there were a nontrivial homomorphism
SL(2,F3) → GL(1,E), then GL(1,E) would have an element of order 3, which is
impossible because E has characteristic 3. For SL(2,F2) we have that |SL(2,F2)| = 6
and |[SL(2,F2), SL(2,F2)]| = 3 (because SL(2,F2) is isomorphic to S3), and a similar
argument applies.

So assume that n > 2. Since PSL(n,F) is simple (see [3], for example), any
nontrivial representation of SL(n,F) has kernel contained in the center of SL(n,F).
Consider the embedding

SL(n− 1,F) −→ SL(n,F)

given by

A ∈ SL(n− 1,F) 
→
[

A 0
0 1

]
∈ SL(n,F).

Thus, the restriction to SL(n− 1,F) (via the above embedding) of a nontrivial rep-
resentation of SL(n,F) is again a nontrivial representation of SL(n− 1,F), and this
nontrivial representation of SL(n− 1,F) is one-to-one. By induction, m ≥ n− 1. If
m = n − 1, then SL(n− 1,F) acts irreducibly (otherwise, the matrices of the repre-
sentation of SL(n − 1,F) are nontrivially block triangular with respect to a certain
basis, and by restricting the representation to one of the diagonal blocks, we obtain
a contradiction with the induction hypothesis). The centralizer of SL(n − 1,F) in
SL(n,F) is the set {[

xIn−1 0
0 y

]
: x, y ∈ F and xn−1y = 1

}

(recall that the centralizer of a group G1 in an overgroupG2 is the set {y ∈ G2 : yx =
xy for every x ∈ G1}). Assume first that the centralizer is nontrivial (which is always
the case if F is infinite). The centralizer maps (under the irreducible representation
of SL(n−1,F) which is the restriction of a nontrivial representation of SL(n,F)) into
the center of GL(n − 1,E). The inverse image of the center is a normal subgroup
of SL(n,F) and so is either contained in the center of SL(n,F), or coincides with
SL(n,F), a contradiction.
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If F = Fq, q = pα, we note that SL(n− 1,F) is contained in the normalizer of an
elementary abelian subgroupA of order qn−1. (An abelian group is called elementary
if the order of any non-identity element is a prime.) Namely,

A =
{[

In−1 y
0 1

]
: y ∈ Fn−1×1

}
,

and fgf−1 ∈ A for every f ∈ SL(n − 1,F), g ∈ A. It is well known that any rep-
resentation of a p-group in characteristic p has a nonzero vector subspace of vectors
that are fixed by the representation, which must be invariant under its normalizer.
Thus, there is a nonzero vector subspace which consists of vectors fixed by A and
which is invariant under SL(n− 1,F). Since SL(n− 1,F) acts irreducibly, this sub-
space must be the whole n − 1-dimensional space. Thus, the kernel of the original
nontrivial representation of SL(n,F) contains A, a contradiction with the previously
established fact that the kernel of this representation must be contained in the center
of SL(n,F).

A large part of Lemma 2.3 is contained in [5, Theorem 2.3] which deals with
homomorphisms of special linear groups into general linear groups over division rings.
Lemma 2.3 also follows from well known results about the representation theory of
SL(n,Fp) and SL(n,Q); Q is the field of rational numbers (see [25] if the characteristic
is positive and [26] if F = Q).

Note that we do need to exclude the cases n = 2 and |F| ≤ 3 in the next result.

Lemma 2.4. Let φ be a nontrivial multiplicative map from SL(n,F) into Mn(E).
If n = 2, assume that |F| > 3. Then φ is injective and φ(SL(n,F)) ≤ SL(n,E).

Proof. The only nontrivial normal subgroups of SL(n,F) are contained in the
group of scalars in SL(n,F). Since |φ(SL(n,F)| > 1, the element φ(1) is an idempo-
tent and is the identity of the group φ(SL(n,F)). If φ(1) is not the identity matrix,
then we have a nontrivial group homomorphism from SL(n,F) to GL(m,F) where
m is the rank of φ(1). The previous lemma implies that m = n. Since SL(n,F) is
perfect, so is its image, whence the image is contained in SL(n,E).

Next, we show that φ is injective. First suppose that n = 2. Then the only
nontrivial normal subgroup consists of ±I. Since the image of φ is contained in
SL(2,E) and the only elements of order 2 in SL(2,E) are scalars, it follows that
φ is injective. So assume that n > 2. Recall that any nontrivial proper normal
subgroup of SL(n,F) consist of the scalars matrices of order dividing n. If φ is not
injective, then there is a prime r with r|n and F containing the rth roots of unity,
with aI ∈ Kerφ, where a ∈ F is an rth root of unity. Let M be the subgroup of
monomial matrices of determinant 1 all of whose nonzero entries are rth roots of
unity (recall that a monomial matrix is one which has exactly one nonzero entry in
each row and column). The representation theory of this group is well known and
it is easy to see that the smallest representation that has kernel properly contained
in D, the subgroup of diagonal matrices in SL(n,F), has dimension n and any such
representation of degree n is faithful on D (and in particular, aI ∈ D is not in the
kernel of φ). The main idea is the following. Let Z be the subgroup of scalar matrices
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in D. Then M permutes the nontrivial characters of D/Z a group of order rn−2 and
that and M/Z-module must be a direct sum of characters for D that are permuted
by M . If n > 4, then the smallest such orbit has size n(n − 1)/2 > n. If n = r = 3
or n = 4, r = 2, , then any such representation has kernel not contained in D, a
contradiction.

Note that if φ : SL(n,F) → Mm(E), then the space V of column vectors is a
module for SL(n,F) in the obvious way (any representation gives a module). We
denote this module by V φ.

Define the map τ by τ(A) = (At)−1, A ∈ GL(n,F). If σ : F → E is a field
embedding, then we can extend this to a homomorphism SL(n,F) → SL(n,E)
in the obvious manner (entrywise). Indeed, we can extend this to an embedding
from GL(n,F) → GL(n,E). As above, we let V σ or V ∗σ denote the corresponding
SL(n,F)-module over E.

Theorem 2.5. Let φ : SL(n,F) → Mn(E) be a nontrivial multiplicative map.
Assume that |F| > 3 if n = 2. Then φ is a group homomorphism into SL(n,E) and
there exists a field embedding σ : F → E and S ∈ GL(n,E) such that φ has the form

A 
→ Sσ(A)S−1 or A 
→ Sσ(τ(A))S−1.(2.1)

Proof. If F is finite and SL(n,F) is perfect, then the result of Theorem 2.5 follows
easily from basic results in the representation theory of the finite Chevalley groups;
see [25, 13].

So assume that F is infinite. First consider the case that E is algebraically closed.
Then the closureH of φ(SL(n,F)) (in the Zariski topology ofGL(n,E)) is an algebraic
group. Since φ(SL(n,F)) is infinite (because SL(n,F) is infinite and φ is injective
by the previous lemma) and simple modulo the center (because SL(n,F) has the this
property and φ is injective), it follows that φ(SL(n,F)) is connected (here we use the
fact that an infinite simple group cannot have subgroups of finite index). Since the
closure of a connected group is itself connected, we conclude that H is connected.
Since φ(SL(n,F)) is perfect, the same is true for H (here we use the properties that
homomorphic images of a perfect group are perfect and the closure of a perfect group
in Zariski topology is perfect), and so H ≤ SL(n,E). It follows that H is semisimple
and again by the previous lemma, H is a simple algebraic group (otherwise, we have
a nontrivial map from SL(n,F) into a group with a smaller representation).

Now apply the main result in [2] to conclude that φ is as above. The hypotheses
of [2] are: φ is a homomorphism from a subgroup of GL(n,F) which is generated
by unipotent elements (i.e., matrices all of which eigenvalues are equal to 1) and the
closure of the image of φ is a simple algebraic group over an algebraically closed field
E; it is also hypothesized that E and F have the same characteristic.

We now need to descend to E from the algebraic closure of E. What we have
shown so far amounts to saying that the only irreducible representations of SL(n,F)
over E of dimension n are V σ or V ∗σ where σ is a field embedding of F into E. Note
that the character of the representation of V σ is just σ ◦ trace (and similarly for V ∗).
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Since we have a representation into GL(n,E), the character takes on values in E,
whence σ(F) ⊆ E. Thus, the representation corresponding to φ is equivalent to V σ

or V ∗σ over E, whence also over E. Thus, the conjugating element S can always be
taken to be in GL(n,E) rather than just in GL(n,E).

A special case of Theorem 2.5 (for n = 2) is contained in [5].

2.2. Multiplicative Maps on GL(n,F).. It is quite easy to determine the
multiplicative maps on GL(n,F) using Theorem 2.5. We first prove:

Lemma 2.6. Let X,Y be groups and α, β : X → Y group homomorphisms. Let
Z denote the center of Y. Let W be a normal subgroup of X. Assume the following:

(a) α is one-to-one on X;
(b) α(w) = β(w) for all w ∈W;
(c) X/W is abelian; and
(d) the centralizer of α(W) in Y coincides with Z;

Then β(x) = α(x)γ(xW) where γ : X/W → Z is a homomorphism.

Proof. Since α is one-to-one, there is no harm in identifying X with α(X) and
assuming that X is a subgroup of Y (and α is the identity). Define γ : X → X by
γ(x) = x−1β(x).

Note that if w ∈ W, x ∈ X, then wxw−1x−1 ∈ W and so

β(wxw−1x−1) = wxw−1x−1 = wβ(x)w−1β(x)−1.

Thus, β(x)−1x commutes with w−1 for all w ∈W. Hence β(x)−1x ∈ Z. This implies
that β(x) commutes with x and γ(x) ∈ Z.

It follows that

γ(x)γ(y) = x−1β(x)y−1β(y) = y−1x−1β(x)β(y) = (xy)−1β(xy) = γ(xy), x, y ∈ X.

So γ : X → Z is a homomorphism. Clearly, γ(W) = 1 and we can view γ as a
homomorphism from X/W → Z.

Fix a field F. We assume that n > 1 and if n = 2, then |F| > 3. Let φ :
GL(n,F)→ Mn(F) be a multiplicative map. We consider two cases.

Case 1. |φ(SL(n,F))| = 1. Then φ(SL(n,F)) is just an idempotent E of rank
m ≤ n. It follows that φ is a group homomorphism from GL(n,F)/SL(n,F) into
GL(m,F) (where we view GL(m,F) inside GL(n,F) in the obvious way). There is
not much to say here.

Case 2. |φ(SL(n,F))| > 1. By Theorem 2.5 we know the possible forms for φ
restricted to SL(n,F). Since φ(I) = I, it follows that φ maps GL(n,F) into GL(n,F).
Formula (2.1) gives a homomorphism ψ : GL(n,F)→ GL(n,F).

In the previous lemma take X = GL(n,F), Y = GL(n,F),W = SL(n,F), α = ψ
and β = φ. Note that φ(SL(n,F)) = ψ(SL(n,F)) acts irreducibly (since there are no
representations of dimension less than n) and so by Schur’s Lemma its centralizer in
Y is just the group of scalars. The lemma implies that φ(A) = ψ(A)f(det(A)).
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In the excluded cases GL(2,F2) ∼= S3 and GL(2,F3), there are more normal
subgroups and one can get other homomorphisms which are easy to describe. We
leave this as an exercise to the reader.

This leads to the following result.

Theorem 2.7. Let E/F be an extension of fields. Let φ : GL(n,F)→ Mn(E) be
a multiplicative map. Assume that |F| > 3 if n = 2. Then one of the following holds
true:

(a) |φ(SL(n,F))| = 1; or
(b) there exists a field embedding σ : F → E, a homomorphism f : F ∗ → E∗, and

S ∈ GL(n,E) such that φ has the form

A 
→ f(det(A))Sσ(A)S−1 or A 
→ f(det(A))Sσ(τ(A))S−1 .(2.2)

3. Multiplicative Preservers: The complex field. In this section, we use
the group theory results of Section 2 to study multiplicative preservers problems
on matrices. In particular, we show that many results on classical linear preserver
problems have nice multiplicative analogs. We also derive general results to connect
the group theory results and the multiplicative preserver applications. Sometimes,
we will reduce the multiplicative preserver problem to well studied linear preserver
problems, and use the known results on linear preservers. Since there are many
interesting preserver problems, presenting all the multiplicative preserver results we
can obtain will be too lengthy. We will select a list of well known examples from
linear preserver problems and show how our techniques can be used to derive results
on multiplicative preservers. In our discussion, we will focus on the complex field
F = C, and the group H to be either H = SL(n,C) or H = GL(n,C). Analogous
results on real matrices and other fields will be discussed in the next section. The
following notations will be used.

Ck = {cos(2jπ
k ) + i sin(2jπ

k ) : j = 0, . . . , k − 1} the group of k-th roots of unity.
H: either H = SL(n,C) or H = GL(n,C).
Spec (A) the spectrum of A ∈ Mn(C).
r(A) the spectral radius of A ∈ Mn(C).
T the unit circle in C.
{e1, . . . , en} the standard orthonormal basis for Cn.
Mn(C) the algebra of complex n× n matrices.
{E11, E12, . . . , Enn} the standard basis for Mn(C).
diag (a1, . . . , an) diagonal matrix with diagonal entries a1, . . . , an (in that order).
τ(A) = (A−1)t, for an invertible matrix A.
σ : C −→ C a complex field embedding.
‖x‖ the Euclidean length of a vector x ∈ Cn.

3.1. Preliminary results. The following characterizations of continuous com-
plex field embeddings will be useful.

Lemma 3.1. The following statements for a complex field embedding σ are equiv-
alent:
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(a) σ is continuous.
(b) either σ(z) = z for every z ∈ C or σ(z) = z for every z ∈ C.
(c) σ(R) ⊆ R.
(d) σ(z) > 0 for every positive z.
(e) |σ(z)| = |z| for every z ∈ C.
(f) there exist rational numbers s and r �= 0 such that

z ∈ C and |s+ rz| = 1 =⇒ |s+ rσ(z)| = 1.

Proof. For the equivalence of (a) – (c); see [29]. Evidently, (b) =⇒ (d), (e), and
(f). It is also clear that (d) =⇒ (c) and (e) =⇒ (a). We prove the part (f) =⇒ (a).
First, using the transformation w = s+ rz and replacing z by w we see that (f) holds
with s = 0, r = 1. Note that |z| < 1, z ∈ C, if and only if

|z − w| = |z + w| = 1 for some nonzero w ∈ C.(3.1)

Thus, assuming (f) holds we have for every z ∈ C∗, |z| < 1:

|σ(z)− σ(w)| = |σ(z) + σ(w)| = 1,
where w is taken from (3.1). So

0 < |z| < 1 =⇒ |σ(z)| < 1.

By scaling z, we obtain

0 < |z| < 1
m

=⇒ |σ(z)| < 1
m

,

for m = 1, 2, . . ., and the continuity of σ follows easily.

The following observation will also be used frequently.

Lemma 3.2. Let f : C∗ → C∗ be a multiplicative map.
(a) Suppose k is a positive integer such that f(µ)k = 1 for all µ ∈ C∗. Then

f(µ) = 1 for all µ ∈ C∗.
(b) Suppose m, n are positive integers such that (f(µ))n = µm for all µ ∈ C∗.

Then n divides m.

Proof. Part (a). The assumption implies that f maps into Ck. Since the multi-
plicative group C∗ is infinitely divisible (for every x ∈ C∗ and every positive integer
m there is y ∈ C∗ such that ym = x), the only multiplicative map f : C∗ −→ Ck is
the trivial one.

Part (b). Considering the multiplicative map

g(µ) = f(µ)n/(gcd (m,n))µ−m/(gcd (m,n)), µ ∈ C∗,

and using the part (a) of the lemma, we may assume that n and m are relatively
prime. Let q be a primitive m-th root of 1, and let α = f(q). Then

αn = f(q)n = qm = 1 and 1 = f(1) = f(qm) = (f(q))m = αm,
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hence α = 1. Let r be a primitive mn-th root of 1 such that q = rn. Then

1 = f(q) = f(rn) = (f(r))n = rm,

a contradiction, unless n = 1.

Next, we have the following general result.

Theorem 3.3. Suppose S ∈ SL(n,C) and a multiplicative map f : C∗ → C∗ are
given, and φ : H→ Mn(C) is defined by

(a) φ(A) = f(det(A))Sσ(A)S−1, or
(b) φ(A) = f(det(A))Sσ(τ(A))S−1 .

Assume that there exists a function γ : Mn(C) → [0,∞) satisfying the following
properties:

(i) There exists k1 > 0 such that

γ
(
S−1φ(diag (a1, . . . , an))S

) ≤ k1max{|a1|, . . . , |an|}
for all a1, . . . , an ∈ C such that

∏
1≤j≤n aj = 1;

(ii) There exists k2 > 0 such that

γ(diag (a1, . . . , an)) ≥ k2max{|a1|, . . . , |an|}
for all a1, . . . , an ∈ C such that

∏
1≤j≤n aj = 1.

Then (a) holds true with σ such that σ(A) = A for all A ∈ H, or σ(A) = A for all
A ∈ H.

Proof. We give the proof for the case H = GL(n,C); the case H = SL(n,C) is
completely analogous.

First, we show that (b) cannot occur. To this end, assume n > 2 (if n = 2,
forms (a) and (b) are the same). Consider the matrix A = diag (m, . . . ,m,m−n+1),
where m is a positive integer. Note that det(A) = 1. If φ is given by (b), then
φ(A) = Sdiag (m−1, . . . ,m−1,mn−1)S−1, and therefore

mn−1 ≤ 1
k2

γ(diag (m−1, . . . ,m−1,mn−1))

=
1
k2

γ(S−1φ(A)S) ≤ 1
k2

k1max{m,m−n+1} =
k1

k2
m,

which is a contradiction for large m.
Next, we show that σ is either identity or complex conjugation. It is enough

to prove that σ(x) > 0 for every positive x. Assume not, then there exists x > 0
such that σ(x) = reiθ, where r > 0, 0 < θ < 2π. Obviously, x is irrational. By a
theorem in number theory ([23, Theorem 6.9]), for m = 2, 3, . . . there exist integers
am, bm �= 0 such that |am + bmx − 1| < 1/m. Clearly, the sets {am : m = 2, 3, . . . , }
and {bm : m = 2, 3, . . . , } are unbounded, and without loss of generality (passing to a
subsequence if necessary) we may assume that

lim
m→∞ |am| = lim

m→∞ |bm| =∞.
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Clearly, am and bm are of opposite signs, at least for m large enough, say am < 0,
bm > 0. Let

Am = diag
(
am + bmx, (am + bmx)−1, 1, . . . , 1

)
, m = 2, 3, . . . .

Then

max{|am + bmx|, |(am + bmx)−1|} ≤ 2,

and

max{|am + bmσ(x)|, |(am + bmσ(x))−1|}
≤ 1

k2
γ(σ(Am)) =

1
k2

γ(S−1φ(Am)S)

≤ k1

k2
max{|am + bmx|, |(am + bmx)−1|}

≤ 2k1

k2
,

and therefore the set {am + bmσ(x) : m = 2, 3, . . .} must be bounded. But in fact
|am+bmσ(x)| > |am| if θ = π, and |am+bmσ(x)| ≥ |bm|| sin θ| if θ �= π, a contradiction
in both cases.

Although the above theorem seems to be artificial, it can be used to deduce results
on multiplicative preservers very effectively, as shown in the following theorem and
results in the next few subsections.

Theorem 3.4. Let ‖ · ‖ be a norm on Mn(C). Then a multiplicative map φ :
H → Mn(C) satisfies

‖φ(A)‖ = ‖A‖ for all A ∈ H

if and only if there exist S ∈ SL(n,C) and a multiplicative map f : C∗ → T, which
collapses to the constant function f(µ) = 1 when H = SL(n,C), such that φ has the
form

A 
→ f(det (A))SAS−1 or A 
→ f(det(A))SAS−1,

where S is such that ‖SAS−1‖ = ‖A‖ for every A ∈ H, or ‖SAS−1‖ = ‖A‖ for every
A ∈ H, as the case may be.

Proof. The “if” part is clear. For the “only if” part apply Theorems 2.5 and 2.7
to conclude that φ has the form (a) or (b) in Theorem 3.3, where f is the constant
function if H = SL(n,C), and S ∈ GL(n,C). We may assume that S ∈ SL(n,C);
otherwise, replace S by S/ det(S)1/n. Now, the result follows from Theorem 3.3 with
γ(A) = ‖A‖. Note that f maps C∗ into the unit circle in the case H = GL(n,C)
because for any µ ∈ C∗ we have

‖µI‖ = ‖φ(µI)‖ = ‖f(µn)σ(µ)I‖ = |f(µ)n||µ|‖I‖,
as σ(µ) = µ or µ̄.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 291-319, December 2003

http://math.technion.ac.il/iic/ela



ELA

Multiplicative Preserver Maps of Invertible Matrices 301

3.2. Functions of Eigenvalues. Many researchers have studied linear pre-
servers of the functions of eigenvalues; see [24]. We have the following multiplicative
analogs. We begin with the preservers of spectral radius r(A).

Theorem 3.5. A multiplicative map φ : H→ Mn(C) satisfies

r(φ(A)) = r(A) for all A ∈ H

if and only if there exist S ∈ SL(n,C) and a multiplicative map f : C∗ → T, which
collapses to the constant function f(µ) = 1 when H = SL(n,C), such that φ has the
form

A 
→ f(det(A))SAS−1 or A 
→ f(det(A))SAS−1.

Proof. Use arguments similar to those in the proof of Theorem 3.4, and use
Theorem 3.3 with γ(A) = r(A).

The following result describes multiplicative preservers of Spec(A); see [10, The-
orem 2].

Corollary 3.6. A multiplicative map φ : H → Mn(C) satisfies

Spec(φ(A)) = Spec(A) for all A ∈ H

if and only if there exist S ∈ SL(n,C) such that φ has the form

A 
→ SAS−1.

As we will see in the next section, the result of Corollary 3.6 extends to matrices
over any field (with few exceptions).

Multiplicative preservers behave much better than linear preservers. For example,
let Ek(A) be the kth elementary symmetric function of the eigenvalues of A ∈ Mn(C).
Thus, E1(A) = trace (A) and En(A) = det (A). The linear preservers for E1(A) do
not have much structure, and the description of the linear preservers for E2(A) is
very involved; see [15, 24, 1, 22]. In contrast, for multiplicative preservers, we have
the following transparent description. ’

Theorem 3.7. Fix 1 ≤ k < n. A multiplicative map φ : H → Mn(C) satisfies
Ek(φ(A)) = Ek(A) for all A ∈ H if and only if there is an S ∈ SL(n,C) such that

(a) φ has the form X 
→ SXS−1, or
(b) n = 2k, H = SL(n,C), and φ has the form X 
→ Sτ(X)S−1.

Proof. The “if” part is clear if (a) holds true. If (b) holds true, then for X ∈ H
with eigenvalues λ1, . . . , λn, we have

Ek(φ(X)) = det(X)Ek(τ(X)) =


 n∏

j=1

λj


Ek(1/λ1, . . . , 1/λn) = Ek(λ1, . . . , λn).
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Consider the “only if” part. Clearly, φ cannot be trivial. Suppose H = SL(n,C). So,
φ has one of the two standard forms of Theorem 2.5. If φ(X) = Sτ(σ(X))S−1, then
for any integer m and X = diag(m, . . . ,m, 1/mn−1),

Ek(diag (m, . . . ,m, 1/mn−1)) = Ek(X)

= Ek(Sτ(X)S−1) = Ek(diag (1/m, . . . , 1/m,mn−1));

thus (
n− 1

k

)
mk+n +

(
n− 1
k − 1

)
mk =

(
n− 1

k

)
mn−k +

(
n− 1
k − 1

)
m2n−k

for all positive integers m, which is impossible unless n = 2k. So,

(i) φ(X) = Sσ(X)S−1, or
(ii) n = 2k and φ(X) = Sσ(τ(X))S−1.

In both cases of (i) and (ii), consider

X = In + aE11 + aE12 + E21 ∈ H, for a ∈ C.

If k = 1, then

n+ a = E1(X) = E1(φ(X)) = n+ σ(a)

implies that σ(a) = a. If k ≥ 2, then

Ek(X) = (a+ 2)
(
n− 2
k − 1

)
+

(
n− 2
k − 2

)
+

(
n− 2

k

)

and

Ek(φ(X)) = (σ(a) + 2)
(
n− 2
k − 1

)
+

(
n− 2
k − 2

)
+

(
n− 2

k

)
.

So, Ek(X) = Ek(φ(X)) implies that σ(a) = a. Hence, our assertion is proved if
H = SL(n,C).

LetH = GL(n,C). If (i) holds true on SL(n,C), then φ(X) = f(det(X))SXS−1,
where f : C∗ −→ C∗ is multiplicative. Applying the equality Ek(µI) = Ek(φ(µI)),
we have f(µ)nk = 1 for every µ ∈ C∗. By Lemma 3.2, we see that f(µ) = 1 for all
µ ∈ C∗. If (ii) holds true on SL(n,C), then φ(X) = f(det(X))Sτ(X)S−1. Since
Ek(X) = Ek(φ(X)) for all X ∈ H, we see, by considering X = µI and using Lemma
3.2, that f(det(X))n = det(X)2 for all X ∈ H. However, when n > 2, by Lemma
3.2(b) there is no such multiplicative map, and when n = 2, the form (ii) is the same
as (i).
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3.3. Functions related to singular values, norms, numerical ranges.
Recall that a norm ‖ · ‖ on Mn(C) is unitary similarity invariant if ‖A‖ = ‖U∗AU‖
for every A ∈ Mn(C) and every unitary U . We have the following.

Theorem 3.8. Let ‖ · ‖ be a unitary similarity invariant norm on Mn(C). Then
a multiplicative map φ : H → Mn(C) satisfies

‖φ(A)‖ = ‖A‖ for all A ∈ H

if and only if there exist a unitary S ∈ SL(n,C) and a multiplicative map f : C∗ → T

such that φ has the form

A 
→ f(det (A))SAS−1 or A 
→ f(det (A))SAS−1,

where the latter form holds true if and only if ‖A‖ = ‖A‖ for all A ∈ Mn(C).

Proof. “Only if” part. By Theorem 3.4, there exists S ∈ SL(n,C) such that either
‖SAS−1‖ = ‖A‖ for every A ∈ H, or ‖SAS−1‖ = ‖A‖ for every A ∈ H. Suppose
the former case holds true. By continuity and homogeneity of the norm function,
‖SAS−1‖ = ‖A‖ for every A ∈ Mn(C).

To prove that S is unitary, let S = UDV for some unitary matrices U and V , and
D = diag(d1, . . . , dn) with d1 ≥ · · · ≥ dn > 0. Now, A1 = V ∗E1nV and A2 = V ∗En1V
are unitarily similar, and thus ‖A1‖ = ‖A2‖. However, SA1S

−1 = (d1/dn)UE1nU
∗

and SA2S
−1 = (dn/d1)UEn1U

∗ so that ‖SA1S
−1‖ = (dn/d1)2‖SA2S

−1‖. Thus,
d1 = dn. Analogously one proves d1 = dj for j = 2, . . . , n−1, and hence it follows that
S is unitary. Similarly, one can show that S is unitary if φ has the form A 
→ SAS−1.

Theorem 3.8 covers all the norms on square matrices depending only on the
singular values s1(A) ≥ · · · ≥ sn(A) of a matrix A ∈ Mn(C). Well–known examples
include:

(i) the spectral norm: the largest singular value;
(ii) the Ky Fan k-norm: the sum of the k largest singular values for 1 ≤ k ≤ n;
(iii) the Schatten p-norm: the 4p norm of the vector of singular values for p ≥ 1.

Of course, the Schatten 2-norm is just the Frobenius norm, which admits all unitary
operators onMn(C) as linear preservers (isometries), but the multiplicative Frobenius
norm preservers have rather specific form.

One can use a similar technique to study other functions on matrices induced
by singular values. For example, in the linear preserver context, researchers have
studied F (A) =

∑n
j=1 sj(A)p with p �= 0 or F (A) = Ek(s1(A), . . . , sn(A)) − the

kth elementary symmetric function of the singular values, see [24, Chapter 5] and its
references. We will prove a general result for multiplicative preservers of functions of
matrices depending only on singular values. To achieve that, we need the following
lemma.

Lemma 3.9. Let S ∈ SL(n,C). If SEijS
−1 has singular values 1, 0, . . . , 0 for all

(i, j) ∈ {(r, s) : 1 ≤ r, s ≤ n, r �= s}, then S is unitary.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 291-319, December 2003

http://math.technion.ac.il/iic/ela



ELA

304 R.M. Guralnick, C.K. Li, and L. Rodman

Proof. Suppose S has columns u1, · · · , un and S−1 has rows v∗1 , . . . , v
∗
n with

u1, . . . , un, v1, . . . , vn ∈ Cn.

Since s1(SEijS
−1) = ‖ui‖‖vj‖, the given condition ensures that ‖ui‖‖vj‖ = 1 for any

i �= j. Suppose ‖ui‖ = ri for i = 1, . . . , n. Then ‖vj‖ = 1/ri for any j �= i. If n ≥ 3,
then r1 = · · · = rn. If n = 2, then ‖u1‖ = r1 = 1/‖v2‖ and ‖u2‖ = r2 = 1/‖v1‖.
Since 1 = v∗1u1 ≤ ‖v1‖‖u1‖ = r1/r2, and 1 = v∗2u2 ≤ ‖v2‖‖u2‖ = r2/r1, we see that
r1 = r2 = 1.

Now, by Hadamard inequality (see, e.g., [12, Corollary 7.8.2]), 1 = | det(S)| ≤ rn
1

and 1 = | det(S−1)| ≤ r−n
1 . It follows that r1 = 1 and 1 = | det(S)| = ∏n

j=1 ‖uj‖.
Using the conditions for equality in Hadamard inequality (see the same [12, Corollary
7.8.2]), it follows that the columns of S are orthogonal. We conclude that S is
unitary.

Theorem 3.10. Suppose F : Mn(C) → R is a function depending only on
singular values of matrices such that F (D) �= F (D̃) whenever

(i) D = aI and D̃ = bI with 0 < a < b, or
(ii) D ∈ SL(n,C) is a diagonal matrix with positive diagonal entries and D̃ is

obtained from D = diag (d1, . . . , dn) by replacing two of the diagonal entries of D, say
dr ≥ ds, by tdr and ds/t, respectively, where t > 1.

If φ : H → Mn(C) is a multiplicative map such that F (A) = F (φ(A)) for all A ∈ H,
then there is a unitary U ∈ Mn(C) such that one of the following holds true.

(a) There is a multiplicative map f : C∗ → T such that φ has the form

A 
→ f(det(A))UAU∗ or A 
→ f(det(A))UAU∗.

(b) F (D) = F (D−1) for every diagonal matrix D ∈ SL(n,C), and there is a
multiplicative map f : C∗ → C∗ satisfying |f(z)| = |z2/n| for every z ∈ C∗ such that
φ has the form

A 
→ f(det(A))Uτ(A)U∗ or A 
→ f(det(A))Uτ(A)U∗.

Proof. The map φ has the form as in Theorem 2.5 (if H = SL(n,C)), or as in
Theorem 2.7(b) (if H = GL(n,C)).

Suppose H = SL(n,C). First, we show that S is unitary. If it is not true, then by
Lemma 3.9 there exist i �= j such that the rank one matrix SEijS

−1 has singular values
r, 0, . . . , 0 with r �= 1. Thus, A = I + Eij has singular values γ1, 1, . . . , 1, 1/γ1, where
γ1 =

{
1 +

√
5
}
/2, and φ(A) = φ(I +Eij) = I + SEijS

−1 (or φ(A) = I − SEjiS
−1 if

φ is given by the second formula in (2.1)) has singular values γ2, 1, . . . , 1, 1/γ2, where
γ2 =

{
r +

√
r2 + 4

}
/2. (To verify the last assertion, write SEijS

−1 = uv∗ for some
u, v ∈ Cn, and note that tr (SEijS

−1) = 0, hence v∗u = 0, and therefore there exists a
unitary V such V (uv∗)V ∗ is a scalar multiple of Eij .) Let D = diag(γ1, 1, . . . , 1, 1/γ1)
and D̃ = diag(γ2, 1, . . . , 1, 1/γ2). By condition (ii) and the fact that r �= 1, we have
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F (D) �= F (D̃). Since F depends only on singular values, we have F (A) = F (D) �=
F (D̃) = F (φ(A)), which is a contradiction. So, S is unitary.

Next, we show that |σ(z)| = |z| for all z ∈ C. To this end, let B = I+zE12. Then
B has singular values µ1, 1, . . . , 1, 1/µ1 and φ(B) has singular values µ2, 1, . . . , 1, 1/µ2,
where

µ1 =
{
|z|+√|z|2 + 4

}
/2 and µ2 =

{
|σ(z)|+√|σ(z)|2 + 4

}
/2.

Since F (B) = F (φ(B)), we see that µ1 = µ2, and hence |σ(z)| = |z|. As a result, σ
has the form z 
→ z or z 
→ z̄ by Lemma 3.1.

Suppose F (D) �= F (D−1) for some D ∈ SL(n,C). Then (b) cannot hold, and
condition (a) follows. If F (D) = F (D−1) for every D ∈ SL(n,C), then either (a) or
(b) holds true.

Now, supposeH = GL(n,C) and condition (a) holds true for A ∈ SL(n,C). Then
φ(A) = f(det(A))Sσ(A)S−1 for every A ∈ GL(n,C), where S is unitary and σ(A) =
A or A. Now, F (A) = F (φ(A)) implies that |f(det(A))| = 1 for all A ∈ GL(n,C).
Thus, f(z) = 1 for all z ∈ C∗. If condition (ii) holds true for A ∈ SL(n,C), then
φ(A) = f(det(A))Sτ(σ(A))S−1 for every A ∈ GL(n,C), where S is unitary and
σ(A) = A or A. Then for A = zI we have

F (zI) = F (φ(zI)) = F (f(zn)z−1I).

Thus, |f(zn)z−1| = |z| for all z ∈ C∗. It follows that |f(z)| = |z2/n|.
By the above result, one easily checks that φ has the form (a) if p �= 0 and

F (A) =
∑n

j=1 sj(A)p; for 1 < k < n and F (A) = Ek(s1(A), . . . , sn(A)), φ has the
form (a), or φ has the form (b) provided n = 2k.

Next, we turn to functions F onMn(C) that are invariant under unitary similarity,
i.e., F (A) = F (U∗AU) for any A ∈ Mn(C) and unitary U ∈ Mn(C), but do not
necessarily depend only on the singular values of matrices. Examples of such functions
include the numerical radius w(A) of A ∈ Mn(C), the numerical range W (A), and
their generalizations. For example, for 1 ≤ p ≤ q ≤ n integers such that (p, q) �= (n, n),
the (p, q)-numerical range and (p, q)-numerical radius are defined by

Wp,q(A) = {Ep(X∗AX) : X ∈ Mn×q(C), X∗X = Iq},
where Ep(Y ) denotes the pth elementary symmetric function of the eigenvalues of Y ,
and

wp,q(A) = max{|z| : z ∈ Wp,q(A)}.
Note that W1,1(A) = W (A) and w1,1(A) = w(A). The proofs for the linear pre-
servers of these functions are very intricate [7, 8, 18, 19, 21], whereas the proofs for
multiplicative preservers are easier using the group theory results.

The multiplicative preservers of the (p, q)-numerical range and (p, q)-numerical
radius are described in the following theorems. We exclude the case (p, q) = (n, n),
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as in this case Wn,n(A) = detA, and there exist multiplicative maps φ such that
det (φ(A)) = detA for all A ∈ H of various forms, e.g., φ(A) = diag (detA, 1, . . . , 1).

Theorem 3.11. Suppose p, q are integers, 1 ≤ p ≤ q ≤ n, and (p, q) �= (n, n).
A multiplicative map φ : H → Mn(C) satisfies wp,q(φ(A)) = wp,q(A) for all A ∈ H if
and only if there is S ∈ SL(n,C) such that one of the following conditions holds true.

(a) There is a multiplicative map f : C∗ → T such that φ has the form

A 
→ f(detA)SAS−1 or A 
→ f(detA)SAS−1,

where S is unitary if n > q.
(b) 2p = 2q = n > 2, and there is a multiplicative map f : C∗ → T such that φ

has the form

A 
→ f(detA)Uτ(A)U−1 or A 
→ f(detA)Uτ(A)U−1,

where U is unitary.
(c) 2p = q = n > 2, and there is a multiplicative map f : C∗ → C∗ such that

|f(µ)|n = |µ|2 for all µ ∈ C∗ and φ has the form

A 
→ f(detA)Sτ(A)S−1 or A 
→ f(detA)Sτ(A)S−1.

Proof. Note that wp,q(UAU∗) = wp,q(A) = wp,q(A) for any A ∈ H and unitary
U . So, if (a) holds, then φ is multiplicative and preserves wp,q.

Denote the k× k principal submatrix in the top left corner of A ∈ H by A[k] and
its complementary (n − k) × (n − k) principal submatrix by A(k). It is well known
that det(A[k]) = det(A) det(A−1(k)). Thus, for any unitary U of the form [U1|U2]
where U1 is n× k, we have

det(U∗
1 A

tU1) = det(A) det(U∗
2 (A

−1)tU2) = det(A) det(U∗
2 τ(A)U2).

Consequently, if A ∈ SL(n,C) we have

Wp,n−p(A) =Wp,n−p(At) =Wn−p,p(τ(A)).(3.2)

So, if (b) holds, then wn/2,n/2(A) = wn/2,n/2(φ(A)) for all A ∈ H.
Suppose (c) holds, say, φ has the first asserted form. Assume A ∈ H has eigen-

values a1, . . . , an. Then

wp,q(φ(A)) = |En/2(φ(A))|
= |En/2(f(det(A))Sτ(A)S−1)|
= |f(det(A))|n/2|En/2(1/a1, . . . , 1/an)|
= | det(A)| |En/2(1/a1, . . . , an)|
= |En/2(a1, . . . , an)|
= wp,q(A).
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Next, we consider the converse. Suppose q < n. If p = 1, then w1,q(A) is a
unitary similarity invariant norm, and the result follows from Theorem 3.8.

Suppose 2 ≤ p ≤ q < n. Assume H = SL(n,C). Then φ is clearly non-trivial,
and has the standard form

A 
→ Sσ(A)S−1 or A 
→ Sτ(σ(A))S−1

for some S ∈ SL(n,C). We first show that S is unitary. Note that if A = I+ rZ such
that Z is a rank one matrix with trace zero and singular values 1, 0, . . . , 0, then

wp,q(A) = Ep(1 + r/2, 1, . . . , 1).

To see this, consider any n × q matrix X with X∗X = Iq; then the matrix X∗ZX
has rank at most one. Thus, X∗ZX is unitarily similar to λE11 + µE12 ∈ Mq. In
particular, X∗ZX has eigenvalues λ, 0, . . . , 0 with λ = v∗Zv for some unit vector
v ∈ Cn, i.e., λ ∈ W (Z). Since Z is unitarily similar to E12 ∈ Mn(C), we have

W (Z) =W (E12) = {z ∈ C : |z| ≤ 1/2};
see [11, Section 22]. Thus, |λ| ≤ 1/2, and

|Ep(X∗(I + rZ)X)| ≤ Ep(1 + r|λ|, 1, . . . , 1) ≤ Ep(1 + r/2, 1, . . . , 1).

Now, suppose U is unitary with columns u1, . . . , un such that U∗ZU = E12. Let X
have columns (u1 + u2)/

√
2, u3, . . . , uq+1. Then X∗ZX = E11/2 ∈ Mq, and

Ep(X∗(I + rZ)X) = Ep(1 + r/2, 1, . . . , 1).

Suppose S is not unitary. By Lemma 3.9, there is Eij with i �= j so that Z̃ = SEijS
−1

has trace zero and singular values r, 0, . . . , 0 such that r �= 1. If φ has the form
A 
→ Sσ(A)S−1, then

wp,q(I + Eij) �= wp,q(I + Z̃) = wp,q(φ(I + Eij)).

If φ has the form A 
→ Sτ(σ(A))S−1, then

wp,q(I −Eji) = wp,q(I + Eji) �= wp,q(I + Z̃) = wp,q(τ(I −Eji)) = wp,q(φ(I −Eji)).

In both cases, we have a contradiction.
Next, we show that σ is the identity map, or the complex conjugation z 
→ z̄.

For any positive number a, let m be a positive integer such that |m+ σ(a)| > 1. For
Dm = diag(m+ a, 1, . . . , 1, (m+ a)−1), we have

Ep(m+ a, 1, . . . , 1︸ ︷︷ ︸
q−1

) = wp,q(Dm) = wp,q(φ(Dm)) = Ep(|m+ σ(a)|, 1, . . . , 1︸ ︷︷ ︸
q−1

).

Thus,

m+ a = |m+ σ(a)| = |m+ a+ (σ(a)− a)|.(3.3)
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Since there is more than one positive integer m such that |m+ σ(a)| > 1, using (3.3)
for two different such values of m leads to equality σ(a) = a. By Lemma 3.1, σ has
the form z 
→ z or z 
→ z̄. Hence, φ has the form

(i) A 
→ UAU∗, (ii) A 
→ UAU∗, (iii) A 
→ Uτ(A)U∗, or (iv) A 
→ Uτ(A)U∗,

for some unitary U .
Next, we show that the (iii) and (iv) cannot hold if it is not the case that 2p =

2q = n ≥ 4. To this end, consider two cases. If n ≤ 2p, let

Am = diag(1/m, . . . , 1/m,mn−1).

Since it is not the case that 2p = 2q = n ≥ 4, we have n−p < p or
(
q−1
p−1

)
<

(
q
p

)
. Then

for a sufficiently large positive integer m we have

wp,q(Am) = Ep(1/m, . . . , 1/m,︸ ︷︷ ︸
q−1

mn−1)

=
(
q − 1
p− 1

)
mn−1

mp−1
+

(
q − 1
p

)
1
mp

<

(
q

p

)
mp

≤ wp,q(Sτ(Am)S−1)

as Wp,q(Sτ(Am)S−1) contains Ep(λ1, . . . , λq) for any q eigenvalues of τ(Am). This
contradicts the fact that wp,q(A) = wp,q(φ(A)). If n > 2p, let

Bm = diag(m, . . . ,m, 1/mn−1).

Then for a sufficiently large positive integer m we have

wp,q(Bm) =
(
q

p

)
mp <

(
q − 1
p− 1

)
mn−1

mp−1
+

(
q − 1
p

)
1
mp

≤ wp,q(Sτ(Bm)S−1),

which is a contradiction.
Now continue to assume that 2 ≤ p ≤ q < n, and consider H = GL(n,C). Since

the restriction of φ on SL(n,C) has one of the forms (i) – (iv), we have by Theorem
2.7: (

q

p

)
|f(zn)z|p = wp,q(φ(zI)) = wp,q(zI) =

(
q

p

)
|z|p

for any z ∈ C, and the conclusion on f follows.

Now suppose n = q > p. One can modify the proof of Theorem 3.7 to get the
conclusion as follows. When H = SL(n,C), the map φ has the standard form

A 
→ Sσ(A)S−1 or A 
→ Sτ(σ(A))S−1.
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If the latter form holds true, one can consider A = diag(m, . . . ,m, 1/mn−1), and
conclude that∣∣∣∣

(
n− 1

p

)
mp+n +

(
n− 1
p− 1

)
mp

∣∣∣∣ =
∣∣∣∣
(
n− 1

p

)
mn−p +

(
n− 1
p− 1

)
m2n−p

∣∣∣∣
for all positive integers m, which is impossible unless n = 2p. So,

(v) φ(X) = Sσ(X)S−1, or (vi) n = 2p and φ(X) = Sσ(τ(X))S−1.

In both cases of (v) and (vi), consider

X = In + aE11 + aE12 + E21 ∈ H, for a ∈ C.

If p = 1, then

|n+ a| = |E1(X)| = |E1(φ(X))| = |n+ σ(a)|
implies (in view of Lemma 3.1) that either σ(a) = a or σ(a) = a. If p ≥ 2, then

|Ep(X)| =
∣∣∣∣(a+ 2)

(
n− 2
p− 1

)
+

(
n− 2
p− 2

)
+

(
n− 2

p

)∣∣∣∣
and

|Ep(φ(X))| =
∣∣∣∣(σ(a) + 2)

(
n− 2
p− 1

)
+

(
n− 2
p− 2

)
+

(
n− 2

p

)∣∣∣∣ .
So, |Ep(X)| = |Ep(φ(X))| implies that either σ(a) = a or σ(a) = a. Hence, our
assertion is proved if H = SL(n,C).

Let H = GL(n,C). If (v) holds true on SL(n,C), then

φ(X) = f(det(X))SXS−1 or φ(X) = f(det(X))SXS−1,

where f : C∗ −→ C∗ is a multiplicative map. Applying the equality |Ep(µI)| =
|Ep(φ(µI))|, µ ∈ C∗, one shows that |f(µ)| = 1 for every µ ∈ C∗. If (vi) holds true
on SL(n,C), then

φ(X) = f(det(X))Sτ(X)S−1 or φ(X) = f(det(X))Sτ(X)S−1.

Since |Ep(X)| = |Ep(φ(X))| for all X ∈ H, we see that |f(det(X))|n = | det(X)|2 for
all X ∈ H.

Theorem 3.12. Suppose p, q are integers, 1 ≤ p ≤ q ≤ n, and (p, q) �= (n, n). A
multiplicative map φ : H → Mn(C) satisfies Wp,q(φ(A)) = Wp,q(A) for all A ∈ H if
and only if there is an S ∈ SL(n,C) such that one of the following conditions holds
true.

(a) φ has the form

A 
→ SAS−1,

where S is unitary if n > q.
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(b) 2p = 2q = n > 2, and φ has the form A 
→ Sτ(A)S−1, where S is unitary.
(c) n = q = 2p > 2, H = SL(n,C), and φ has the form

A 
→ Sτ(A)S−1.

Proof. The “if part” is clear (use (3.2)), and we prove the “only if” part.
Let q < n. Any mapping preserving Wp,q(A) also preserves wp,q(A); thus, we

need to look for multiplicative Wp,q(A) preservers among the set of multiplicative
wp,q(A) preservers. Consider

A =
1

(1 + i)1/n
diag (1 + i, 1, . . . , 1).

Then we have Wp,q(A) = (1 + i)−p/nWp,q(I + iE11). For any n × q matrix X with
X∗X = Iq, the matrix X∗(I + iE11)X ∈ Mq has eigenvalues 1 + ti, 1, . . . , 1 with
t ∈ [0, 1], and all such eigenvalues can be constructed in this way. Thus,

Wp,q(I + iE11) = {Ep(1 + ti, 1, . . . , 1︸ ︷︷ ︸
q−1

) : t ∈ [0, 1]}

=
{(

q − 1
p

)
+

(
q − 1
p− 1

)
(1 + ti) : t ∈ [0, 1]

}
.

Similarly, Wp,q(A) = (1− i)−p/nWp,q(I − iE11) with

Wp,q(I − iE11) =
{(

q − 1
p

)
+

(
q − 1
p− 1

)
(1− ti) : t ∈ [0, 1]

}
.

Clearly, Wp,q(A) �=Wp,q(A). Also, if 2p = 2q = n > 2, then

Wp,q(A) �=Wp,q(τ(A)),

in view of (3.2). Thus, φ on SL(n,C) has the form A 
→ UAU∗, or in case 2p =
2q = n > 2 the map φ may also have the form A 
→ Uτ(A)U∗, where U is unitary.
Consequently, φ on GL(n,C) has the form

φ(A) = f(det(A))UAU∗,(3.4)

or possibly

φ(A) = f(det(A))Uτ(A)U∗ (if 2p = 2q = n > 2).(3.5)

Now,

Wp,q(zI) =
{(

q

p

)
zp

}
.

Thus, assuming φ has the form (3.4), we have(
q

p

)
zp =Wp,q(zI) =Wp,q(φ(zI)) =Wp,q ((f(z))nzI) =

(
q

p

)
(f(z))npzp.
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Thus, f(z)np = 1 for any z ∈ C∗. By Lemma 3.2, f(z) = 1 for all z ∈ C∗. If φ has
the form (3.5) we analogously obtain

zp = (f(z))npz−p, z ∈ C∗.

Thus, (f(z))np = z2p, which is impossible by Lemma 3.2(b).
If n = q > p, then Wp,n(A) = {Ep(A)}, and the multiplicative preservers of Wp,n

are characterized in Theorem 3.7.

3.4. Multiplicative Set Preservers. Theorems 2.5 and 2.7 allow one to
obtain results on multiplicative maps of GL(n,C) and SL(n,C) that preserve various
sets of matrices. We demonstrate this approach in the case of multiplicative preservers
of the sets of unitary matrices, normal matrices, invertible Hermitian matrices, or
invertible Hermitian matrices with prescribed inertia. The interest in these classes is
motivated by extensive results concerning linear preservers (see [24, Chapter 3] and
references there, [16, 20, 28]). Denote

Un = {U ∈ Mn(C) : U is unitary}, Nn = {A ∈ Mn(C) : A is normal},(3.6)

Hn = {A ∈ Mn(C) : A is invertible and Hermitian },

Hn(k, n− k) = {A ∈ Hn : A has k positive and n− k negative eigenvalues}.

Here k is a fixed integer, 0 ≤ k ≤ n. Clearly, trivial maps such as A 
→ det(A)I are
multiplicative preservers of some of these sets. We exclude multiplicative maps that
map into the set of scalar multiples of I from our consideration.

Theorem 3.13. Let Ξ be one of the sets Un, Nn, Hn, or Hn(k, n− k). Assume
that n−k is even ifH = SL(n,C) (otherwise Hn(k, n−k) does not intersect SL(n,C)).
Then φ : H → Mn(C) is a multiplicative map such that

φ(H ∩ Ξ) ⊆ Ξ(3.7)

and φ(SL(n,C)) is not a singleton if and only if there is a unitary U ∈ SL(n,C) and
a multiplicative map f : C∗ → C∗ such that φ has one of the following four forms:

A 
→ f(det(A))UAU∗, A 
→ f(det(A))Uτ(A)U∗,

A 
→ f(det(A))UAU∗, A 
→ f(det(A))Uτ(A)U∗,

where:
(a) |f(z)| = 1 for all z ∈ T if Ξ = Un;
(b) f(R∗) ⊆ R∗ if Ξ = Hn or if Ξ = Hn(k, k) (and n = 2k);
(c) f(R∗) ⊆ R∗ if Ξ = Hn(k, n− k) with k �= n− k and n− k even;
(c’) f(R∗) ⊆ (0,∞) if Ξ = Hn(k, n− k) with k �= n− k and n− k odd.
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The condition that φ(SL(n,C)) is not a singleton is automatic if Ξ = Hn(k, n−k)
with k < n and n− k even.

Proof. The “if” part is clear; note that if σ is a complex field automorphism such
that σ(R) = R then σ(Ξ) = Ξ for Ξ = Un, Ξ = Hn, and Ξ = Nn.

We prove the “only if” part. Suppose H = SL(n,C). Then φ has the standard
form A 
→ Sσ(A)S−1 or A 
→ Sτ(σ(A))S−1, for some S ∈ SL(n,C). First, we show
that S is unitary. Assume that S has columns u1, . . . , un and S−1 has rows v∗1 , . . . , v

∗
n,

where u1, . . . , un, v1, . . . , vn ∈ Cn.
Suppose Ξ is one of Nn, Hn, or Hn(k, n− k). Let

Am = mE11 +
k∑

j=2

Ejj −
n−1∑

j=k+1

Ejj ±Enn/m,

where m is a positive integer, and the sign ± is chosen so that det (Am) = 1. Then

φ(Am) = mu1v
∗
1 +

k∑
j=2

ujv
∗
j −

n−1∑
j=k+1

ujv
∗
j ± unv

∗
n

m

or

φ(Am) =
u1v

∗
1

m
+

k∑
j=2

ujv
∗
j −

n−1∑
j=k+1

ujv
∗
j ±munv

∗
n.

Clearly,

lim
m→∞

φ(Am)
m

=
{

u1v
∗
1 or

±unv
∗
n

is normal, and hence v1 and u1 (or vn and un) are multiples of each other. Applying
the above argument to any pair of indices i �= j instead of 1 and n, we conclude that
ur is a multiple of vr for every r ∈ {1, . . . , n}. Since v∗j uj = 1 for j = 1, . . . , n, it
follows that S−1 = DS∗ for some diagonal matrix D with positive diagonal entries.
Then S = U

√
D

−1
, where U is unitary, and where

√
D is the positive definite diagonal

square root of D. We show next that
√
D = I. Consider the matrix

A =
[
0 1
1 0

]
⊕ δ3 ⊕ δ4 ⊕ · · · ⊕ δn,

where δj = ±1, and the signs are adjusted so that A ∈ Ξ. (This is possible unless
k = 0 or k = n.) Then

√
DA(

√
D)−1 is normal, which implies that the first two

diagonal entries of
√
D are equal. It follows analogously that all diagonal entries of√

D are the same, hence
√
D = rI for some r > 0. Now

1 = detS = (detU)(det
√
D)−1 = r−n(detU),
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and since |detU | = 1, r = 1. Thus, S is unitary. In the remaining cases k = n or
k = 0, use

A = ±
([

5/4 3/4
3/4 5/4

]
⊕ In−2

)
.

Then
√
DA(

√
D)−1 is normal, which implies again that the first two diagonal entries

of
√
D are equal, and as before we conclude that S is unitary.

Suppose Ξ = Un. Let A be a generalized permutation matrix, i.e., A = DP ,
where D is diagonal with ±1’s on the diagonal and P is a permutation matrix, such
that detA = 1. Then σ(A) = A, and φ(A) is unitary means: S∗SA = AS∗S. Thus,
S∗S commutes with every matrix in the algebra A generated by the generalized
permutation matrices with determinant 1. It is easy to see that A =Mn(C) if n > 2.
(Use the property that A is invariant under multiplication by diagonal matrices with
±1’s on the diagonal having determinant 1.) It follows that S∗S is a scalar matrix.
Since detS = 1, we obtain that S is unitary. If n = 2, a similar argument shows that
S∗S commutes with the matrices:

I2,

[
0 1
−1 0

]
,

[
i 0
0 −i

]
,

[
0 i
i 0

]
∈ U2 ∩ SL(2,C).

We can also conclude that S∗S is a scalar matrix and S is unitary.
Next, consider σ. Since S is already proven to be unitary, we obviously have

σ(Ξ) ⊆ Ξ. Letting A ∈ Ξ∩SL(n,C) be an appropriately chosen diagonal matrix, and
using Lemma 3.1 if necessary, we conclude that σ has the desired form in the cases
when Ξ = Un, Ξ = Hn, Ξ = Hn(k, n− k). In the remaining case Ξ = Nn consider

A(q) = qE11 + E12 −E21 + E33 + · · ·+ Enn ∈ SL(n,C), q ∈ C∗,

and observe that A(q) is normal if and only if q = ir for some r ∈ R. Clearly σ(A(q))
is normal for every normal A(q) if and only if σ(R) ⊆ R, and use Lemma 3.1 again.

It remains to prove the “only if” part for the case H = GL(n,C). For now we
leave aside the case when Ξ = Hn(k, n − k) with odd n − k. Restricting the map φ
to SL(n,C), we obtain the required properties for U and σ. As for the additional
properties of f specified in (a), (b), and (c), they are evident (and can be easily proved
arguing by contradiction, for example) in cases Ξ = Nn (no additional properties),
Ξ = Un, Ξ = Hn, and Ξ = Hn(k, k). Consider Ξ = Hk,n−k with k �= n− k. Then we
clearly have (c) as well (recall that n− k is assumed to be even).

Finally, consider the case H = GL(n,C), Ξ = Hn(k, n− k) with odd n− k. Then
φ has one of the two forms

A 
→ f(det(A))Sσ(A)S−1 or A 
→ f(det(A))Sτ(σ(A))S−1 ,

where f : C∗ −→ C∗ is a multiplicative map, σ is a complex field embedding, and
S ∈ SL(n,C). Using the matrices

Am = mE11 +
k∑

j=2

Ejj −
n−1∑

j=k+1

Ejj −Enn/m,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 291-319, December 2003

http://math.technion.ac.il/iic/ela



ELA

314 R.M. Guralnick, C.K. Li, and L. Rodman

m an integer, we prove that S is in fact unitary, similarly to the proof given in the case
H = SL(n,C). For the consideration of σ, notice that f(detA)σ(A) ∈ Hn(k, n− k)
for every A ∈ Hn(k, n − k). Letting here A to be a suitable real diagonal matrix
with determinant −1, we see that σ(R) ⊆ R, hence σ is either trivial or complex
conjugation. Properties (b) or (c’) of f (whichever case is applicable) now follow
easily.

If the hypothesis that φ(SL(n,C)) is not a singleton is omitted in Theorem 3.13,
then various forms of φ are possible. For example, let Aµ be a group of invertible
n×n complex matrices, indexed by µ ∈ T, so that Aµν = AµAν for µν ∈ T, such that
A−1 ∈ Hn(k, n− k). For example, Aµ = diag (µ, . . . , µ, 1, 1, . . . , 1), where µ appears
n− k times. Then define

φ(X) = A(det X)/|(detX)|, X ∈ GL(n,C).

Clearly, if n−k is odd, we have φ(Hn(k, n−k)) ⊆ Hn(k, n−k). Analogous degenerate
maps can be constructed for Un, Nn, and Hn.

Note also that if φ is a multiplicative map on H, with the property (3.7), Ξ is
one of Un, Hn, or Hn(k, n− k) (with n− k even if H = SL(n,C)), and φ(SL(n,C))
is a singleton, then necessarily φ(SL(n,C)) = {I}.

4. Multiplicative Preservers on Matrices over Other Fields. One
may use the techniques of the previous section to obtain results on multiplicative
preservers on matrices over fields other than C, such as the real field R. For the
real field, the situation simplifies somewhat because there is only the trivial field
embedding of R (see, e.g., [29]). For example, the real analog of Theorem 3.5 reads
as follows (the spectral radius of a real matrix is defined as in the complex case, i.e.,
non-real eigenvalues, if any, are taken into account):

Theorem 4.1. Let H = SL(n,R) or H = GL(n,R). A multiplicative map
φ : H→ Mn(R) satisfies

r(φ(A)) = r(A) for all A ∈ H

if and only if there exist an S ∈ GL(n,R) and a multiplicative map f : R∗ → {1,−1},
which collapses to the constant function f(µ) = 1 when H = SL(n,R), such that φ
has the form

φ(A) = f(det(A))SAS−1, A ∈ H.

Real analogs of Theorems 3.3, 3.8, and 3.4 can be formulated analogously, with
essentially the same proofs (note that the proof of Theorem 3.3 simplifies considerably
in the real case); as in Theorem 4.1, here we require only that S be real orthogonal,
not necessarily having determinant 1.

Next, we present a real analog of Theorem 3.13. We denote Un(R) = Un∩Mn(R),
and analogously Nn(R), Hn(R), Hn(k, n − k)(R). Multiplicative maps φ that map
into the set of scalar multiples of I are excluded in the next theorem.
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Theorem 4.2. Let H = SL(n,R) or H = GL(n,R), and let Ξ be one of the
sets Un(R), Nn(R), Hn(R), or Hn(k, n − k)(R). Assume that n − k is even if H =
SL(n,R). Then φ : H → Mn(R) is a multiplicative map such that φ(H ∩ Ξ) ⊆ Ξ and
φ(SL(n,R)) is not a singleton if and only if there is a real orthogonal U ∈ Mn(R),
and a multiplicative map f : R∗ → R∗ such that φ has one of the following two forms:

A 
→ f(det(A))UAU∗, A 
→ f(det(A))Uτ(A)U∗,

where f(R∗) ⊆ (0,∞) if Ξ = Hn(k, n− k) with k �= n− k and n− k odd.

The proof is completely analogous to that of Theorem 3.13. The only detail that
perhaps requires additional explanation is the proof that S∗S is a scalar matrix in
the case Ξ = Un and n = 2. In this case the algebra A generated by the generalized
permutation 2× 2 matrices having determinant 1 coincides with{[

a b
−b a

]
: a, b ∈ R

}
.

It is easy to see that every real 2 × 2 matrix that commutes with every element of
A actually belongs to A. So S∗S ∈ A. Since in addition S∗S is real and positive
definite we must have that S∗S is a scalar matrix.

Note that the kth elementary symmetric function Ek(A) of eigenvalues of A ∈
Mn(F) can be viewed as the sum of determinants of the k × k principal submatrices
of A, or as ± the coefficient of λn−k in the characteristic polynomial det(A − λI);
thus, Ek(A) ∈ F. So for multiplicative preservers of elementary symmetric functions
of eigenvalues it makes sense to consider matrices over any field F. We have an analog
of Theorem 3.7. If n = 2, there is not much to say. So we assume that n > 2.

Theorem 4.3. Let F be a field, and let H = SL(n,F) or H = GL(n,F), with
n > 2. Fix 1 ≤ k < n. A multiplicative map φ : H → Mn(F) satisfies Ek(φ(A)) =
Ek(A) for all A ∈ H if and only if there is an S ∈ GL(n,F) and a multiplicative map
f : F∗ → F∗ such that

(a) φ has the form X 
→ f(detX)SXS−1 and f is such that f(µ)k = 1 for every
µ ∈ F∗, or

(b) n = 2k, and φ has the form X 
→ f(detX)Sτ(X)S−1, where f is such that
f(µ)k = µ for every µ ∈ F∗.

Proof. Note that in particular there is no restriction on the characteristic of F in
Theorem 4.3. Clearly, φ is nontrivial on SL(n,F). So we assume that φ has the usual
form (2.2), as given in Theorem 2.7. There is no loss of generality in taking S = I
(since conjugation by S preserves Ek). Now take A to be the companion matrix of
a polynomial f(x) ∈ F[x] with det(A) = 1. Applying σ preserves the corresponding
coefficient of f(x) (since that is ±Ek(A)). Since that coefficient is arbitrary, it follows
that σ is the identity map.

First assume that n �= 2k. We show that τ cannot be involved. Consider monic
polynomials f(x) of degree n with constant term (−1)n and let A be the companion
matrix of f(x). Then applying τ gives a matrix similar to the companion matrix of
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g(x) := xnf(1/x). Aside from the case n = 2k, there will always be such a polynomial
so that the kth coefficient of f(x) is not the kth coefficient of g(x). Since det(A) = 1,
this shows that τ cannot be involved when n �= 2k.

So assume (even for the case n = 2k) that τ is not involved. Noting thatEk(µA) =
µkEk(A) shows that f(detA)k = 1 for any A with Ek(A) �= 0. We can always find
A with det(A) arbitrary and Ek(A) �= 0 (take a companion matrix). Thus, fk is
identically 1.

Finally, consider the case that n = 2k and τ is involved. Then Ek(µτ(A)) =
µkEk(A)/ det(A). In particular, if Ek(A) is nonzero, this forces f(det(A))k = det(A),
whence the result.

The result of Corollary 3.6 can be generalized for arbitrary fields (with few ex-
ceptions), as stated in the next theorem. We say that a multiplicative map φ : H →
Mn(F), where H = SL(n,F) or H = GL(n,F), preserves spectra if for every A ∈ H
we have

{λ ∈ F : det (A− λI) = 0} ⊇ {λ ∈ F : det (φ(A) − λI) = 0}.(4.1)

The case when one or both sides of (4.1) are empty sets is not excluded.

Theorem 4.4. Let F be a field, and let H = SL(n,F) or H = GL(n,F). Assume
that |F| > 4. Then a multiplicative map φ : H → Mn(F) preserves spectra if and only
if φ has the form SXS−1 for some S ∈ GL(n,F).

Proof. Clearly such maps have the preservation of spectra property. Assume now
that φ is a multiplicative map on H that preserves spectra. Then φ cannot be trivial
on SL(n,F) (indeed, the only way φ can be trivial is when φ(H) = In, but if |F| > 2
then a diagonal matrix A ∈ SL(n,F) can be found with some eigenvalues in F different
from 1, a contradiction with the preservation of spectra property). So assume that
φ(A) = f(det(A))Sσ(A)S−1 or φ(A) = f(det(A))Sσ(τ(A))S−1 as in Theorem 2.7.

We first show that σ = 1. By composing f with conjugation by S, we may
take S = I (since conjugation certainly keeps the preservation of spectra property).
Now φ maps diagonal matrices to diagonal matrices. We claim that σ is the identity.
Assume not, and let a ∈ F \ {0} be such that σ(a) �= a. Taking A to have exactly the
distinct eigenvalues a, a−1, 1 with det(A) = 1, we see that σ(a) = a−1. Thus, σ either
fixes or inverts every element of F – this cannot happen unless F has characteristic 2.
Indeed, clearly σ2 = 1 on F, and therefore, assuming the characteristic of F is not 2,
F (as a vector space over the prime field) can be decomposed into a direct sum of the
subspace fixed by σ, which is actually a field, and the eigenspace of σ corresponding
to the eigenvalue −1, and furthermore, if σ(x) = −x = x−1, x ∈ F∗, then x2 = −1,
so the −1 eigenspace has cardinality at most 3. We note also that x �= ±1 inverted
by σ implies that 1 + x is also inverted by σ, whence

1 = (1 + x)(1 + x−1) = 2 + x+ x−1,(4.2)

and so x2 + x + 1 = 0. Since this equation holds for any xy with y �= 0 fixed by σ,
it follows that the fixed field of σ has cardinality at most 3. These considerations
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rule out any characteristic of F but 2, and moreover the fixed field of σ must have
cardinality 2, whereas the equation (4.2) shows that there are at most two elements
x such that σ(x) �= x. We are left with the case |F| = 4, which is excluded by the
hypotheses of the theorem.

So σ = 1. If n > 2, we see that τ cannot be involved, since there are matrices of
determinant 1 whose spectrum in F is not closed under inverses (here the hypothesis
that |F| > 3 is essential). If n = 2, we can modify f and assume again that τ is not
involved.

It remains to consider f . Suppose that f(a) �= 1, a ∈ F∗. Now take A to
be diagonal with all but one diagonal entry 1 (and the remaining diagonal entry
a = det(A)). The spectrum of φ(A) consists of f(a) and af(a). Now {1, a} =
{f(a), af(a)} implies that f(a) = a = a−1. Thus a = −1 and the kernel of f is
trivial, whence |F| = 3, an excluded case.

Note that Theorem 4.4 fails if |F| ≤ 4: If |F| = 4, then the map φ(A) = σ(τ(A))
on SL(n,F), where σ is the squaring map on F, preserves spectra; if |F| ≤ 3, then the
map φ(A) = τ(A) on SL(n,F) preserves spectra.

If we adopt a more stringent definition of the spectrum preservation property,
namely that (4.1) is replaced by

{λ ∈ F : det (A− λI) = 0} ⊇ {λ ∈ F : det (φ(A) − λI) = 0},(4.3)

where F is the algebraic closure of F, then the exceptions of Theorem 4.4 disappear:

Theorem 4.5. Let F be a field, and let H = SL(n,F) or H = GL(n,F). Then
a multiplicative map φ : H → Mn(F) satisfies (4.3) for every A ∈ H if and only if φ
has the form SXS−1 for some S ∈ GL(n,F).

Proof. In view of Theorem 4.4 we may assume |F| ≤ 4. Assume now that φ is a
multiplicative map onH that preserves spectra. Then φ cannot be trivial on SL(n,F)
(there are matrices of determinant 1 that have a nontrivial spectrum in F).

Assume first that |F| > 3 if n = 2. Then φ has the form

φ(A) = f(det(A))Sσ(A)S−1 or φ(A) = f(det(A))Sσ(τ(A))S−1

as in Theorem 2.7. We show that σ = 1. Arguing as in the proof of Theorem
4.4, we need to consider only the case |F| = 4. In that case, we choose matrix A
whose eigenvalues are a, a4, 1, . . . , 1 where a is a root of the polynomial x2 + bx+ 1,
b ∈ F4 \ {0, 1}, in a quadratic extension F16 of F4. Then a5 = 1, and if φ �= 1, then
φ(A) has eigenvalues a2, a3, 1 . . . , 1, a contradiction. So σ = 1. If n > 2, we see that
τ cannot be involved, since there are matrices of determinant 1 whose spectrum in
F is not closed under inverses (if |F| = 4, this is clear; if |F| = 2, take A to have
three nontrivial eigenvalues of order 7 with product 1; and if |F| = 3, take such an
A with 7 replaced by 13). If n = 2, we can modify f and assume again that τ is
not involved. It remains to consider f (in the case H = GL(n,F)). The proof of
Theorem 4.4 shows that we need only to consider the field of order 3. In this case,
we take a matrix A whose eigenvalues are a, a3, 1 . . . , 1 where a is a primitive 8-th
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root of 1. So det(A) = −1 and, assuming f is non-trivial, the spectrum of φ(A) is
{−a,−a3,−1, . . . ,−1} which is different from that of A.

Finally, we treat the remaining case n = 2 and |F| ≤ 3. Note that SL(2,F) has a
unique minimal normal subgroup that has order prime to the characteristic of F. This
subgroup cannot be contained in the kernel of the multiplicative map (since spectra are
preserved) and so the map is bijective. Since S3 = GL(2,F2) is its own automorphism
group and since the automorphism group of SL(2,F3) is S4 = PGL(3,F3), it follows
that any automorphism of GL(2,F2) or of SL(2,F3) is a conjugation by an element
of GL(2,F). The same argument shows the result for GL(2,F3).

In a different direction, multiplicative preservers of certain algebraic groups may
be characterized.

Theorem 4.6. Let F be a field and H = SL(n,F) or GL(n,F). Assume that
|F| > 3 if n = 2. Let F be the algebraic closure of F. Let G be an algebraic subgroup
of GL(n,F) defined over the prime field. Then a nontrivial multiplicative map φ :
H → Mn(F) preserves G in the sense that φ(G) ⊆ G if and only if there exists an S
in GL(n,F) and a field embedding σ : F → F such that one of the following holds:

(1) φ(A) = Sσ(A)S−1 and SGS−1 = G; or
(2) φ(A) = Sσ(τ(A))S−1 with Sτ(G)S−1 = G.

Proof. Let φ be a multiplicative map preserving G with the notation as in Theo-
rem 2.7. Let σ be the associated field embedding. We can extend φ to F. Since G is
defined over the prime field, σ(G) ⊆ G and so the maps above certainly preserve G.
Let P denote the prime field. Then σ(P ) = P and so σ is an automorphism of the
P points of G. Thus, σ(G) is Zariski dense in G. because σ sends P onto itself and
so the image of σ (after extending to the algebraic closure), σ sends G(P ) to itself.
Now it is well known that if A < B are algebraically closed fields and V is a variety
defined over A, then V (A) is Zariski dense in V (B). Thus, S or τ(S) must normalize
G depending which case we are in.

There is a version of Theorem 4.6 for the excluded cases n = 2 and |F | ≤ 3, but
it is a bit complicated to state and has very little content.

Theorem 4.6 in particular applies to the symplectic group or orthogonal group or
any split simple algebraic group (since they are defined over the prime field), as well
as the groups of triangular or block triangular matrices.
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